2017年河南重点中学中招内部模拟试卷及答案-数学
2017河南数学中招考试试题和解析

2017年中招考试数学试卷一.选择题(共10小题)1.下列各数中比1大的数是()A.2 B.0 C.﹣1 D.﹣32.2016年,我国国内生产总值达到74.4万亿元,数据“74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C.74.4×1013D.7.44×10153.某几何体的左视图如图所示,则该几何体不可能是()A.B.C.D.4.解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C.1﹣2x﹣2=﹣3 D.1﹣2x+2=3 5.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.一元二次方程2x2﹣5x﹣2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.如图,在▱ABCD中,对角线AC,BD相交于点O,添加下列条件不能判定▱ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠1=∠28.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针价好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,1)B.(2,1)C.(1,)D.(2,)10.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O′,B′,连接BB′,则图中阴影部分的面积是()A.B.2﹣C.2﹣D.4﹣二.填空题(共5小题)11.计算:23﹣= .12.不等式组的解集是.13.已知点A(1,m),B(2,n)在反比例函数y=﹣的图象上,则m与n的大小关系为.14.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.15.如图,在Rt△ABC中,∠A=90°,AB=AC,BC=+1,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三.解答题(共8小题)16.先化简,再求值:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中x=+1,y=﹣1.17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a+b= ,m= ;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额x在60≤x<120范围的人数.18.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC边于点D,过点C作CF ∥AB,与过点B的切线交于点F,连接BD.(1)求证:BD=BF;(2)若AB=10,CD=4,求BC的长.19.如图所示,我国两艘海监船A,B在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C,此时,B船在A船的正南方向5海里处,A船测得渔船C在其南偏东45°方向,B船测得渔船C在其南偏东53°方向,已知A船的航速为30海里/小时,B船的航速为25海里/小时,问C船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41)20.如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.21.学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想图1中,线段PM与PN的数量关系是,位置关系是;(2)探究证明把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN 面积的最大值.23.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M 的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年中招考试数学试卷参考答案与解析一.选择题(共10小题)1.A2.B3.D4. A5. A6.B7.C8.C9.D 10.C二.填空题(共5小题)11.解:23﹣=8﹣2=6,故答案为:6.12.解:解不等式①0得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集是﹣1<x≤2,故答案为﹣1<x≤2.13.解:∵反比例函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.14.解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,即BP⊥AC,BP=4,∴由勾股定理可知:PC=3,由于图象的曲线部分是轴对称图形,∴PA=3,∴AC=6,∴△ABC的面积为:×4×6=12故答案为:1215.解:①如图1,当∠B′MC=90°,B′与A重合,M是BC的中点,∴BM=BC=+;②如图2,当∠MB′C=90°,∵∠A=90°,AB=AC,∴∠C=45°,∴△CMB′是等腰直角三角形,∴CM=MB′,∵沿MN所在的直线折叠∠B,使点B的对应点B′,∴BM=B′M,∴CM=BM,∵BC=+1,∴CM+BM=BM+BM=+1,∴BM=1,综上所述,若△MB′C为直角三角形,则BM的长为+或1,故答案为:+或1.三.解答题(共8小题)16.解:(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y)=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy当x=+1,y=﹣1时,原式=9(+1)(﹣1)=9×(2﹣1)=9×1=917.解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50﹣4﹣16﹣8﹣2=20,A组所占的百分比是=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×=144°;(3)每月零花钱的数额x在60≤x<120范围的人数是1000×=560(人).18.(1)证明:∵AB是⊙O的直径,∴∠BDA=90°,∴BD⊥AC,∠BDC=90°,∵BF切⊙O于B,∴AB⊥BF,∵CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵AB=AC,∴∠ACB=∠ABC,∴∠ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴BD=BF;(2)解:∵AB=10,AB=AC,∴AC=10,∵CD=4,∴AD=10﹣4=6,在Rt△ADB中,由勾股定理得:BD==8,在Rt△BDC中,由勾股定理得:BC==4.19.解:如图作CE⊥AB于E.在Rt△ACE中,∵∠A=45°,∴AE=EC,设AE=EC=x,则BE=x﹣5,在Rt△BCE中,∵tan53°=,∴=,解得x=20,∴AE=EC=20,∴AC=20=28.2,BC==25,∴A船到C的时间≈=0.94小时,B船到C的时间==1小时,∴C船至少要等待0.94小时才能得到救援.20.解:(1)将B(3,1)代入y=,∴k=3,将A(m,3)代入y=,∴m=1,∴A(1,3),将A(1,3)代入代入y=﹣x+b,∴b=4,∴y=﹣x+4(2)设P(x,y),由(1)可知:1≤x≤3,∴PD=y=﹣x+4,OD=x,∴S=x(﹣x+4),∴由二次函数的图象可知:S的取值范围为:≤S≤2故答案为:(1)y=﹣x+4;y=.21.解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=20m×0.8+15(100﹣m)×0.4=10m+600;w活动二=20m+15(100﹣m﹣m)=﹣10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500,解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500,解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500,解得:45<m≤50.综上所述:当m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个,根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0≤m≤50),总价格为w元,则购进B种魔方(100﹣m)个,根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300,解得:m<50;当w活动一=w活动二时,有15.6m+520=1300,解得:m=50;当w活动一>w活动二时,有15.6m+520>1300,不等式无解.综上所述:当m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.22.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN,(2)由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,同(1)的方法,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形,(3)如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.23.解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,PA=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,则有=,∵A(3,0),B(0,2),P(m,﹣m+2),∴BP==m,AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)WORD 格式整理专业知识分享 或(,0);②由①可知M (m ,0),P (m ,﹣m+2),N (m ,﹣m 2+m+2), ∵M ,P ,N 三点为“共谐点”,∴有P 为线段MN 的中点、M 为线段PN 的中点或N 为线段PM 的中点, 当P 为线段MN 的中点时,则有2(﹣m+2)=﹣m 2+m+2,解得m=3(三点重合,舍去)或m=;当M 为线段PN 的中点时,则有﹣m+2+(﹣m 2+m+2)=0,解得m=3(舍去)或m=﹣1;当N 为线段PM 的中点时,则有﹣m+2=2(﹣m 2+m+2),解得m=3(舍去)或m=﹣;综上可知当M ,P ,N 三点成为“共谐点”时m 的值为或﹣1或﹣.。
2017年河南省中考数学模拟试卷及答案

2017年河南省中考数学模拟试卷及答案2017年河南省中考数学模拟试卷及答案初三的学生多做中考数学模拟试题可以提高成绩,为了帮助各位考生提升自己的成绩,以下是小编精心整理的2017年河南省中考数学模拟试题及答案,希望能帮到大家!2017年河南省中考数学模拟试题一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.|-2|的值是( )A.-2B.2C.-12D.122.据媒体报道,我国最新研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,这个数用科学记数法表示,正确的是( )A.204×103B.20.4×104C.2.04×105D.2.04×1063.观察下列图形,其中既是轴对称又是中心对称图形的是( )4.下列计算正确的是( )A.3x2y+5xy=8x3y2B.(x+y)2=x2+y2C.(-2x)2÷x=4xD.yx-y+xy-x=15.已知一元二次方程x2-2x-1=0的两根分别为x1,x2,则1x1+1x2的值为( )A.2B.-1C.-12D.-26.,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是( )A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形第6题图第8题图二、填空题(本大题共6小题,每小题3分,共18分)7.计算:-12÷3=.8.,要在一条公路的两侧铺设平行管道,已知一侧铺设的角度为120°,为使管道对接,另一侧铺设的角度大小应为.9.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=-1,那么(1+i)•(1-i)= .10.已知某几何体的三视图所示,根据图中数据求得该几何体的表面积为.第10题图第12题图11.一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为.12.,在平面直角坐标系中,△ABC为等腰直角三角形,点A(0,2),B(-2,0),点D是x轴上一个动点,以AD为一直角边在一侧作等腰直角三角形ADE,∠DAE=90°.若△ABD为等腰三角形,则点E的坐标为.三、(本大题共5小题,每小题6分,共30分)13.(1)解不等式组:3x-1≥x+1,x+4<4x-2.(2),点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.14.先化简,再求值:mm-2-2mm2-4÷mm+2,请在2,-2,0,3当中选一个合适的数代入求值.15.为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋投放,其中A类指废电池、过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料、废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.16.根据下列条件和要求,仅使用无刻度的直尺画图,并保留画图痕迹:(1)①,△ABC中,∠C=90°,在三角形的一边上取一点D,画一个钝角△DAB;(2)②,△ABC中,AB=AC,ED是△AB C的中位线,画出△ABC的BC边上的高.17.所示是小强洗漱时的侧面示意图,洗漱台(矩形ABCD)靠墙摆放,高AD=80cm,宽AB=48cm,小强身高166cm,下半身FG=100cm,洗漱时下半身与地面成80°(∠FGK=80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少(参考数据:sin80°≈0.98,cos80°≈0.17,2≈1.41,结果精确到0.1cm)?四、(本大题共3小题,每小题8分,共24分)18.某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成①,②所示的统计图,已知“查资料”的人数是40人.请你根据以上信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是°;(2)补全条形统计图;(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.19.用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20页时,每页收费0.12元;一次复印页数超过20页时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 …甲复印店收费(元) 0.5 2 …乙复印店收费(元) 0.6 2.4 …(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.20.,一次函数y=-2x+1与反比例函数y= 的图象有两个交点A(-1,m)和B,过点A作AE⊥x轴,垂足为点E.过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,-2),连接DE.(1)求k的值;(2)求四边形AEDB的面积.五、(本大题共2小题,每小题9分,共18分)21.,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC,AC.(1)求证:AC平分∠DAO;(2)若∠DAO=105°,∠E=30°.①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.22.在平面直角坐标系中,设二次函数y1=(x+a)(x-a-1),其中a≠0.(1)若函数y1的图象经过点(1,-2),求函数y1的表达式;(2)若一次函数y2=ax+b的图象与y1的图象经过x轴上同一点,探究实数a,b满足的关系式;(3)已知点P(x0,m)和Q(1,n)在函数y1的图象上,若m六、(本大题共12分)。
2017年河南省普通高中中考数学模拟试卷及解析答案word版(一)

2017年河南省普通高中中考数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在下面的四个有理数中,最小的数是()A.﹣1 B.0 C.﹣2 D.﹣1.92.(3分)我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10﹣5C.0.75×10﹣4D.75×10﹣63.(3分)如图,已知∠1=∠2=∠3=62°,则∠4=()A.62°B.118°C.128° D.38°4.(3分)不等式组的最小整数解为()A.﹣1 B.0 C.1 D.45.(3分)下列调查中,适宜采用全面调查方式的是()A.了解商丘市的空气质量情况B.了解包河的水污染情况C.了解商丘市居民的环保意识D.了解全班同学每周体育锻炼的时间6.(3分)如图是一个由7个同样的立方体叠成的几何体.请问下列选项中,既是中心对称图形,又是这个几何体的三视图之一的是()A.B.C.D.DE的长等于()A.6 B.5 C.9 D.8.(3分)在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③9.(3分)抛物线y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围是()A.k>﹣B.k≥﹣且k≠0 C.k≥﹣D.k>﹣且k≠010.(3分)如图,边长为4的正方形ABCD的边BC与直角边分别是2和4的Rt △GEF的边GF重合,正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为S,则S关于t的函数图象为()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算:+(﹣1)0=.12.(3分)如图,▱ABCD,E是BA延长线上一点,AB=AE,连接CE交AD于点F,若CF平分∠BCD,AB=3,则BC的长为.13.(3分)已知双曲线和的部分图象如图所示,点C是y轴正半轴上一点,过点C作AB∥x轴分别交两个图象于点A、B.若CB=2CA,则k=.14.(3分)如图,以AD为直径的半圆O经过Rt△ABC的斜边AB的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为.15.(3分)如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD 上,折痕的一端E点在边BC上,BE=10.则折痕的长为.三、解答题(本大题共8小题,共75分)16.(8分)先化简,再求值:,其中﹣2<a≤2,请选择一个a的合适整数代入求值.17.(9分)某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图(1))和条形图(如图(2)),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是=;第二步:在该问题中,n=4,x1=4,x2=5,x3=6,x4=7;第三步:==5.5(份)①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.18.(9分)如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB 为平行四边形;(2)填空:①当t= s 时,四边形PBQE 为菱形;②当t= s 时,四边形PBQE 为矩形.19.(9分)如图,商丘市睢阳区南湖中有一小岛,湖边有一条笔直的观光小道,现决定从小岛架一座与观光小道垂直的小桥PD ,小坤在小道上测得如下数据:AB=200.0米,∠PAB=38.5°,∠PBA=26.5°.请帮助小坤求出小桥PD 的长.(结果精确到0.1米)(参考数据:sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)20.(9分)重阳节期间,某单位组织本单位退休职工前去距离商丘480千米的信阳鸡公山登高旅游,由于人数较多,共租用甲、乙两辆长途汽车沿同一路线赶赴景点.图中的折线、线段分别表示甲、乙两车所走的路程y 甲(千米),y 乙(千米)与时间x (小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲车在途中停留了 小时;(2)甲车排除故障后,立即提速赶往景点.请问甲车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙车在第一次相遇时约定此后两车之间的路程不超过35千米,请通过计算说明,按图象所表示的走法是否符合约定.21.(10分)我市计划购买甲、乙两种树苗共8000株用于城市绿化,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去210000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.22.(10分)已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B,C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.初步感知:(1)如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;问题探究:(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;类比分析:(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.23.(11分)将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C 及点B(﹣3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE 的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.2017年河南省普通高中中考数学模拟试卷(一)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)在下面的四个有理数中,最小的数是()A.﹣1 B.0 C.﹣2 D.﹣1.9【解答】解:∵负数都小于0,∴四个选项中0最大.排除B.又∵|﹣1|=1,|﹣2|=2,|﹣1.9|=1.9,2>1.9>1,∴﹣2<﹣1.9<﹣1.故选C.2.(3分)我国质检总局规定,针织内衣等直接接触皮肤的制品,每千克的衣物上甲醛含量应在0.000075千克以下.将0.000075用科学记数法表示为()A.7.5×105B.7.5×10﹣5C.0.75×10﹣4D.75×10﹣6【解答】解:将0.000075用科学记数法表示为:7.5×10﹣5.故选B.3.(3分)如图,已知∠1=∠2=∠3=62°,则∠4=()A.62°B.118°C.128° D.38°【解答】解:∵∠1=∠3,∴直线M∥直线N,∴∠5=∠2=62°,∴∠4=180°﹣∠5=180°﹣62°=118°.故选:B.4.(3分)不等式组的最小整数解为()A.﹣1 B.0 C.1 D.4【解答】解:由①得x>﹣;由②得3x≤12,即x≤4;由以上可得<x≤4.故这个不等式组的最小整数解是0.故选B5.(3分)下列调查中,适宜采用全面调查方式的是()A.了解商丘市的空气质量情况B.了解包河的水污染情况C.了解商丘市居民的环保意识D.了解全班同学每周体育锻炼的时间【解答】解:A、了解某市的空气质量情况适宜采用抽样的方式,此选项错误;B、了解包河的水污染情况适宜抽样调查,此选项错误;C、了解商丘市居民的环保意识适宜采用抽样的方式;D、了解全班同学每周体育锻炼的时间适宜采用全面调查的方式;故选:D.6.(3分)如图是一个由7个同样的立方体叠成的几何体.请问下列选项中,既是中心对称图形,又是这个几何体的三视图之一的是()A.B.C.D.【解答】解:A,这是主视图,它不是中心对称图形,故此选项错误;B,这是俯视图,它是中心对称图形,故此选项正确;C,这是左视图,它不是中心对称图形,故此选项错误;D,它不是由7个同样的立方体叠成的几何体的三视图,故此选项错误;故选:B.7.(3分)如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于()A.6 B.5 C.9 D.【解答】解:根据题意,△ABC与△DEF位似,且AB:DE=2:3,AB=4∴DE=6故选A.8.(3分)在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色,…如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%,②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是()A.①②③B.①②C.①③D.②③【解答】解:∵在一个不透明的布袋中,红球、黑球、白球共有若干个,其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,∴①若进行大量摸球实验,摸出白球的频率稳定于:1﹣20%﹣50%=30%,故此选项正确;∵摸出黑球的频率稳定于50%,大于其它频率,∴②从布袋中任意摸出一个球,该球是黑球的概率最大,故此选项正确;③若再摸球100次,不一定有20次摸出的是红球,故此选项错误;故正确的有①②.故选:B.9.(3分)抛物线y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围是()A.k>﹣B.k≥﹣且k≠0 C.k≥﹣D.k>﹣且k≠0【解答】解:∵抛物线y=kx2﹣7x﹣7的图象和x轴有交点,即y=0时方程kx2﹣7x﹣7=0有实数根,即△=b2﹣4ac≥0,即49+28k≥0,解得k≥﹣,且k≠0.故选B.10.(3分)如图,边长为4的正方形ABCD的边BC与直角边分别是2和4的Rt △GEF的边GF重合,正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为S,则S关于t的函数图象为()A.B.C.D.【解答】解:当0≤t≤2时,如图,BG=t,BE=2﹣t,∵PB∥GF,∴△EBP∽△EGF,∴=,即=,∴PB=4﹣2t,∴S=(PB+FG)•GB=(4﹣2t+4)•t=﹣t2+4t;当2<t≤4时,S=FG•GE=4;当4<t≤6时,如图,GA=t﹣4,AE=6﹣t,∵PA∥GF,∴△EAP∽△EGF,∴=,即=,∴PA=2(6﹣t),∴S=PA•AE=×2×(6﹣t)(6﹣t)=(t﹣6)2,综上所述,当0≤t≤2时,s关于t的函数图象为开口向下的抛物线的一部分;当2<t≤4时,s关于t的函数图象为平行于x轴的一条线段;当4<t≤6时,s 关于t的函数图象为开口向上的抛物线的一部分.故选B.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)计算:+(﹣1)0=3.【解答】解:原式=2+1=3.故答案为:3.12.(3分)如图,▱ABCD,E是BA延长线上一点,AB=AE,连接CE交AD于点F,若CF平分∠BCD,AB=3,则BC的长为6.【解答】解:∵CF平分∠BCD,∴∠BCE=∠DCF,∵AD∥BC,∴∠BCE=∠DFC,∴∠BCE=∠EFA,∵BE∥CD,∴∠E=∠DCF,∴∠E=∠BCE,∵AD∥BC,∴∠BCE=∠EFA,∴∠E=∠EFA,∴AE=AF=AB=3,∵AB=AE,AF∥BC,∴△AEF∽△BEC,∴===,∴BC=2AF=6.故答案为:6.13.(3分)已知双曲线和的部分图象如图所示,点C是y轴正半轴上一点,过点C作AB∥x轴分别交两个图象于点A、B.若CB=2CA,则k=﹣6.【解答】解:连结OA、OB,如图,∵AB∥x轴,即OC⊥AB,而CB=2CA,=2S△OAC,∴S△OBC∵点A在图象上,=×3=,∴S△OAC∴S=2S△OAC=3,△OBC∵|k|=3,而k<0,∴k=﹣6.故答案为﹣6.14.(3分)如图,以AD为直径的半圆O经过Rt△ABC的斜边AB的两个端点,交直角边AC于点E.B、E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为.【解答】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=∠EBA=30°,∴BE∥AD,∵的长为,∴=,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC===3,∴S=×BC×AC=××3=,△ABC∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC ﹣S扇形BOE=﹣=﹣.故答案为:.15.(3分)如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD 上,折痕的一端E点在边BC上,BE=10.则折痕的长为5或4.【解答】解:(1)如图(1)所示:过点E作EH⊥AD于点H,则AH=BE=10,HE=AB=8,∵△GFE由△BFE翻折而成,∴GE=BE=10,在Rt△EGH中,∵GH===6,∴AG=AH﹣GH=10﹣6=4,设AF=x,则BF=GF=8﹣x,在Rt△AGF中,∵AG2+AF2=GF2,即42+x2=(8﹣x)2,解得x=3,∴BF=8﹣3=5,在Rt△BEF中,EF===5.(2)连接BF、BG与折痕EF交于O,过点F作FL⊥BC于点L,如图(2),由于折叠,∴BG⊥EF,BO=OG,BE=GE,四边形ABCD为长方形,∴AD∥BC∴∠FGO=∠OBE,∴△BOE≌△GOF(ASA),∴OF=OE,又OB=OG,BG⊥EF∴四边形BEGF是菱形,∴BF=BE=10;Rt△ABF中,AF2+AB2=BF2,AF2=102﹣82,解得AF=6.则有BL=6,LE=10﹣6=4,在Rt△FLE中,由勾股定理得:FE==4.故答案为:5或4.三、解答题(本大题共8小题,共75分)16.(8分)先化简,再求值:,其中﹣2<a≤2,请选择一个a的合适整数代入求值.【解答】解:===,当a=﹣1时,原式=.17.(9分)某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将各类的人数绘制成扇形图(如图(1))和条形图(如图(2)),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是=;第二步:在该问题中,n=4,x1=4,x2=5,x3=6,x4=7;第三步:==5.5(份)①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.【解答】解:(1)D错误,理由为:20×10%=2≠3;(2)众数为5,中位数为5;(3)①第二步;②==5.3(棵),估计这260名学生共植树5.3×260=1378(棵).18.(9分)如图,⊙O半径为4cm,其内接正六边形ABCDEF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,连接PB,QE,PE,BQ.设运动时间为t(s).(1)求证:四边形PEQB为平行四边形;(2)填空:①当t=2s时,四边形PBQE为菱形;②当t=0或4s时,四边形PBQE为矩形.【解答】(1)证明:∵正六边形ABCDEF内接于⊙O,∴AB=BC=CD=DE=EF=FA,∠A=∠ABC=∠C=∠D=∠DEF=∠F,∵点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,∴AP=DQ=t,PF=QC=4﹣t,在△ABP和△DEQ中,,∴△ABP≌△DEQ(SAS),∴BP=EQ,同理可证PE=QB,∴四边形PEQB是平行四边形.(2)解:①当PA=PF,QC=QD时,四边形PBEQ是菱形时,此时t=2s.②当t=0时,∠EPF=∠PEF=30°,∴∠BPE=120°﹣30°=90°,∴此时四边形PBQE是矩形.当t=4时,同法可知∠BPE=90°,此时四边形PBQE是矩形.综上所述,t=0s或4s时,四边形PBQE是矩形.故答案为2s,0s或4s.19.(9分)如图,商丘市睢阳区南湖中有一小岛,湖边有一条笔直的观光小道,现决定从小岛架一座与观光小道垂直的小桥PD,小坤在小道上测得如下数据:AB=200.0米,∠PAB=38.5°,∠PBA=26.5°.请帮助小坤求出小桥PD的长.(结果精确到0.1米)(参考数据:sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)【解答】解:设PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°,在Rt△PAD中,tan∠PAD=,∴AD=≈=x,在Rt△PBD中,tan∠PBD=,∴DB=≈=2x,又∵AB=80.0米,∴x +2x=200.0,解得:x ≈61.5,即PD ≈61.5(米), ∴DB=123.0(米).答:小桥PD 的长度约为61.5米,位于AB 之间距B 点约123.0米.20.(9分)重阳节期间,某单位组织本单位退休职工前去距离商丘480千米的信阳鸡公山登高旅游,由于人数较多,共租用甲、乙两辆长途汽车沿同一路线赶赴景点.图中的折线、线段分别表示甲、乙两车所走的路程y 甲(千米),y 乙(千米)与时间x (小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲车在途中停留了 2 小时;(2)甲车排除故障后,立即提速赶往景点.请问甲车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙车在第一次相遇时约定此后两车之间的路程不超过35千米,请通过计算说明,按图象所表示的走法是否符合约定.【解答】解:(1)观察图象可知,甲车在途中停留了6.6﹣4.5=2小时, 故答案为2.(2)由题意直线OD 的解析式为y=60x ,设直线BC 的解析式为y=kx +b , ∵E (7.25,435),C (7.7,480), 则有,解得,∴y=100x ﹣290, x=6.5时,y=360,∴甲车在排除故障时,距出发点的路程是360千米(3)符合约定.由图象可知:甲乙两个家庭第一次相遇后在B和C相距最远.在点B处有y乙﹣y甲=60×6.5﹣360=30千米<35千米;在点C处有y甲﹣y乙=100×7.7﹣290﹣(60×7.7)=18千米<35千米.∴按图象所表示的走法符合约定.21.(10分)我市计划购买甲、乙两种树苗共8000株用于城市绿化,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去210000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.【解答】解:(1)设购买甲种树苗x株,则购买乙种树苗(8000﹣x)株,由题意,得:24x+30(8000﹣x)=210000,解得:x=5000,故8000﹣x=3000(株)答:购买甲种树苗5000株,则购买乙种树苗3000株;(2)设购买甲种树苗x株,则购买乙种树苗(800﹣x)株,由题意,得85% x+90%(8000﹣x)≥8000×88%,解得:x≤32000,答:甲种树苗至多购买3200株;(3)设总费用为:y,故y=24x+30(8000﹣x)=﹣6x+240000,∵k=﹣6,则y随x的增大而减小,∴x=3200时,y最小=220800元,答:当甲种树苗购进3200株,乙种树苗购进4800株时,总费用最低为220800元.22.(10分)已知,△ABC为等边三角形,点D为直线BC上一动点(点D不与B,C重合).以AD为边作菱形ADEF,使∠DAF=60°,连接CF.初步感知:(1)如图1,当点D在边BC上时,①求证:∠ADB=∠AFC;②请直接判断结论∠AFC=∠ACB+∠DAC是否成立;问题探究:(2)如图2,当点D在边BC的延长线上时,其他条件不变,结论∠AFC=∠ACB+∠DAC是否成立?请写出∠AFC、∠ACB、∠DAC之间存在的数量关系,并写出证明过程;类比分析:(3)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出∠AFC、∠ACB、∠DAC之间存在的等量关系.【解答】(1)①证明:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵∠DAF=60°,∴∠BAC=∠DAF,∴∠BAD=∠CAF,∵四边形ADEF是菱形,∴AD=AF,在△ABD和△ACF中,,∴△ABD≌△ACF(SAS),∴∠ADB=∠AFC,②解:∠AFC=∠ACB+∠DAC成立.理由如下:∵△ABD≌△ACF,∴∠ADB=∠AFC,∵∠ADB=∠ACB+∠DAC,∴∠AFC=∠ACB+∠DAC;(2)解:∠AFC=∠ACB+∠DAC不成立.∠AFC、∠ACB、∠DAC之间的等量关系是∠AFC=∠ACB﹣∠DAC.理由如下:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠DAF,∴∠BAD=∠CAF,∵四边形ADEF是菱形,∴AD=AF.在△ABD和△ACF中,,∴△ABD≌△ACF(SAS).∴∠ADB=∠AFC.又∵∠ACB=∠ADC+∠DAC,∴∠AFC=∠ACB﹣∠DAC.(3)解:补全图形如图所示:∠AFC、∠ACB、∠DAC之间的等量关系是:∠AFC+∠DAC+∠ACB=180°;理由如下:同(2)得:△ABD≌△ACF,∴∠ADC=∠AFC,∵∠ADC+∠ACB+∠DAC=180°,∴∠AFC+∠DAC+∠ACB=180°.23.(11分)将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C 及点B(﹣3,0).(1)求该抛物线的解析式;(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE 的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.【解答】解:(1)如图,∵抛物线y=ax2+bx+c(a≠0)的图象经过点A(0,6),∴c=6.∵抛物线的图象又经过点(﹣3,0)和(6,0),∴,解之得,故此抛物线的解析式为:y=﹣x2+x+6.(2)设点P的坐标为(m,0),则PC=6﹣m,S=BC•AO=×9×6=27;△ABC∵PE∥AB,∴△CEP∽△CAB;∴,即=()2,=(6﹣m)2,∴S△CEP=PC•AO=(6﹣m)×6=3(6﹣m),∵S△APC∴S=S△APC﹣S△CEP=3(6﹣m)﹣(6﹣m)2=﹣(m﹣)2+;△APE当m=时,S有最大面积为;△APE此时,点P的坐标为(,0).(3)如图,过G作GH⊥BC于点H,设点G的坐标为G(a,b),连接AG、GC,=a(b+6),∵S梯形AOHGS△CHG=(6﹣a)b,=a(b+6)+(6﹣a)b=3(a+b).∴S四边形AOCG=S四边形AOCG﹣S△AOC,∵S△AGC∴=3(a+b)﹣18,∵点G(a,b)在抛物线y=﹣x2+x+6的图象上,∴b=﹣a2+a+6,∴=3(a﹣a2+a+6)﹣18,化简,得4a2﹣24a+27=0,解之得a1=,a2=;故点G的坐标为(,)或(,).赠送:初中数学几何模型【模型一】半角型:图形特征:F AB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa B E挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.。
2017年河南省中招考试数学试卷解析

2017 年中招考试数学试卷一.选择题(共10 小题)1.以下各数中比 1 大的数是()A.2B.0C.﹣ 1 D.﹣ 32.2016 年,我国国内生产总值达到74.4 万亿元,数据“ 74.4万亿”用科学记数法表示()A.74.4×1012B.7.44×1013C. 74.4×1013D.7.44× 10153.某几何体的左视图以下图,则该几何体不行能是()A.B.C.D.4.解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C. 1﹣ 2x﹣2=﹣ 3 D.1﹣2x+2=35.八年级某同学 6 次数学小测试的成绩分别为: 80 分, 85 分, 95 分, 95 分,95 分, 100 分,则该同学这6 次成绩的众数和中位数分别是()A.95 分, 95 分B.95 分, 90 分C.90 分, 95 分D.95 分, 85 分6.一元二次方程 2x2﹣5x﹣2=0 的根的状况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.如图,在 ?ABCD中,对角线 AC,BD 订交于点 O,增添以下条件不可以判断 ?ABCD 是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠ 1=∠28.如图是一次数学活动课制作的一个转盘,盘面被平分红四个扇形地区,并分别标有数字﹣ 1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指地区的数字(当指针价好指在分界限上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.9.我们知道:四边形拥有不稳固性.如图,在平面直角坐标系中,边长为 2 的正方形 ABCD的边 AB 在 x 轴上, AB 的中点是坐标原点 O,固定点 A,B,把正方形沿箭头方向推,使点 D 落在 y 轴正半轴上点 D′处,则点 C 的对应点 C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)10.如图,将半径为 2,圆心角为 120°的扇形 OAB绕点 A 逆时针旋转 60°,点 O,B 的对应点分别为O′,B′,连结 BB′,则图中暗影部分的面积是()A.B.2﹣C.2﹣D.4﹣二.填空题(共 5 小题)11.计算: 23﹣=.12.不等式组的解集是.13.已知点 A(1,m),B(2,n)在反比率函数y=﹣的图象上,则m与n的大小关系为.14.如图 1,点 P 从△ ABC的极点 B 出发,沿 B→ C→A匀速运动到点 A,图 2 是点 P 运动时,线段 BP的长度 y 随时间 x 变化的关系图象,此中 M 为曲线部分的最低点,则△ ABC的面积是.15.如图,在 Rt△ ABC中,∠ A=90°,AB=AC,BC=+1,点 M ,N 分别是边 BC,AB 上的动点,沿 MN 所在的直线折叠∠ B,使点 B 的对应点 B′一直落在边 AC 上,若△ MB′C为直角三角形,则BM 的长为.三.解答题(共8 小题)16.先化简,再求值:(2x+y)2+(x﹣y)( x+y)﹣ 5x( x﹣y),此中 x=+1,y= ﹣1.17.为了认识同学们每个月零花费的数额,校园小记者随机检查了本校部分同学,依据检查结果,绘制出了以下两个尚不完好的统计图表.检查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤ x<60 16C60≤ x<90 aD90≤x<120 bE x≥ 120 2请依据以上图表,解答以下问题:( 1)填空:此次被检查的同学共有人,a+b=,m=;( 2)求扇形统计图中扇形 C 的圆心角度数;( 3)该校共有学生1000 人,请预计每个月零花费的数额 x 在 60≤x<120 范围的人数.18.如图,在△ ABC中, AB=AC,以 AB 为直径的⊙ O 交 AC 边于点 D,过点 C 作CF∥AB,与过点 B 的切线交于点 F,连结 BD.(1)求证: BD=BF;(2)若 AB=10,CD=4,求 BC的长.19.以下图,我国两艘海监船A,B 在南海海疆巡航,某一时辰,两船同时收到指令,立刻前去营救遇险抛锚的渔船 C,此时, B 船在 A 船的正南方向 5 海里处, A 船测得渔船 C 在其南偏东 45°方向, B 船测得渔船 C 在其南偏东 53°方向,已知 A 船的航速为 30 海里 / 小时, B 船的航速为 25 海里 / 小时,问 C 船起码要等候多长时间才能获得营救?(参照数据: sin53 °≈,cos53°≈,tan53 °≈,≈1.41)第4页(共 26页)20.如图,一次函数 y=﹣x+b 与反比率函数 y= (x>0)的图象交于点 A( m,3)和 B(3,1).( 1)填空:一次函数的分析式为,反比率函数的分析式为;(2)点 P 是线段 AB上一点,过点 P 作 PD⊥x 轴于点 D,连结 OP,若△ POD的面积为 S,求 S 的取值范围.21.学校“百变魔方”社团准备购置 A,B 两种魔方,已知购置 2 个 A 种魔方和 6 个 B 种魔方共需 130 元,购置 3 个 A 种魔方和 4 个 B 种魔方所需款数同样.( 1)求这两种魔方的单价;( 2)联合社员们的需求,社团决定购置A, B 两种魔方共 100 个(此中 A 种魔方不超出 50 个).某商铺有两种优惠活动,以下图.请依据以上信息,说明选择哪一种优惠活动购置魔方更优惠.22.如图 1,在 Rt△ABC中,∠ A=90°,AB=AC,点 D, E 分别在边 AB,AC 上,AD=AE,连结 DC,点 M,P,N 分别为 DE,DC,BC的中点.( 1)察看猜想图 1 中,线段 PM 与 PN 的数目关系是,地点关系是;( 2)研究证明把△ ADE绕点 A 逆时针方向旋转到图 2 的地点,连结MN,BD, CE,判断△ PMN 的形状,并说明原因;( 3)拓展延长把△ ADE 绕点 A 在平面内自由旋转,若 AD=4,AB=10,请直接写出△PMN 面积的最大值.23.如图,直线 y=﹣x+c 与 x 轴交于点 A( 3,0),与 y 轴交于点 B,抛物线 y= ﹣x2+bx+c 经过点 A,B.(1)求点 B 的坐标和抛物线的分析式;(2) M(m,0)为 x 轴上一动点,过点 M 且垂直于 x 轴的直线与直线 AB 及抛物线分别交于点 P, N.①点 M 在线段 OA 上运动,若以 B,P,N 为极点的三角形与△ APM 相像,求点M的坐标;②点 M 在 x 轴上自由运动,若三个点 M ,P,N 中恰有一点是其余两点所连线段的中点(三点重合除外),则称 M, P,N 三点为“共谐点”.请直接写出使得 M ,P,N 三点成为“共谐点”的 m 的值.第6页(共 26页)2017 年中招考试数学试卷参照答案与试题分析一.选择题(共10 小题)1.(2017?河南)以下各数中比 1 大的数是()A.2B.0C.﹣ 1 D.﹣ 3【解答】解: 2>0>﹣ 1>﹣ 3,应选: A.2.( 2017?河南) 2016 年,我国国内生产总值达到74.4 万亿元,数据“ 74.4万亿”用科学记数法表示()A.74.4×1012 B.7.44×1013 C. 74.4×1013 D.7.44× 1015【解答】解:将 74.4 万亿用科学记数法表示为: 7.44×1013.应选: B.3.(2017?河南)某几何体的左视图以下图,则该几何体不行能是()A.B.C.D.【解答】解:从左视图能够发现:该几何体共有两列,正方体的个数分别为2,1,D不切合,应选 D.4.(2017?河南)解分式方程﹣2=,去分母得()A.1﹣2(x﹣1)=﹣3 B.1﹣2(x﹣1)=3 C. 1﹣ 2x﹣2=﹣ 3D.1﹣2x+2=3【解答】解:分式方程整理得:﹣2=﹣,去分母得: 1﹣2(x﹣ 1) =﹣ 3,应选 A5.( 2017?河南)八年级某同学 6 次数学小测试的成绩分别为:80 分,85 分,95 分,95 分,95 分,100 分,则该同学这 6 次成绩的众数和中位数分别是()A.95 分, 95 分B.95 分, 90 分C.90 分, 95 分D.95 分, 85 分【解答】解:位于中间地点的两数分别是95 分和 95 分,故中位数为 95 分,数据 95 出现了 3 次,最多,故这组数据的众数是95 分,应选 A.6.(2017?河南)一元二次方程 2x2﹣5x﹣2=0 的根的状况是()A.有两个相等的实数根 B.有两个不相等的实数根C.只有一个实数根 D.没有实数根2【解答】解:∵△ =(﹣ 5)﹣ 4× 2×(﹣ 2)=41> 0,应选 B.7.(2017?河南)如图,在 ?ABCD中,对角线 AC,BD 订交于点 O,增添以下条件不可以判断 ?ABCD是菱形的只有()A.AC⊥BD B.AB=BC C.AC=BD D.∠ 1=∠2【解答】解: A、正确.对角线垂直的平行四边形的菱形.B、正确.邻边相等的平行四边形是菱形.C、错误.对角线相等的平行四边形是矩形,不必定是菱形.D、正确.能够证明平行四边形ABCD的邻边相等,即可判断是菱形.应选 C.8.(2017?河南)如图是一次数学活动课制作的一个转盘,盘面被平分红四个扇形地区,并分别标有数字﹣ 1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指地区的数字(当指针价好指在分界限上时,不记,重转),则记录的两个数字都是正数的概率为()A.B.C.D.【解答】解:画树状图得:∵共有 16 种等可能的结果,两个数字都是正数的有 4 种状况,∴两个数字都是正数的概率是:=.应选: C.9.( 2017?河南)我们知道:四边形拥有不稳固性.如图,在平面直角坐标系中,边长为 2 的正方形 ABCD的边 AB 在 x 轴上,AB 的中点是坐标原点 O,固定点 A,B,把正方形沿箭头方向推,使点 D 落在 y 轴正半轴上点 D′处,则点 C 的对应点C′的坐标为()A.(,1)B.(2,1) C.(1,)D.(2,)【解答】解:∵ AD′=AD=2,AO= AB=1,∴OD′==,∵C′D′,=2C′D∥′AB,∴C(2,),应选 D.10.( 2017?河南)如图,将半径为 2,圆心角为 120°的扇形 OAB 绕点 A 逆时针旋转 60°,点 O,B 的对应点分别为 O′,B′,连结 BB′,则图中暗影部分的面积是()A.B.2﹣C.2﹣D.4﹣【解答】解:连结 OO′,BO′,∵将半径为 2,圆心角为 120°的扇形 OAB绕点 A 逆时针旋转 60°,∴∠ OAO′=60°,∴△ OAO′是等边三角形,∴∠ AOO′=60°,∵∠ AOB=120°,∴∠ O′OB=60,°∴△ OO′B是等边三角形,∴∠ AO′B=120,°∵∠ AO′B′=120,°∴∠ B′O′B=120,°∴∠ O′B′∠B=O′BB′=30,°∴图中暗影部分的面积 =S△B′O′B﹣( S 扇形O′OB﹣S△OO′B)=×1×2﹣(﹣×2×)=2﹣.应选 C.二.填空题(共 5 小题)11.( 2017?河南)计算: 23﹣ = 6.【解答】解: 23﹣=8﹣2=6,故答案为: 6.12.( 2017?河南)不等式组的解集是﹣1<x≤2.【解答】解:解不等式① 0 得: x≤2,解不等式②得: x>﹣ 1,∴不等式组的解集是﹣ 1<x≤2,故答案为﹣ 1<x≤ 2.13.(2017?河南)已知点 A(1,m),B( 2,n)在反比率函数 y=﹣的图象上,则 m 与 n 的大小关系为m< n.【解答】解:∵反比率函数y=﹣中k=﹣2<0,∴此函数的图象在二、四象限内,在每个象限内,y 随 x 的增大而增大,∵0<1<2,∴A、 B 两点均在第四象限,∴m<n.故答案为 m<n.14.( 2017?河南)如图 1,点 P 从△ ABC的极点 B 出发,沿 B→ C→A匀速运动到点 A,图 2 是点 P 运动时,线段 BP 的长度 y 随时间 x 变化的关系图象,此中 M 为曲线部分的最低点,则△ ABC的面积是 12 .【解答】解:依据图象可知点 P 在 BC上运动时,此时 BP不停增大,由图象可知:点 P 从 B 向 C 运动时, BP 的最大值为 5,即 BC=5,因为 M 是曲线部分的最低点,∴此时 BP最小,即 BP⊥ AC,BP=4,∴由勾股定理可知: PC=3,因为图象的曲线部分是轴对称图形,∴ PA=3,∴ AC=6,∴△ ABC的面积为:×4×6=12故答案为: 1215.( 2017?河南)如图,在 Rt△ ABC中,∠ A=90°,AB=AC,BC=+1,点 M, N 分别是边 BC, AB 上的动点,沿 MN 所在的直线折叠∠ B,使点 B 的对应点 B′始终落在边 AC上,若△ MB′C为直角三角形,则 BM 的长为+或1.【解答】解:①如图 1,当∠ B′MC=90°, B′与 A 重合, M 是 BC的中点,∴BM= BC=+ ;②如图 2,当∠ MB′C=90°,∵∠ A=90°,AB=AC,∴∠ C=45°,∴△ CMB′是等腰直角三角形,∴CM= MB′,∵沿 MN 所在的直线折叠∠ B,使点 B 的对应点 B′,∴BM=B′M,∴CM= BM,∵BC= +1,∴CM+BM= BM+BM= +1,∴BM=1,综上所述,若△ MB′C为直角三角形,则 BM 的长为+ 或1,故答案为:+ 或1.三.解答题(共8 小题)16.( 2017?河南)先化简,再求值:(2x+y)2+(x﹣y)( x+y)﹣ 5x(x﹣ y),其中 x= +1,y= ﹣ 1.【解答】解:(2x+y)2+(x﹣y)(x+y)﹣ 5x( x﹣y)=4x2 +4xy+y2+x2﹣ y2﹣5x2+5xy=9xy当 x= +1,y= ﹣ 1 时,原式=9( +1)(﹣1)=9×( 2﹣1)=9×1=917.(2017?河南)为了认识同学们每个月零花费的数额,校园小记者随机检查了本校部分同学,依据检查结果,绘制出了以下两个尚不完好的统计图表.检查结果统计表组别分组(单位:元)人数A 0≤x<30 4B 30≤ x<60 16C 60≤ x<90 aD ≤ < b90 x 120E x≥ 120 2请依据以上图表,解答以下问题:( 1)填空:此次被检查的同学共有50人,a+b=28,m=8;( 2)求扇形统计图中扇形 C 的圆心角度数;( 3)该校共有学生1000 人,请预计每个月零花费的数额 x 在 60≤x<120 范围的人数.【解答】解:(1)检查的总人数是16÷32%=50(人),则 b=50×16%=8,a=50﹣ 4﹣ 16﹣8﹣2=20,A 组所占的百分比是=8%,则 m=8.a+b=8+20=28.故答案是: 50, 28,8;( 2)扇形统计图中扇形 C 的圆心角度数是 360°× =144°;( 3)每个月零花费的数额 x 在 60≤ x<120 范围的人数是1000×=560(人).18.( 2017?河南)如图,在△ ABC中, AB=AC,以 AB 为直径的⊙ O 交 AC 边于点D,过点 C 作 CF∥ AB,与过点 B 的切线交于点 F,连结 BD.(1)求证: BD=BF;(2)若 AB=10,CD=4,求 BC的长.【解答】(1)证明:∵ AB 是⊙ O 的直径,∴∠ BDA=90°,∴BD⊥AC,∠ BDC=90°,∵BF切⊙ O 于 B,∴AB⊥BF,∵ CF∥AB,∴CF⊥BF,∠FCB=∠ABC,∵ AB=AC,∴∠ ACB=∠ABC,∴∠ ACB=∠FCB,∵BD⊥AC,BF⊥CF,∴ BD=BF;( 2)解:∵ AB=10,AB=AC,∴ AC=10,∵ CD=4,∴ AD=10﹣4=6,在 Rt△ADB 中,由勾股定理得: BD= =8,在 Rt△BDC中,由勾股定理得: BC= =4 .19.(2017?河南)以下图,我国两艘海监船 A,B 在南海海疆巡航,某一时辰,两船同时收到指令,立刻前去营救遇险抛锚的渔船C,此时, B 船在 A 船的正南方向 5 海里处, A 船测得渔船 C 在其南偏东 45°方向, B 船测得渔船 C 在其南偏东 53°方向,已知 A 船的航速为 30 海里 / 小时, B 船的航速为 25 海里 / 小时,问 C 船起码要等候多长时间才能获得营救?(参照数据:sin53 °≈,cos53°≈,tan53°≈,≈1.41)【解答】解:如图作 CE⊥AB 于 E.在 Rt△ACE中,∵∠ A=45°,∴AE=EC,设 AE=EC=x,则 BE=x﹣5,在 Rt△BCE中,∵ tan53 °= ,∴=,解得 x=20,∴AE=EC=20,∴AC=20 =28.2,BC==25,∴ A 船到 C 的时间≈=0.94 小时, B 船到 C 的时间 ==1 小时,∴ C 船起码要等候 0.94 小时才能获得营救.20.( 2017?河南)如图,一次函数y=﹣ x+b 与反比率函数 y= ( x>0)的图象交于点 A(m, 3)和 B(3,1).( 1)填空:一次函数的分析式为y=﹣x+4,反比率函数的分析式为y=;(2)点 P 是线段 AB上一点,过点 P 作 PD⊥x 轴于点 D,连结 OP,若△ POD的面积为 S,求 S 的取值范围.【解答】解:(1)将 B(3,1)代入 y=,∴k=3,将 A(m,3)代入 y=,∴m=1,∴A(1,3),将 A(1,3)代入代入 y=﹣x+b,∴ b=4,∴ y=﹣x+4(2)设 P(x,y),由( 1)可知: 1≤x≤ 3,∴ PD=y=﹣x+4, OD=x,∴ S= x(﹣ x+4),∴由二次函数的图象可知:S的取值范围为:≤ S≤ 2故答案为:( 1) y=﹣x+4;y=.21.( 2017?河南)学校“百变魔方”社团准备购置 A,B 两种魔方,已知购置 2 个 A 种魔方和 6 个 B 种魔方共需 130 元,购置 3 个 A 种魔方和 4 个 B 种魔方所需款数同样.( 1)求这两种魔方的单价;( 2)联合社员们的需求,社团决定购置A, B 两种魔方共 100 个(此中 A 种魔方不超出 50 个).某商铺有两种优惠活动,以下图.请依据以上信息,说明选择哪一种优惠活动购置魔方更优惠.【解答】(按买 3 个 A 种魔方和买 4 个 B 种魔方钱数同样解答)解:( 1)设 A 种魔方的单价为 x 元/ 个, B 种魔方的单价为y 元/ 个,依据题意得:,解得:.答: A 种魔方的单价为20 元/ 个, B 种魔方的单价为 15 元/ 个.( 2)设购进 A 种魔方 m 个( 0≤ m≤50),总价钱为 w 元,则购进 B 种魔方( 100 ﹣ m)个,依据题意得: w 活动一 =20m× 0.8+15( 100﹣m)× 0.4=10m+600;w 活动二 =20m+15(100﹣m﹣ m)=﹣10m+1500.当 w 活动一<w 活动二时,有 10m+600<﹣ 10m+1500,解得: m< 45;当 w 活动一 =w 活动二时,有 10m+600=﹣10m+1500,解得: m=45;当 w 活动一>w 活动二时,有 10m+600>﹣ 10m+1500,解得: 45<m≤50.综上所述:当m<45 时,选择活动一购置魔方更优惠;当m=45 时,选择两种活动花费同样;当m>45 时,选择活动二购置魔方更优惠.(按购置 3 个 A 种魔方和 4 个 B 种魔方需要 130 元解答)解:( 1)设 A 种魔方的单价为 x 元/ 个, B 种魔方的单价为y 元/ 个,依据题意得:,解得:.答: A 种魔方的单价为26 元/ 个, B 种魔方的单价为 13 元/ 个.( 2)设购进 A 种魔方 m 个( 0≤ m≤50),总价钱为 w 元,则购进 B 种魔方( 100 ﹣ m)个,依据题意得: w 活动一 =26m× 0.8+13( 100﹣m)× 0.4=15.6m+520;w 活动二 =26m+13(100﹣m﹣ m)=1300.当 w 活动一<w 活动二时,有 15.6m+520<1300,解得: m< 50;当 w 活动一 =w 活动二时,有 15.6m+520=1300,解得: m=50;当 w 活动一>w 活动二时,有 15.6m+520>1300,不等式无解.综上所述:当m<50 时,选择活动一购置魔方更优惠;当m=50 时,选择两种活动花费同样.22.( 2017?河南)如图 1,在 Rt△ABC中,∠ A=90°,AB=AC,点 D,E 分别在边AB,AC上, AD=AE,连结 DC,点 M,P,N 分别为 DE,DC,BC的中点.( 1)察看猜想图 1 中,线段 PM 与 PN 的数目关系是PM=PN,地点关系是PM ⊥PN ;( 2)研究证明把△ ADE绕点 A 逆时针方向旋转到图 2 的地点,连结MN,BD, CE,判断△ PMN 的形状,并说明原因;( 3)拓展延长把△ ADE 绕点 A 在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN 面积的最大值.第 21 页(共 26 页)【解答】解:(1)∵点 P, N 是 BC,CD的中点,∴PN∥BD,PN= BD,∵点 P,M 是 CD,DE的中点,∴PM∥ CE,PM= CE,∵AB=AC,AD=AE,∴ BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥ CE,∴∠DPM=∠DCA,∵∠ BAC=90°,∴∠ ADC+∠ACD=90°,∴∠ MPN=∠ DPM+∠DPN=∠DCA+∠ ADC=90°,∴PM⊥ PN,故答案为: PM=PN,PM⊥PN,( 2)由旋转知,∠ BAD=∠ CAE,∵AB=AC,AD=AE,∴△ ABD≌△ ACE( SAS),∴∠ ABD=∠ACE, BD=CE,同( 1)的方法,利用三角形的中位线得,PN= BD, PM= CE,∴PM=PN,∴△ PMN 是等腰三角形,同( 1)的方法得, PM∥ CE,∴∠ DPM=∠DCE,同( 1)的方法得, PN∥BD,∴∠ PNC=∠DBC,∵∠ DPN=∠DCB+∠PNC=∠ DCB+∠ DBC,∴∠ MPN=∠ DPM+∠DPN=∠DCE+∠DCB+∠ DBC=∠BCE+∠DBC=∠ACB+∠ ACE+∠ DBC=∠ACB+∠ABD+∠ DBC=∠ACB+∠ABC,∵∠ BAC=90°,∴∠ ACB+∠ABC=90°,∴∠ MPN=90°,∴△ PMN 是等腰直角三角形,(3)如图 2,同( 2)的方法得,△ PMN 是等腰直角三角形,∴ MN 最大时,△ PMN 的面积最大,∴ DE∥BC且 DE在极点 A 上边,∴MN 最大 =AM+AN,连结 AM,AN,在△ ADE中, AD=AE=4,∠ DAE=90°,∴AM=2 ,在 Rt△ABC中, AB=AC=10,AN=5 ,∴MN 最大=2 +5 =7,∴S△PMN最大= PM2=×MN2= ×( 7)2=.23.( 2017?河南)如图,直线 y=﹣x+c 与 x 轴交于点 A(3,0),与 y 轴交于点B,抛物线 y=﹣x2+bx+c 经过点 A,B.(1)求点 B 的坐标和抛物线的分析式;(2) M(m,0)为 x 轴上一动点,过点 M 且垂直于 x 轴的直线与直线 AB 及抛物线分别交于点 P, N.①点 M 在线段 OA 上运动,若以 B,P,N 为极点的三角形与△ APM 相像,求点M的坐标;②点 M 在 x 轴上自由运动,若三个点 M ,P,N 中恰有一点是其余两点所连线段的中点(三点重合除外),则称 M, P,N 三点为“共谐点”.请直接写出使得 M ,P,N 三点成为“共谐点”的 m 的值.【解答】解:( 1)∵ y=﹣x+c 与 x 轴交于点 A( 3, 0),与 y 轴交于点 B,∴0=﹣2+c,解得 c=2,∴B(0,2),∵抛物线 y=﹣x2 +bx+c 经过点 A,B,∴,解得,∴抛物线分析式为y=﹣x2 +x+2;( 2)①由( 1)可知直线分析式为y=﹣x+2,∵M(m,0)为 x 轴上一动点,过点 M 且垂直于 x 轴的直线与直线 AB 及抛物线分别交于点 P,N,∴ P( m,﹣ m+2), N(m,﹣ m2+ m+2),∴PM=﹣ m+2,PA=3﹣m,PN=﹣ m2+ m+2﹣(﹣ m+2)=﹣ m2+4m,∵△ BPN和△ APM 相像,且∠ BPN=∠ APM,∴∠ BNP=∠AMP=90°或∠ NBP=∠AMP=90°,当∠ BNP=90°时,则有 BN⊥MN,∴BN=OM=m,∴=,即=,解得m=0(舍去)或m=2.5,∴ M(2.5,0);当∠ NBP=90°时,则有=,∵ A( 3, 0),B(0,2),P(m,﹣m+2),∴ BP==m, AP==(3﹣m),∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以 B, P, N 为极点的三角形与△ APM 相像时,点 M 的坐标为( 2.5,0)或(,0);②由①可知 M ( m,0), P( m,﹣m+2), N( m,﹣m2+m+2),∵M,P,N 三点为“共谐点”,∴有 P 为线段 MN 的中点、 M 为线段 PN 的中点或 N 为线段 PM 的中点,当 P 为线段 MN 的中点时,则有2(﹣m+2)=﹣ m2+ m+2,解得 m=3(三点重合,舍去)或 m= ;第 25 页(共 26 页)当 M 为线段 PN 的中点时,则有﹣m+2+(﹣m2+ m+2)=0,解得 m=3(舍去)或 m=﹣ 1;当 N 为线段 PM 的中点时,则有﹣m+2=2(﹣m2+ m+2),解得 m=3(舍去)或 m=﹣;综上可知当 M , P, N 三点成为“共谐点”时 m 的值为或﹣1或﹣.。
2017年河南中招数学试卷

2017年河南省普通高中招生考试试卷数学注意事项:1. 本试卷共6页,三个大题,满分120分,考试时间100分钟.2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、选择题(每题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.下列各数中比1大的数是( ) A. 2 B. 0 C. -1 D.-32.2016年,我国国内生产总值达到74.4万亿元,用科学计数法表示为( ) A. 74.4×1012 B. 7.44×1013 C. 74.4×1013 D. 7.44×10143.某几何体的左视图如下图所示,则该几何体不可能是( )4.解分式方程xx -=--13211去分母得 ( ) A.1-2(x-1)=-3 B.1-2(x-1)=3 C.1-2x-2=-3 D.1-2x+2=35.八年级某同学6次数学小测验的成绩分别为80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A.95分,95分B. 95分,90分C. 90分,95分D. 95分,85分 6.一元二次方程2x2-5x-2=0根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.如图,在□ABCD 中,对角线AC 、BD 相交于点O ,添加 下列条件不能..判定□ABCD 是菱形的只有( ) A.AC ⊥BD B.AB=BC C.AC=BD D.∠1=∠2 8.如图是一次数学活动课制作的一个转盘,盘面被等分成 四个扇形区域,并分别标有数字-1,0,1,2,若转动转盘两次,每次转盘停止后记录指针所指区域数字(当指针恰好指在分界线上时,不记,重转)则记录两个数字都是正数的概率为( )9.我们知道:四边形具有不稳定性,如图,在平面直角坐标系中,边长为2的正方形ABCD 边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D`处,则点C的对应点C`坐标为()10.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,点O,B的对应点分别为O`,B`,连接BB`,则图中阴影部分的面积是()A.32πB.332π- C.3232π- D.3234π-二、填空题(每题3分,共15分)11.计算=-42312.不等式组⎪⎩⎪⎨⎧〈-≤1212-xx的解集是13.已知点A(1,m),B(2,n)在反比例函数x2y-=的图像上,则m与n的大小关系为。
2017河南省初中中考数学试卷习题及含答案

2017 年河南省中招数学试卷及答案2017 年河南省一般高中招生考试一试卷数学注意事项:1. 本试卷共 6 页,三个大题,满分120 分,考试时间 100 分钟 .2. 本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效.一、选择题(每题 3 分,共 30 分)以下各小题均有四个答案,其中只有一个是正确的.1. 以下各数中比 1 大的数是()A. 2B. 0C. -1年,我国国内生产总值达到74.4 万亿元,用科学计数法表示为()× 1012 × 1013 C. 74.4 ×1013 × 10143. 某几何体的左视图以以下列图所示,则该几何体不能能是()123()4. 解分式方程,去分母得x 1 1 xA.1-2 ( x-1 )( x-1 ) =3 C.1-2x-2=-3 D.1-2x+2=35. 八年级某同学 6 次数学小测试的成绩分别为80 分, 85 分, 95 分, 95 分, 95 分, 100 分,则该同学这众数和中位数分别是()A.95 分, 95 分B. 95 分, 90 分C. 90 分, 95 分D. 95分,85分6. 一元二次方程 2x2-5x-2=0 根的情况是()A. 有两个相等的实数根B.有两个不相等的实数根C. 只有一个实数根D.没有实数根7.如图,在□ABCD中,对角线 AC、 BD订交于点 O,增加以下条件不能够判断□ABCD是菱形的只有(..⊥ BD B.AB=BC C.AC=BD D.∠1=∠ 26次成绩的)8. 如图是一次数学活动课制作的一个转盘,盘面被均分成四个扇形地域,并分别标有数字-1 , 0,1,2 ,若转动转盘两次,每次转盘停止后记录指针所指地域数字(当指针恰好指在分界线上时,不记,重转)则记录两个数字都是正数的概率为()1 1C. 1 1A. B. D.28 6 49. 我们知道:四边形拥有不牢固性,如图,在平面直角坐标系中,边长为 2 的正方形 ABCD边 AB在 x 轴上, AB的中点是坐标原点 O。
河南省2017年普通高中中考数学模拟试卷 及参考答案

A.
B.
C.
D.
6. 用m,n,p,q四把钥匙去开A,B两把锁,其中仅有钥匙m能打开锁A,仅有钥匙n能打开锁B,则“取一把钥匙恰能 打开一把锁”的概率是( )
A. B. C. D.
7. 如图,双曲线y= (x>0)经过线段AB的中点M,则△AOB的面积为( )
A . 18 B . 24 C . 6 D . 12 8. 对于一组数据:10,17,15,10,18,20,下列说法错误的是( )
二、填空题
11. |﹣3|0+
=________.
12. 如图,已知AD平分∠CAB,DE∥AC,∠1=30°,则∠2=________°.
13. 已知抛物线y=ax2﹣4ax﹣5a,其中a<0,则不等式ax2﹣4ax﹣5a>0的解集是________. 14. 如图,菱形ABCD,∠A=60°,AB=4,以点B为圆心的扇形与边CD相切于点E,扇形的圆心角为60°,点E是CD的 中点,图中两块阴影部分的面积分别为S1 , S2 , 则S2﹣S1=________.
A . 中位数是16 B . 方差是 C . 众数是10 D . 平均数是15 9. 如图,△ABC中,∠C=90°,∠A=30°,BC=2,按照如下步骤作图:①分别以点A,B为圆心,大于线段AB长度的 一半为半径画弧,两弧分别相交于点M,N;②作直线MN分别交AB,AC于点D,E,连结BE,则BE的长是( )
2017年河南省中招考试数学试卷

如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!2017年河南省中招考试数学试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.下列各数中比1大的数是()A.2B.0C.-1D.-32.2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.1274.410⨯B.137.4410⨯C.1374.410⨯D.147.4410⨯3.某几何体的左视图如下图所示,则该几何体不可能是()A.B.C.D.4.解分式方程13211x x-=--,去分母得()A.12(1)3x --=-B.12(1)3x --= C.1223x --=-D.1223x -+=5.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分6.一元二次方程22520x x --=的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.如图,在ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件不能..判定ABCD 是菱形的只有()A.AC BD ⊥B.AB BC = C.AC BD =D.12∠=∠8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为()A.18B.16C.14D.129.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O 固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点'D 处,则点C 的对应点'C 的坐标为()A.B.(2,1) C.D.10.如图,将半径为2,圆心角为120︒的扇形OAB 绕点A 逆时针旋转60︒,点O ,B 的对应点分别为'O ,'B ,连接'BB ,则图中阴影部分的面积是()A.23πB.3π-C.23π-D.23π二、填空题(每小题3分,共15分)11.计算:32=.12.不等式组20,12x x x -≤⎧⎪⎨-<⎪⎩的解集是.13.已知点(1,)A m ,(2,)B n 在反比例函数2y x=-的图象上,则m 与n 的大小关系为.14.如图1,点P 从ABC ∆的顶点B 出发,沿B C A →→匀速运动到点A .图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则ABC ∆的面积是.15.如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,1BC =,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MB C ∆为直角三角形,则BM 的长为.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中1x =+,1y =-.17.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有人,a b +=,m =;(2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有1000人,请估计每月零花钱的数额x 在60120x ≤<范围的人数.18.如图,在ABC ∆中,AB AC =,以AB 为直径的⊙O 交AC 边于点D ,过点C 作//CF AB ,与过点B 的切线交于点F ,连接BD .(1)求证:BD BF =;(2)若10AB =,4CD =,求BC 的长.19.如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C .此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45︒方向,B 船测得渔船C 在其南偏东53︒方向.已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:4sin 535︒≈,3cos535︒≈,4tan 533︒≈ 1.41≈)20.如图,一次函数y x b =-+与反比例函数(0)ky x x=>的图象交于点(,3)A m 和(3,1)B .(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P 是线段AB 上一点,过点P 作PD x ⊥轴于点D ,连接OP ,若POD ∆的面积为S ,求S 的取值范围.21.学校“百变魔方”社团准备购买A ,B 两种魔方.已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个(其中A 种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.22.如图1,在Rt ABC ∆中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想图1中,线段PM 与PN 的数量关系是,位置关系是;(2)探究证明把ADE ∆绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN ∆的形状,并说明理由;(3)拓展延伸把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PMN ∆面积的最大值.23.如图,直线23y x c =-+与x 轴交于点(3,0)A ,与y 轴交于点B ,抛物线243y x bx c =-++经过点A ,B .(1)求点B 的坐标和抛物线的解析式;(2)M(m,0)为x 轴上一个动点,过点M 垂直于x 轴的直线与直线AB 和抛物线分别交于点P、N,①点M 在线段OA 上运动,若以B ,P ,N 为顶点的三角形与APM ∆相似,求点M 的坐标;②点M 在x 轴上自由运动,若三个点M ,P ,N 中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2017年河南省中招考试数学试卷(解析)1:【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.2:【答案】B.考点:科学记数法3:【答案】D.【解析】试题分析:几何体的左视图是从左面看几何体所得到的图形,选项A、B、C的左视图都为,选项D的左视图不是,故选D.考点:几何体的三视图4:【答案】A.考点:解分式方程.5:【答案】A.【解析】试题分析:这组数据中95出现了3次,次数最多,为众数;中位数为第3和第4两个数的平均数为95,故选A.考点:众数;中位数.6:【答案】B.【解析】试题分析:这里a=2,b=-5,c=-2,所以△=2(5)42(2)2516410--⨯⨯-=+= ,即可得方程22520x x --=有有两个不相等的实数根,故选B.考点:根的判别式.7:【答案】C.考点:菱形的判定.8:【答案】C.【解析】试题分析:列表得,120-11(1,1)(1,2)(1,0)(1,-1)2(2,1)(2,2)(2,0)(2,-1)0(0,1)(0,2)(0,0)(0,-1)-1(-1,1)(-1,2)(-1,0)(-1,-1)由表格可知,总共有16种结果,两个数都为正数的结果有4种,所以两个数都为正数的概率为41164=,故选C.考点:用列表法(或树形图法)求概率.9:【答案】D.考点:图形与坐标.10:【答案】C.【解析】试题分析:连接O 'O 、'O B,根据旋转的性质及已知条件易证四边形AOB 'O 为菱形,且∠'O OB=∠O 'O B=60°,又因∠A 'O 'B =∠A 'O B=120°,所以∠B 'O 'B =120°,因∠O 'O B+∠B 'O 'B =120°+60°=180°,即可得O、'O 、'B 三点共线,又因'O 'B ='O B,可得∠'O 'B B=∠'O B 'B ,再由∠O 'O B=∠'O 'B B+∠'O B 'B =60°,可得∠'O 'B B=∠'O B'B =30°,所以△OB 'B 为Rt 三角形,由锐角三角函数即可求得B 'B =,所以2''16022=S 223603OBB BOO S S ππ⨯-=⨯⨯= 阴影扇形,故选C.考点:扇形的面积计算.11:【答案】6.【解析】试题分析:原式=8-2=6.考点:实数的运算.12:【答案】-1<x≤2.考点:一元一次不等式组的解法.13:【答案】m<n.【解析】试题分析:把点(1,)A m ,(2,)B n 分别代入2y x=-可得m=-2,n=-1,所以m<n.考点:反比例函数图象上点的特征.14:【答案】12.考点:动点函数图象.15:【答案】1或212.【解析】试题分析:在Rt ABC ∆中,90A ∠=︒,AB AC =,可得∠B=∠C=45°,由折叠可知,BM='MB ,若使'MB C ∆为直角三角形,分两种情况:①0'90MB C ∠=,由∠C=45°可得'MB ='CB ,设BM=x,则'MB ='CB =x,,所以=1BC =+,解得x=1,即BM=1;②0'90B MC ∠=,此时点B 和点C 重合,BM=1122BC +=.所以BM 的长为1或12+.考点:折叠(翻折变换).16:【答案】原式=9xy ,当1x =,1y =时,原式=9.考点:整式的运算.17:【答案】(1)50,28,8;(2)144°;(3)560.【解析】试题分析:(1)用B 组的人数除以B 组人数所占的百分比,即可得这次被调查的同学的人数,利用A 组的人数除以这次被调查的同学的人数即可求得m 的值,用总人数减去A、B、E 的人数即可求得a+b 的值;(2)先求得C 组人数所占的百分比,乘以360°即可得扇形统计图中扇形C 的圆心角度数;(3)用总人数1000乘以每月零花钱的数额x 在60120x ≤<范围的人数的百分比即可求得答案.考点:统计图.18:【答案】(1)详见解析;(2).【解析】试题分析:(1)根据已知条件已知CB 平分∠DCF,再证得BD AC ⊥、BF CF ⊥,根据角平分线的性质定理即可证得结论;(2)已知AB AC ==10,4CD =,可求得AD =6,在Rt △ABD 中,根据勾股定理求得2BD 的值,在Rt△BDC 中,根据勾股定理即可求得BC 的长.试题解析:(1)∵AB AC=∴∠ABC=∠ACB∵//CF AB∴∠ABC=∠FCB∴∠ACB=∠FCB,即CB平分∠DCF∵AB为⊙O直径⊥∴∠ADB=90°,即BD AC∵BF为⊙O的切线⊥∴BF ABCF AB∵//⊥∴BF CF∴BD=BF考点:圆的综合题.19:【答案】C船至少要等待0.94小时才能得到救援.【解析】⊥交AB的延长线于点D,可得∠CDA=90°,根据题意可知∠试题分析:过点C作CD ABCDA=45°,设CD=x,则AD=CD=x,在Rt△BDC中,根据三角函数求得CD、BC的长,在Rt△ADC中,求得AC的长,再分别计算出B船到达C船处约需时间和A船到达C船处约需时间,比较即可求解.∴B 船到达C 船处约需时间:25÷25=1(小时)在Rt△ADC ≈1.41×20=28.2∴A 船到达C 船处约需时间:28.2÷30=0.94(小时)而0.94<1,所以C 船至少要等待0.94小时才能得到救援.考点:解直角三角形的应用.20:【答案】(1)4y x =-+,3y x =;(2)S 的取值范围是322S ≤≤.【解析】试题分析:(1)把(3,1)B 分别代入y x b =-+和(0)k y x x =>,即可求得b、k 的值,直接写出对应的解析式即可;(2)把点(,3)A m 代入3y x=求得m=1,即可得点A 的坐标设点P (n,-n+4),,因点P 是线段AB 上一点,可得1≤n≤3,根据三角形的面积公式,用n 表示出POD ∆的面积为S ,根据n 的取值范围即可求得S 的取值范围.而点P 是线段AB 上一点,设点P(n,-n+4),则1≤n≤3∴S=2111(4)(2)2222OD PD n n n ⋅=⨯⨯-+=--+∵102- 且1≤n≤3∴当n=2时,S 最大=2,当n=1或3时,=32S 最小,∴S 的取值范围是322S ≤≤.考点:一次函数与反比例函数的综合题.21:【答案】(1)A、B 两种魔方的单价分别为20元、15元;(2)当45<m≤50时,活动二更实惠;当m=45时,活动一、二同样实惠;当0≤m<45(或0<m<50)时,活动一更实惠.试题解析:(1)设A、B 两种魔方的单价分别为x 元、y 元,根据题意得2613034x y x y +=⎧⎨=⎩,解得2015x y =⎧⎨=⎩即A 、B 两种魔方的单价分别为20元、15元;(2)设购买A 魔方m 个,按活动一和活动二购买所需费用分别为1w 元、2w 元,依题意得1w =20m×0.8+15×0.4×(100-m)=10m+600,2w =20m+15(100-m-m)=-10m+1500,①1w >2w 时,10m+600>-10m+1500,所以m>45;②1w =2w 时,10m+600=-10m+1500,所以m=45;③1w <2w 时,10m+600<-10m+1500,所以m<45;∴当45<m≤50时,活动二更实惠;当m=45时,活动一、二同样实惠;当0≤m<45(或0<m<50)时,活动一更实惠.考点:二元一次方程组的应用;一次函数的应用.22:【答案】(1)PM=PN,PM PN ⊥;(2)等腰直角三角形,理由详见解析;(3)492.试题解析:(1)PM=PN,PM PN;∴PM=12CE,且//PM CE,同理可证PN=12BD,且//PN BD ∴PM=PN,∠MPD=∠ECD,∠PNC=∠DBC,∴∠MPD=∠ECD=∠ACD+∠ACE=∠ACD+∠ABD,∠DPN=∠PNC+∠PCN =∠DBC+∠PCN,∴∠MPN=∠MPD+∠DPN=∠ACD+∠ABD+∠DBC+∠PCN=∠ABC+∠ACB=90°,即△PMN 为等腰直角三角形.(3)492.考点:旋转和三角形的综合题.23:【答案】(1)B (0,2),2410233y x x =-++;(2)①点M 的坐标为(118,0)或M (52,0);②m=-1或m=14-或m=12.试题解析:(1)直线23y x c =-+与x 轴交于点(3,0)A ,∴2303c -⨯+=,解得c=2∴B(0,2),∵抛物线243y x bx c =-++经过点(3,0)A ,∴2433203b -⨯++=,∴b=103∴抛物线的解析式为2410233y x x =-++;(2)∵MN x ⊥轴,M(m,0),∴N(2410,233m m m -++)①有(1)知直线AB 的解析式为223y x =-+,OA=3,OB=2∵在△APM 中和△BPN 中,∠APM=∠BPN,∠AMP=90°,若使△APM 中和△BPN 相似,则必须∠NBP=90°或∠BNP =90°,分两种情况讨论如下:(I)当∠NBP=90°时,过点N 作NC y ⊥轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=22410410223333m m m m -++-=-+∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠BNC=∠ABO,∴Rt△NCB∽Rt△BOA ∴NC CB OB OA =,即24103323m m m -+=,解得m=0(舍去)或m=118∴M(118,0);考点:二次函数综合题.。