一种多相永磁同步电动机的最佳转矩控制

一种多相永磁同步电动机的最佳转矩控制
一种多相永磁同步电动机的最佳转矩控制

高效永磁电动机的现状与发展

高效永磁电动机的现状与发展 唐任远安忠良赫荣富 (沈阳工业大学国家稀土水磁电机工程技术硏丸中心.沈ISH11017S) 摘要能源紧张是影响我国国民经济发展的一个重要问题,也是全世界共同关心的问题。而工业用电动机消耗了大部分的能源,因此提高工业用电动机的效率可以获得显著的节能效果。根据IEC制定的超高效和超超高效电机效率标准,永磁电动机山于采用永磁体励磁,在提高效率方面具有很大的空间和优势。针对永磁电动机自身特点,经过优化设计可以达到IEC规定的IE3和IE4的效率限值。考虑到我国稀土资源率富和稀土永磁产量已列世界前茅的优势,研发起高效和超超高效永磁同步电动机是我国发展高效电机的重要速径。 关键词:电动机;效率;瘩磁;节能 ]弓I言 能源曜张是影响我国国民经济发展的一个重要问题,也是全世界共同关心的阔题。节能是我国经济和社会发展的一项长远战略方针,也是当前一项极为紧迫的任务。据国际电工委员会(IEC)统计,工业用电动机消耗全世界发电量的30% — 40%,改善整个驱动系统(电动机和调速传动)和应用技术(或工艺技术)的效率对节能关系重大,系统优化总的节能潜力可达到30%?60%。据国际能源机构(IEA)2006年7月的工作报告,通过改善电动机效率结合变频调速可以节约大约7%的电能,其中大致有1/4?1/3是靠提高电动机效率来获得的,其余部分则来自系统的改进。I」前,美、欧、日.澳大利亚、巴西等国都纷纷制订电动机效率限值,并强制执行。 为协调各国能效分级标准,2006年IEC制定一项新的能效标准IEC60034 —30。该标准将一般用途电动机效率水平分为IE1 (International Efficiency,简称IE)、IE2、IE3和IE4四级,其中IE1为标准效率,相当于我国LI前生产的普通系列感应电动枫的效率水平;IE2为高效率,比普通电机的效率平均提高2?75个百分点,损耗平均下降20%左右;IE3为超高效率,即效率再提高1. 5--一2个百分点,损耗平均再降低15%左右,訂前只有美国预计2010年达到IE3能耗水平,強制执行; IE4为超超高效率,损耗预计再下降20%左右,需要进行全新的电机设计,建也新的体系结构(新的电机极数、速度范围),采用更高性能的材料。山于IE4的技术目前尚不成熟,该标准仅在附录中给出供参考的指标。 IEC规定的各级效率指标如表I?表4所示。

齿槽转矩测试的必要性和方法

齿槽转矩测试的必要性和方法 近年来随着永磁材料的发展,永磁电机成了电机行业的新宠。然而在永磁电机中,齿槽转矩的存在给电机的控制性能造成了很大的影响,那齿槽转矩到底是怎么产生的?我们又该怎么去测呢? 玩过永磁电机的朋友都有过类似的经历:我们在电机掉电的情况下去转电机的转子,发现会有一种卡顿的感觉,而不像传统直流电机那么顺畅的就能把转子徒手转起来。这种卡顿其实就是因为永磁电机存在齿槽转矩。永磁电机内部结构图如图1所示,齿槽转矩是永磁电机的固有的特征之一,它是在电枢绕组不通电的状态下,由永磁体产生的磁场同电枢铁心的齿槽作用在圆周方向上产生的转矩。它其实是永磁体与电枢齿之间的切向力,使永磁电动机的转子有一种沿着某一特定方向与定子对齐的趋势,试图将转子定位在某些位置,由此趋势产生的一种振荡转矩就是齿槽转矩。 图1 永磁同步电机结构图 齿槽转矩会使电机产生振动和噪声,出现转速波动,使电机不能平稳运行,影响电机的性能。在变速驱动中,当转矩脉动频率与定子或转子的机械共振频率一致时,齿槽转矩产生的振动和噪声将被放大。齿槽转矩的存在同样影响了电机在速度控制系统中的低速性能和位置控制系统中的高精度定位。所以做永磁电机研发的工程师希望把自己做的电机的齿槽转矩降到最小,使用永磁电机的工程师则希望了解手上这台电机的齿槽转矩,从而去优化他的控制算法。 在国标GBT/ 30549-2014里对齿槽转矩的测试有了明确的定义:电机绕组开路时,电机回转一周内,由电枢铁心开槽,有趋于最小磁阻位置的倾向而产生的周期性力矩。齿槽转矩的测试方法常用的有:杠杆测量法、转矩仪法。杠杆测量法比较简单,测量精度比较差,所以主要用于对精度要求不高的场合。转矩仪法架构图如图2所示,由于伺服电机的齿槽转矩非常小,所以测试时需要以一个非常低的转速来带动未上电的被测电机来完成测试,

(整理)永磁同步电动机的应用.

一、 概述 众所周知,直流电动机有优良的控制性能,其机械特性和调速特性均为平行的直线,这是各类交流电动机所没有的特性。此外,直流电动机还有起动转矩大、效率高、调速方便、动态特性好等特点。优良的控制特性使直流电动机在70年代前的很长时间里,在有调速、控制要求的场合,几乎成了唯一的选择。但是,直流电动机的结构复杂,其定子上有激磁绕组产生主磁场,对功率较大的直流电动机常常还装有换向极,以改善电机的换向性能。直流电机的转子上安放电枢绕组和换向器,直流电源通过电刷和换向器将直流电送入电枢绕组并转换成电枢绕组中的交变电流,即进行机械式电流换向。复杂的结构限制了直流电动机体积和重量的进一步减小,尤其是电刷和换向器的滑动接触造成了机械磨损和火花,使直流电动机的故障多、可靠性低、寿命短、保养维护工作量大。换向火花既造成了换向器的电腐蚀,还是一个无线电干扰源,会对周围的电器设备带来有害的影响。电机的容量越大、转速越高,问题就越严重。所以,普通直流电动机的电刷和换向器限制了直流电动机向高速度、大容量的发展。 在交流电网上,人们还广泛使用着交流异步电动机来拖动工作机械。交流异步电动机具有结构简单,工作可靠、寿命长、成本低,保养维护简便。但是,与直流电动机相比,它调速性能差,起动转矩小,过载能力和效率低。其旋转磁场的产生需从电网吸取无功功率,故功率因素低,轻载时尤甚,这大增加了线路和电网的损耗。长期以来,在不要求调速的场合,例如风机、水泵、普通机床的驱动中,异步电动机占有主导地位,当然这类拖动中,无形中损失了大量电能。 过去的电力拖动中,很少彩同步电动机,其主要原因是同步电动机不能在电网电压下自行起动,静止的转子磁极在旋转磁场的作用下,平均转矩为零。人们亦知道变频电源可解决同步电动机的起动和调速问题,但在70年代以前,变频电源是可想而不可得的设备。所以,过去的电力拖动中,很少看到用同步电动机作原动机。在大功率范围内,偶尔也有同步电动机运行的例子,但它往往是用来改善大企业的电网功率因数。 自70年代以来,科学技术的发展极大地推动了同步电动机的发展和应用,主要的原因有: 1、高性能永磁材料的发展 永磁材料近年来的开发很快,现有铝镍钴、铁氧体和稀土永磁体三大类。稀土永磁体又有第一代钐钴1:5,第二代钐钴2:17和第三钕铁硼。铝镍钴是本世纪三十年代研制成功的永磁材料,虽其具有剩磁感应强度高,热稳定性好等优点,但它矫顽力低,抗退磁能力差,而且要用贵重的金属钴,成本高,这些不足大大限制了它在电机中的应用。铁氧体磁体是本世纪五十年代初开发的永磁材料,其最大的特点是价格低廉,有较高的矫顽力,其不足是剩磁感应强度和磁能积都较低。钐钴稀土永磁材料在六十年代中期问世,它具有铝镍钴一样高的剩磁感应强度,矫顽力比铁氧体高,但钐稀土材料价格较高。80年代初钕铁硼稀土永磁材料的出现,它具有高的剩磁感应强度,高的矫顽力,高的磁能积,这些特点特别适合在电机中使用。它们不足是温度系数大,居里点低,容易氧化生锈而需涂复处理。经过这几年的不断改进提高,这些缺点大多已经克服,现钕铁硼永磁材料最高的工作温度已可达180℃,一般也可达150℃,已足以满足绝大多数电机的使用要求。表1是各种永磁材料性能比较。 表1各种永磁材料的性能比较 永磁材料剩磁(T)Br(T) 矫顽力HcB(KA/m) 内禀矫顽力Hcj(KA/m) 最大磁能积(BH)m(KJ/m3)剩磁可逆温度系数αB(%C) 居里温度Tc8(C) 中等水平钕铁硼`` 1.26 967 955 310 -0.12 350 较高水平的钐钴1.00 746 766 210 -0.03 850

高效自启动永磁同步电动机核心技术研究

高效自启动永磁同步电动机核心技 术研究 1、永磁同步电动机关键制造工艺的研究 永磁同步电动机关键工艺的研究主要包括永磁体装配以及永磁电机总装配工艺的研究。 1)永磁体装配工艺的研究 由于高性能钕铁硼稀土材料的应用,永磁电机的转子加工精度要求较高,永磁电机转子上的永磁体槽与永磁体之间留有的间隙较小,一般在0.2~0.4mm范围,而目前永磁电机铁心叠压工艺大多采用铁心冲片的轴孔键槽定位方式已不能满足加工要求。

利用轴孔键槽定位,其定位方式精度低,转子铁心永磁体槽的整齐度得不到保证,叠压质量不能满足精度要求。通常的解决措施是,利用人工对永磁体槽进行磨挫,增加永磁体槽的周边气隙,使永磁体能够顺利装入永磁电机转子内,这种工艺浪费了大量的时间和人力,延长了电机的生产周期和增加了电机的加工成本,而且容易造成由于电机永磁体槽在磁化方向气隙的增大而引起永磁电机运行性能恶化的结果。 1 假轴2大头螺母3转子挡板4转子铁心5双头螺栓6螺母7转子槽8永磁体槽 图27.转子铁心叠压示意图 而采用假永磁体定位的叠压工艺,在转子铁心完成铸铝后拆卸假永磁体的时机不易掌握,铸铝转子的一次合格率较低,加工效率低下。 新的加工工艺是综合了两种加工工艺的优点而形成的、创新的叠压工艺(如图27),采用冲片键槽及固定转子端板的双头螺栓进行定位,有效地解决了转子铁心叠压不齐的问题,而且在永磁体装配前,增加了清槽工艺过程,使转子上的永磁体槽的尺寸公差完全能能够满

足永磁体装配的要求。 2)永磁电机总装配工艺的研究 由于装入磁性较强的钕铁硼永磁材料,给永磁电机的装配工艺带来了很大的困难。在转子刚接近定子时,由于永磁体的磁(极)性作用,定、转子就会紧紧地吸在一起,造成转子不能顺利装入定子,电机的功率越大,两者作用力就越大。在无专用设备的过程中,如果装配时处理不当,不但两者会被强烈地吸引在一起而无法分开,影响了装配工作;甚至在强行分开的过程中损坏定、转子,更有甚者在实际装配过程中出现碰伤手指而致残的人身伤亡事故。因此,研究永磁电机装配专用装备是十分必要的。 对于小功率的永磁电机,可不借助于专用装备,将永磁转子装入定子中,但对于较大功率的永磁电机,则必须借助于专用装备将转子推入到定子,以完成永磁电机的装配过程。 永磁电机总装配工艺的研究则是发明了一种永磁电机装配专用装备(如图28),此装备应用后能够克服操作困难,人体易受伤害等问题,工艺装备代替人工装配永磁电机,实现了机械化,效率高、安全可靠,为永磁电机制造开辟了一条高效装配之路,具有一定的经济效益。

高压永磁同步电动机应用与研究

高压永磁同步电动机应用与研究 目前工业领域中采用的高压中、大功率异步电动机普遍存在效率偏低、功率因数差等浪费电能现象。为实现中、大功率电动机高效节能目标,高效永磁同步电动机的研发和应用已成为国内外发展的必然趋势。高效永磁同步电动机理论分析、实验室试验和国家权威机构检测成功后,对现场应用尚无完整的试验研究数据,缺少通过试验和监测手段对高效永磁同步电动机进行经济效益分析。本文通过在张家口发电厂首次应用,并通过严格试验得出相关研究数据和分析结果。 标签:高效永磁同步电动机现场方案试验研究结果分析 引言 在工业、建筑以及公用设施领域中电动机是重要的原动力设备,也是电能消耗的最大用户,和节电潜力的最大用户。2012年我国各类电动机总装机容量约为5亿千瓦,其中异步电动机的装机容量占全国电动机装机容量的90%,约占全国用电量的60%,占工业用量的75%,系统用电效率比国外先进水平低5%-15%,相当于每年浪费电能约1500亿千瓦时。 目前工业领域中采用的高压中、大功率异步电动机普遍存在效率偏低、功率因数差等浪费电能现象。而高效永磁同步电动机能否达到高效节能目标,现场应用前景如何,已经引起国内各大企业关注。2013年工业和信息化部印发(2013年工业节能与绿色发展专项行动实施方案)提出,选择电机在能效提升和绿色发展方面要取得突破。本文将通过在张家口发电厂首次应用和现场试验进行分析。为企业应用永磁同步电动机提供参考。 一、高压永磁同步电动机概述 1.高压永磁同步电动机的发展历程 电机属于电磁装置,其工作原理是通过磁场实现电能与机械能间的不断转换。在电机的工作过程中,气息磁场是必不可少的。获得磁场的方法有两种,其中一种是通过电流得到。该种电机叫做电励磁电机,这种电机需要具备专门用来产生电流磁场的绕组,同时,为了保证电流的正常流动还需要为电机提供不间断的能量供应。另一种方法是通过永磁体来获得磁场,这可以大大简化电机的结构,同时,因为永磁体一旦磁化(充磁)之后就永久具有磁性,不再需要外界供给能量,这也大大的减少了能量的损耗。 高压永磁同步电动机就是通过永磁体获得磁场的电动机,永磁体材料的发展促进了此种电动机的发展。稀土钴和钕铁硼永磁分别在20世纪60年代和80年代出现,这两种永磁材料的出现极大的促进的电动机的发展,因为这两种材料具有特别适用于电机装置的特性,包括高剩磁密度、高矫顽力、线性退磁曲线以及高磁能积。

永磁同步电动机结构原理3D

永磁同步电动机 这些年永磁同步电动机得到较快发展,其特点是功率因数高、效率高,在许多场合开始逐步取代最常用的交流异步电机,其中异步起动永磁同步电动机的性能优越,是一种很有前途的节能电机。 永磁同步电动机的定子结构与工作原理与交流异步电动机一样,多为4极形式,三相绕组按3相4极布置,通电产生4极旋转磁场。下图是有线圈绕组的定子.如下示意图1。 图1定子铁芯与绕组 如下图2是电机机座与定子。 图2机座与定子

永磁同步电动机与普通异步电动机的不同是转子结构,转子上安装有永磁体磁极,图3左就是一个安装有永磁体磁极的转子,永磁体磁极安装在转子铁芯圆周表面上,称为凸装式永磁转子。磁极的极性与磁通走向图3右,这是一个4极转子。 图3凸装式永磁转子 根据磁阻最小原理,也就是磁通总是沿磁阻最小的路径闭合,利用磁引力拉动转子旋转,于是永磁转子就会跟随定子产生的旋转磁场同步旋转。 图4左是另一种安装有永磁体磁极的转子,永磁体磁极嵌装在转子铁芯表面,称为嵌入式永磁转子。磁极的极性与磁通走向见图右,这也是一个4极转子。 图4嵌入式永磁转子铁芯1

图5右是一种嵌入式永磁转子,永磁体嵌装在转子铁芯内部,为防止永磁体磁通短路,在转子铁芯开有空槽或在槽内填充隔磁材料。磁极的极性与磁通走向见下右图,这也是一个4极转子。 图5嵌入式永磁转子铁芯2 下图6为装上转轴的嵌入式永磁转子 图6嵌入式永磁转 转子铁芯两侧装上风扇然后与定子机座组装成整机,见下图7。

图7永磁同步电动机剖面图 这种永磁同步电动机不能直接通三相交流的起动,因转子惯量大,磁场旋转太快,静止的转子根本无法跟随磁场旋转。这种永磁同步电动机多用在变频调速场合,启动时变频器输出频率从0开始上升到工作频率,电机则跟随变频器输出频率同步旋转,是一种很好的变频调速电动机。 通过在永磁转子上加装笼型绕组,接通电源旋转磁场一建立,就会在笼型绕组感生电流,转子就会像交流异步电动机一样起动旋转。这就是异步起动永磁同步电动机,是近些年开始普及的节能电机。如下图8为永磁转子铁芯 图8笼型绕组永磁转子铁芯 笼型转子有焊接式与铸铝式:在转子每个槽内插入铜条,铜条与转子铁芯两侧的铜端环焊接形成笼型转子;与普通交流异步电动机一样采用铸铝式转子,将熔化的铝液直接注入转子槽内,并同时铸出端环与风扇叶片,是较廉价的做法,下图9是一个铸铝式笼型转子。

几种常用电动汽车的驱动系统的比较及永磁同步电动机的相对优势

几种常用电动汽车的驱动系统的比较及永磁同步电动机的相对优势 2012年1月30日 电动汽车用永磁同步电机的发展分析 彭海涛,何志伟,余海阔 (华南理工夫学电力学院,广州510640) 摘要:简要的比较了几种常用电动汽车的驱动系统,并指出了永磁同步电动机的优势。在各类驱动电机中,永磁同步电机能量密度高,效率高、体积小、惯性低、响应快,有很好的应用前景,介绍了电动车驱动用永磁同步电机的目前研究状况以及目前的研究热点和发展趋势。关键词:电动汽车;永磁同步电机;弱磁控制;控制策略;应用 中圈分类号:TM351, TM341 文献标志码:A 文章编号:1001—6848[2010)06-0078-04 O引言 电动汽车具有低噪声、零排放、高效、节能及能源多样他和综合利用等显著优点,成为各国开发的主流。电动汽车的发展有赖于技术的进步,尤其是需要进一步提高其驱动系统的性能。电动汽车对其驱动系统的要求是转矩控制能力良好,转矩密度高,运行可靠性及在整个调速范围内的效率尽可能高,从而保证车辆具有良好的动力性能和操控性,同时在车载动力电池未能取得突破的情况下,延长车辆的续驶里程。研究并开发出高水平的电机驱动控制系统,对提高我国电动汽车驱动系统水平及电动汽车的产业化具有重要意义[2]。 随着永磁材料性能的提高和成本的降低,永磁同步电动机以其高效率、高功率因数和高功率密度等优点,正逐渐成为电动汽车驱动系统的主流电机之一。 1电动汽车用电动机及驱动系统比较 电气驱动系统作为现代电动汽车的核心,主要包括:电动机、功率电子元器件及控制部分。评价电动车的电气驱动系统实质上主要就是对不同电动机及其控制方式进行比较和分析。目前正在应用或开发的电动车用电动机主要有直流电动机(DCM)、感应电动机(IM)、永磁电动机(PM)、开关磁阻电动机(SRM)网类。下面分别对几种电气驱动系统进行简要分析和说明,其总体比较见表l。 1.1直流电动机驱动系统 在电动汽车领域最早使用的就是直流电动机。直流电动机结构简单,易于控制,具有良好的电磁转矩控制特性,但是由于采用机械换向结构,维护困难,并产生火花,容易对无线电产

永磁同步电机齿槽转矩分析与控制总结

永磁同步电机齿槽转矩分析与控制总结 齿槽转矩是永磁电机固有的特性,它会使电机产生转矩脉动,引起速度波动、振动和噪声,当转矩脉动的频率与电机定、转子或端盖的固有频率相等时,电机产生共振,振动和噪声会明显增大。齿槽转矩也会影响电机的低速性能和控制精度。 1.齿槽转矩定义:转子在旋转过程中,定子槽口引起磁路磁阻变化, 转子磁通与定子开槽引起的气隙磁导(磁阻的倒数)交互作用在圆周方向产生的转矩为齿槽转矩。 齿槽转矩也称定位转矩,它的产生来自永磁体与电枢齿间的切向力,使转子有一种沿着某一特定方向与定子对齐的趋势. 2.齿槽转矩影响因素:齿槽形状、磁极极弧系数、永磁体形状、极槽配合、气隙、磁场强度等. 3.齿槽转矩每机械周期齿槽转矩周期数:N co=LCM(Z,2p),Z为槽数,2p为极数,LCM表示最小公倍数. 4.齿槽转矩一个周期机械角度为:θsk=360°/N co 5.齿槽转矩基波频率为: f c=N co n s=N co f p n s=f p (r/s)为同步转速,p为极对数,f为电源频率. 6.齿槽转矩的通用表达式: T co=∑T n ∞ n=1 sin(nN coθ+?n) n=1时对应的齿槽转矩的基波幅值为T1, θ为转子机械角位置. 7.齿槽转矩的计算: 齿槽转矩可以通过计算响应区域的磁能积得到,T ec=dW c dθ ,式中,磁共能: W c=∫Bθ2 2μ0 d(υr)(J) 对气间隙区域应用麦克斯韦张力张量法计算齿槽转矩,有: T ec=L L gμ0∫rB n S g B t ds,

L为有效转子长度;L g为气隙长度;μ0为自由空间磁导率;r为虚拟半径;B n和B t为气间隙磁通的径向和切向分量;S g为气隙表面积. 8.降低齿槽转矩措施: 1)无槽绕组:采用无槽绕组可以完全消除齿槽转矩,但气隙磁通密度会降低, 需要增加永磁体的材料(高度). 2)定子斜槽:通常定子斜槽等于一个槽距,可将齿槽转矩降为零,但定子斜槽 减小电动势,电机性能会下降,转子偏心情况,斜槽有效性降低。 θco=θsk=2πN co 当定子叠片斜过这个角度时,齿槽转矩为: T sk= 1 θsk ∫T co θsk (θ)dθ= 1 θsk ∑∫T n 2π N co ∞ n=1 sin(nN coθ+?n)dθ= 1 θsk ∑[ ?T n cos(nN coθ+?n) nN co ] 2π N co ∞ n=1 =0 3)改变定子槽型:a.齿顶开辅助槽,辅助槽也产生齿槽转矩,辅助槽产生的齿槽 转矩与原定子槽产生的齿槽转矩会相互叠加,产生合成齿槽转矩,其相位差: φnc=2π s(N n+1) ,N n为每齿开的辅助槽数,谐波次数为(N n+1)及其倍数的齿槽转矩相互叠加后不为零且频率提高,而合成转矩的其他高次谐波则被消除。为使辅助槽能有效减小齿槽转矩,需要遵循一定的原则 (HCF[(N n+1),N p]=1, HCF表示最大公约数,N p为1个齿距内的周 期数,N p=2p HCF[Z,2p] ),否则齿槽转矩可能反而会增大。定子齿开槽对电机性能有一定影响,会降低反电动势. b.减少槽口的宽度,一般情况齿槽转矩随着槽口宽度增大而增大,优化槽宽与 槽距的比值可降低齿槽转矩,但转矩波动可能会增大. c.闭口槽,设计闭口槽时需要正确设计相邻齿的连接桥,连接桥太厚,定子槽 漏磁太大而不可接受. d.不等齿宽槽.

永磁同步电动机的应用前景

永磁同步电动机的应用前景 上海交通大学电力学院金如麟谭茀娃 一、概述 众所周知,直流电动机有优良的控制性能,其机械特性和调速特性均为平行的直线,这是各类交流电动机所没有的特性。此外,直流电动机还有起动转矩大、效率高、调速方便、动态特性好等特点。优良的控制特性使直流电动机在70年代前的很长时间里,在有调速、控制要求的场合,几乎成了唯一的选择。但是,直流电动机的结构复杂,其定子上有激磁绕组产生主磁场,对功率较大的直流电动机常常还装有换向极,以改善电机的换向性能。直流电机的转子上安放电枢绕组和换向器,直流电源通过电刷和换向器将直流电送入电枢绕组并转换成电枢绕组中的交变电流,即进行机械式电流换向。复杂的结构限制了直流电动机体积和重量的进一步减小,尤其是电刷和换向器的滑动接触造成了机械磨损和火花,使直流电动机的故障多、可靠性低、寿命短、保养维护工作量大。换向火花既造成了换向器的电腐蚀,还是一个无线电干扰源,会对周围的电器设备带来有害的影响。电机的容量越大、转速越高,问题就越严重。所以,普通直流电动机的电刷和换向器限制了直流电动机向高速度、大容量的发展。 在交流电网上,人们还广泛使用着交流异步电动机来拖动工作机械。交流异步电动机具有结构简单,工作可靠、寿命长、成本低,保养维护简便。但是,与直流电动机相比,它调速性能差,起动转矩小,过载能力和效率低。其旋转磁场的产生需从电网吸取无功功率,故功率因素低,轻载时尤甚,这大增加了线路和电网的损耗。长期以来,在不要求调速的场合,例如风机、水泵、普通机床的驱动中,异步电动机占有主导地位,当然这类拖动中,无形中损失了大量电能。 过去的电力拖动中,很少彩同步电动机,其主要原因是同步电动机不能在电网电压下自行起动,静止的转子磁极在旋转磁场的作用下,平均转矩为零。人们亦知道变频电源可解决同步电动机的起动和调速问题,但在70年代以前,变频电源是可想而不可得的设备。所以,过去的电力拖动中,很少看到用同步电动机作原动机。在大功率范围内,偶尔也有同步电动机运行的例子,但它往往是用来改善大企业的电网功率因数。自70年代以来,科学技术的发展极大地推动了同步电动机的发展和应用,主要的原因有: 1、高性能永磁材料的发展 永磁材料近年来的开发很快,现有铝镍钴、铁氧体和稀土永磁体三大类。稀土永磁体又有第一代钐钴1:5,第二代钐钴2:17和第三钕铁硼。铝镍钴是本世纪三十年代研制成功的永磁材料,虽其具有剩磁感应强度高,热稳定性好等优点,但它矫顽力低,抗退磁能力差,而且要用贵重的金属钴,成本高,这些不足大大限制了它在电机中的应用。铁氧体磁体是本世纪五十年代初开发的永磁材料,其最大的特点是价格低廉,有较高的矫顽力,其不足是剩磁感应强度和磁能积都较低。钐钴稀土永磁材料在六十年代中期问世,它具有铝镍钴一样高的剩磁感应强度,矫顽力比铁氧体高,但钐稀土材料价格较高。80年代初钕铁硼稀土永磁材料的出现,它具有高的剩磁感应强度,高的矫顽力,高的磁能积,这些特点特别适合在电机中使用。它们不足是温度系数大,居里点低,容易氧化生锈而需涂复处理。经过这几年的不断改进提高,这些缺点大多已经克服,现钕铁硼永磁材料最高的工作温度已可达180℃,一般也可达150℃,已足以满足绝大多数电机的使用要求。表1是各种永磁材料性能比较。 表1各种永磁材料的性能比较

永磁同步电机无传感器控制技术

哈尔滨工业大学,电气工程系 Department of Electrical Engineering Harbin Institute of Technology 电力电子与电力传动专题课 报告 报告题目:永磁同步电机无传感器控制技术 哈尔滨工业大学 电气工程系 姓名:沈召源 学号:14S006040 2016年1月

目录 1.1 研究背景 (1) 1.2 国内外研究现状 (1) 1.3 系统模型 (2) 1.4 控制方法设计 (4) 1.5 系统仿真 (7) 1.6 结论 (8) 参考文献 (8)

1.1 研究背景 永磁同步电机具有体积小、惯量小、重量轻等优点,在各领域的应用越来越广泛。目前在永磁同步电机的各种控制算法中,使用最多的是矢量控制和直接转矩控制,而这两种控制方式都需要转子位置,但转子位置传感器的采用限制了系统使用范围。永磁同步电机控制系统大多采用测速发电机或光电码盘等传感器检测速度和位置的反馈量,这不但提高了驱动装置的造价,而且增加了电机与控制系统之间的连接线路和接口电路,使系统易于受环境干扰、可靠性降低。由于永磁同步电机无传感器控制系统具有控制精度高、安装、维护方便、可靠性强等一系列优点,成为近年来研究的一个热点。 1.2 国内外研究现状 无传感器永磁同步电机是在电机转子和机座不安装电磁或光电传感器的情况下,利用电机绕组中的有关电信号,通过直接计算、参数辨识、状态估计、间接测量等手段,从定子边较易测量的量如定子电压、定子电流中提取出与速度、位置有关的量,利用这些检测到的量和电机的数学模型推测出电机转子的位置和转速,取代机械传感器,实现电机闭环控制。 最早出现的无机械传感器控制方法可统称为波形检测法。由于同步电机是一个多变量、强耦合的非线性系统,所要解决的问题是采用何种方法获取转速和转角。目前适合永磁同步电机的最主要的无速度传感器的控制策略主要有以下几种 (1)利用定子端电压和电流直接计算出θ和ω。该方法的基本思想是基于场旋转理论,即在电机稳态运行时,定子磁链和转子磁链同步旋转,且两磁链之间的夹角相差一个功角δ,该方法适用于凸极式和表面式永磁同步电机。该方法计算方法简单,动态响应快,但对电机参数的准确性要求比较高,应用这种方法时需要结合电机参数的在线辨识。 (2)模型参考自适应(MRAS)方法。该方法的主要思想是先假设转子所在位置,利用电机模型计算出该假设位置电机的电压和电流值,并通过与实测的电压、电流比较得出两者的差值,该差值正比于假设位置与实际位置之间的角度差。当该值减小为零时,则可认为此时假设位置为真实位置。采用这种方法,位置精度与模型的选取有关。该方法应用于PMSM时有一些新的需要解决的问题。 (3)观测器基础上的估计方法。观测器的实质是状态重构,其原理是重新构造一个系统,利用原系统中可直接测量的变量,如输出矢量和输入矢量作为它的输入信号,并使输出信号在一定条件下等价于原系统的状态。目前主要存在的观测器:全阶状态观测器、降阶状态观测器、推广卡尔曼滤波和滑模观测器。其中滑模观测器有很好的鲁棒性,但其在本质上是不连续的开关控制,因此会引起系统发生抖动,这对于矢量控制在低速下运行是有害的,将会引起较大的转矩脉动。扩展卡尔曼滤波器提供了一种迭代形式的非线性估计方法,避免了对测量的微分

永磁同步电动机的应用前景

一、概述 众所周知,直流电动机有优良的控制性能,其机械特性和调速特性均为平行的直线,这是各类交流电动机所没有的特性。此外,直流电动机还有起动转矩大、效率高、调速方便、动态特性好等特点。优良的控制特性使直流电动机在70年代前的很长时间里,在有调速、控制要求的场合,几乎成了唯一的选择。但是,直流电动机的结构复杂,其定子上有激磁绕组产生主磁场,对功率较大的直流电动机常常还装有换向极,以改善电机的换向性能。直流电机的转子上安放电枢绕组和换向器,直流电源通过电刷和换向器将直流电送入电枢绕组并转换成电枢绕组中的交变电流,即进行机械式电流换向。复杂的结构限制了直流电动机体积和重量的进一步减小,尤其是电刷和换向器的滑动接触造成了机械磨损和火花,使直流电动机的故障多、可靠性低、寿命短、保养维护工作量大。换向火花既造成了换向器的电腐蚀,还是一个无线电干扰源,会对周围的电器设备带来有害的影响。电机的容量越大、转速越高,问题就越严重。所以,普通直流电动机的电刷和换向器限制了直流电动机向高速度、大容量的发展。 在交流电网上,人们还广泛使用着交流异步电动机来拖动工作机械。交流异步电动机具有结构简单,工作可靠、寿命长、成本低,保养维护简便。但是,与直流电动机相比,它调速性能差,起动转矩小,过载能力和效率低。其旋转磁场的产生需从电网吸取无功功率,故功率因素低,轻载时尤甚,这大增加了线路和电网的损耗。长期以来,在不要求调速的场合,例如风机、水泵、普通机床的驱动中,异步电动机占有主导地位,当然这类拖动中,无形中损失了大量电能。 过去的电力拖动中,很少彩同步电动机,其主要原因是同步电动机不能在电网电压下自行起动,静止的转子磁极在旋转磁场的作用下,平均转矩为零。人们亦知道变频电源可解决同步电动机的起动和调速问题,但在70年代以前,变频电源是可想而不可得的设备。所以,过去的电力拖动中,很少看到用同步电动机作原动机。在大功率范围内,偶尔也有同步电动机运行的例子,但它往往是用来改善大企业的电网功率因数。 自70年代以来,科学技术的发展极大地推动了同步电动机的发展和应用,主要的原因有:1、高性能永磁材料的发展 永磁材料近年来的开发很快,现有铝镍钴、铁氧体和稀土永磁体三大类。稀土永磁体又有第一代钐钴1:5,第二代钐钴2:17和第三钕铁硼。铝镍钴是本世纪三十年代研制成功的永磁材料,虽其具有剩磁感应强度高,热稳定性好等优点,但它矫顽力低,抗退磁能力差,而且要用贵重的金属钴,成本高,这些不足大大限制了它在电机中的应用。铁氧体磁体是本世纪五十年代初开发的永磁材料,其最大的特点是价格低廉,有较高的矫顽力,其不足是剩磁感应强度和磁能积都较低。钐钴稀土永磁材料在六十年代中期问世,它具有铝镍钴一样高的剩磁感应强度,矫顽力比铁氧体高,但钐稀土材料价格较高。80年代初钕铁硼稀土永磁材料的出现,它具有高的剩磁感应强度,高的矫顽力,高的磁能积,这些特点特别适合在电机中使用。它们不足是温度系数大,居里点低,容易氧化生锈而需涂复处理。经过这几年的不断改

永磁同步电动机的应用前景19925

永磁同步电动机的应用前景.txt再过几十年,我们来相会,送到火葬场,全部烧成灰,你一堆,我一堆,谁也不认识谁,全部送到农村做化肥。一、概述 众所周知,直流电动机有优良的控制性能,其机械特性和调速特性均为平行的直线,这是各类交流电动机所没有的特性。此外,直流电动机还有起动转矩大、效率高、调速方便、动态特性好等特点。优良的控制特性使直流电动机在70年代前的很长时间里,在有调速、控制要求的场合,几乎成了唯一的选择。但是,直流电动机的结构复杂,其定子上有激磁绕组产生主磁场,对功率较大的直流电动机常常还装有换向极,以改善电机的换向性能。直流电机的转子上安放电枢绕组和换向器,直流电源通过电刷和换向器将直流电送入电枢绕组并转换成电枢绕组中的交变电流,即进行机械式电流换向。复杂的结构限制了直流电动机体积和重量的进一步减小,尤其是电刷和换向器的滑动接触造成了机械磨损和火花,使直流电动机的故障多、可靠性低、寿命短、保养维护工作量大。换向火花既造成了换向器的电腐蚀,还是一个无线电干扰源,会对周围的电器设备带来有害的影响。电机的容量越大、转速越高,问题就越严重。所以,普通直流电动机的电刷和换向器限制了直流电动机向高速度、大容量的发展。 在交流电网上,人们还广泛使用着交流异步电动机来拖动工作机械。交流异步电动机具有结构简单,工作可靠、寿命长、成本低,保养维护简便。但是,与直流电动机相比,它调速性能差,起动转矩小,过载能力和效率低。其旋转磁场的产生需从电网吸取无功功率,故功率因素低,轻载时尤甚,这大增加了线路和电网的损耗。长期以来,在不要求调速的场合,例如风机、水泵、普通机床的驱动中,异步电动机占有主导地位,当然这类拖动中,无形中损失了大量电能。 过去的电力拖动中,很少彩同步电动机,其主要原因是同步电动机不能在电网电压下自行起动,静止的转子磁极在旋转磁场的作用下,平均转矩为零。人们亦知道变频电源可解决同步电动机的起动和调速问题,但在70年代以前,变频电源是可想而不可得的设备。所以,过去的电力拖动中,很少看到用同步电动机作原动机。在大功率范围内,偶尔也有同步电动机运行的例子,但它往往是用来改善大企业的电网功率因数。 自70年代以来,科学技术的发展极大地推动了同步电动机的发展和应用,主要的原因有:1、高性能永磁材料的发展 永磁材料近年来的开发很快,现有铝镍钴、铁氧体和稀土永磁体三大类。稀土永磁体又有第一代钐钴1:5,第二代钐钴2:17和第三钕铁硼。铝镍钴是本世纪三十年代研制成功的永磁材料,虽其具有剩磁感应强度高,热稳定性好等优点,但它矫顽力低,抗退磁能力差,而且要用贵重的金属钴,成本高,这些不足大大限制了它在电机中的应用。铁氧体磁体是本世纪五十年代初开发的永磁材料,其最大的特点是价格低廉,有较高的矫顽力,其不足是剩磁感应强度和磁能积都较低。钐钴稀土永磁材料在六十年代中期问世,它具有铝镍钴一样高的剩磁感应强度,矫顽力比铁氧体高,但钐稀土材料价格较高。80年代初钕铁硼稀土永磁材料的出现,它具有高的剩磁感应强度,高的矫顽力,高的磁能积,这些特点特别适合在电机中使

基于ANSOFT的永磁同步伺服电机齿槽转矩分析

基于ANSOFT的永磁同步伺服电机齿槽转矩分析 第32 卷第4 期2014 年07 月佳木斯大学学报( 自然科学版) Journal of Jiamusi University ( Natural Science Edition) Vol.32 No.4 July 2014 文章编号: 1008 -1402( 2014) 04 -0559 -04 基于ANSOFT 的永磁同步伺服电机齿槽转矩分 析 1 2 1 黄金霖,易靓,曹光华 ( 1.安徽机电职业技术学院电气工程系,安徽芜湖241000; 2.江西理工大学电气工程与自动化学院,江西赣州341000) ① 摘要: 齿槽转矩是永磁电机的固有属性,引起电机的转矩波动,产生振动和噪声.为减小齿槽转矩,提高永磁伺服电机的控制精度,在研究永磁电机齿槽转矩产生机理的基础上,根据永磁电机齿槽转矩的解析式,研究定子齿部开辅助槽和转子磁极偏移对永磁电机齿槽转矩的影响; 利用有限元软件ANSOFT,建立36 槽8 极永磁伺服电机的有限元分析模型,计算不同尺寸辅助槽和磁极偏心距离时的齿槽转矩,分析辅助槽尺寸和磁极偏心距离对齿槽转矩的影响.研究结果表明,合理的辅助槽尺寸和磁极偏心距离可有效削弱永磁伺服电机的齿槽转矩.关键词: 齿槽

转矩; 磁极偏心; 辅助槽; 永磁电机 中图分类号: TM303 文献标识码: A 随着矢量控制算法、电力电子器件和计算机控制技术的不断发展,永磁伺服电机的应用越来越广.在数控机床、小型机器人、机械传动设备以及混合电动汽车等领域,永磁伺服电机已经代替传统的异步电机和直流电机成为许多领域必不可少的传[1], 动设备. 永磁伺服电机结构与普通异步电机相比,转子永磁体取代了传统的转子绕组,转子永磁体的存在,使得电机的效率和功率密度高; 与此同时,转子永磁体与定子槽相互作用,产生齿槽转矩,使得电机转矩波动增加,产生振动与噪声,影响伺服电机的控制精度.齿槽转矩是永磁电机特有的属性,因此,怎样减小永磁电机的齿槽转矩成为相关专家学者研究[2] 的重点之一. 其中,μ0 是空气磁导率. ( 2) 以及气隙磁密随着电机定转根据式( 1) 、 子相对位置角和沿气隙切向不同位置分布的解析表达式,得到齿槽转矩的表达式为: T cog = - 1 α

高压永磁同步电动机应用与研究

高压永磁同步电动机应用与研究 摘要:目前工业领域中采用的高压中、大功率异步电动机普遍存在效率偏低、功率因数差等浪费电能现象。为实现中、大功率电动机高效节能目标,高效永磁同步电动机的研发和应用已成为国内外发展的必然趋势。高效永磁同步电动机理论分析、实验室试验和国家权威机构检测成功后,对现场应用尚无完整的试验研究数据,缺少通过试验和监测手段对高效永磁同步电动机进行经济效益分析。本文通过在张家口发电厂首次应用,并通过严格试验得出相关研究数据和分析结果。 关键词:高效永磁同步电动机试验研究结果分析现场方案 引言 在工业、建筑以及公用设施领域中电动机是重要的原动力设备,也是电能消耗的最大用户,和节电潜力的最大用户。2012年我国各类电动机总装机容量约为5亿千瓦,其中异步电动机的装机容量占全国电动机装机容量的90%,约占全国用电量的60%,占工业用量的75%,系统用电效率比国外先进水平低5%-15%,相当于每年浪费电能约1500亿千瓦时。 目前工业领域中采用的高压中、大功率异步电动机普遍存在效率偏低、功率因数差等浪费电能现象。而高效永磁同步电动机能否达到高效节能目标,现场应用前景如何,已经引起国内各大企业关注。2013年工业和信息化部印发(2013年工业节能与绿色发展专项行动实施方案)提出,选择电机在能效提升和绿色发展方面要取得突破。本文将通过在张家口发电厂首次应用和现场试验进行分析。为企业应用永磁同步电动机提供参考。 一、高压永磁同步电动机概述 1、高压永磁同步电动机的发展历程 电机属于电磁装置,其工作原理是通过磁场实现电能与机械能间的不断转换。在电机的工作过程中,气息磁场是必不可少的。获得磁场的方法有两种,其中一种是通过电流得到。该种电机叫做电励磁电机,这种电机需要具备专门用来产生电流磁场的绕组,同时,为了保证电流的正常流动还需要为电机提供不间断的能量供应。另一种方法是通过永磁体来获得磁场,这可以大大简化电机的结构,同时,因为永磁体一旦磁化(充磁)之后就永久具有磁性,不再需要外界供给能量,这也大大的减少了能量的损耗。 高压永磁同步电动机就是通过永磁体获得磁场的电动机,永磁体材料的发展促进了此种电动机的发展。稀土钴和钕铁硼永磁分别在20世纪60年代和80年代出现,这两种永磁材料的出现极大的促进的电动机的发展,因为这两种材料具有特别适用于电机装置的特性,包括高剩磁密度、高矫顽力、线性退磁曲线以及高磁能积。 我国专家学者自主开发的高效高压永磁同步电动机,采用实心转子磁极铁芯和启动笼复合结构,消弱了齿谐波,减少了转子表面损耗,提高了电机效率。同时,非均匀气隙和优化通风散热,有效的控制了电机温升。该种电机同异步电机相比各项指标显著提供,额定负载效率大于96%,功率因数大于0.98,综合节电率在8%-15%。 2、高压永磁同步电动机的优点

永磁同步电机

高强度永磁同步电机 本实用新型涉及一种高强度永磁同步电机的转子结构,它由中心轴,铁芯和附着在其外圆表面上的至少1对圆弧面形的磁钢构成圆辊状结构,各相邻两磁钢侧面之间留有气隙,各磁钢通过相应的锁紧件与铁芯构成锁紧联结结构,它解决了现有技术强度差、磁钢易被甩出,易出现事故的问题,用于制作各型永磁同步电机。 交流永磁同步调速电梯电机之特性 石正铎路子明 我国电梯性能随着计算机控制技术和变频技术的发展有很大的提高,但是异步变频电动机存在低频低压低速时的转矩不够平稳进而影响低速段运行不理想的缺点。用永磁同步调速电机替代交流异步电机,用同步变频替代异步变频可以解决低速段的缺点和启动及运行中的抖动问题,使电梯运行更平稳、更舒适,同时减小电机的体积,降低噪音。采用有齿轮电梯曳引机,当电梯制动器失灵、轿厢产生自由落体时,可利用永磁同步电机的电流制动功能保证轿厢低速溜车,为电梯安全增加了一道安全屏障。 一、永磁同步电机与异步电机的主要区别及特点 由于异步电机是靠电机定子电流为电机转子励磁的,而永磁电机转子是用永磁体直接产生磁场不需要电励磁。因此永磁同步电机具有结构简单、运行可靠、体积小、重量轻、效率高、形状和尺寸灵活多样等特点。 二、交流永磁同步调速电梯电机的主要优点 1、结构简单运行可靠,由于永磁电机转子不需要励磁,省去了线圈或鼠笼,简化了结构,实现了无刷,减少了故障,维修方便简单,维修复杂系数大大降低。 2、低温升、小体积永磁同步电机与感应电机相比,因为不需要无功励磁电流,而具备: (1)、功率因数高近于1。 (2)、反电势正弦波降低了高次谐波的幅值,有效的解决了对电源的干扰。 (3)、减小了电机的铜损和铁损。 同步电机温升小(约38K),电机外形小,体积与异步电机相比,降低一至两个机座号。 3、高效率超节能,因为功率因数高(可近似为1),又省去电励磁,减少了定子电流和定子转子电阻的损耗,效率高(94~96%),满载起动电流比异步减少一半,所以节能效果明显,用于电梯时,同步电机可节能40%以上(用户实际使用后测试结果),轻载电流小,只相当于异步电机的10%,如11KW异步电机轻载时异步电机电流10A,而同步电机轻载电流只有0.7A。 4、调速范围宽,可达1:1000甚至于更高(异步电机只有1:100),调速精度极高,可大大提高电梯的品质。 5、永磁同步电梯电机在额定转速内保持恒转矩,对于提高电梯的运行稳定性至关重要。可以做到给定曲线与运行曲线重合,特别是电动机在低频、低压、低速时可提供足够的转矩,避免电梯在启动缓速过程抖动,改善电梯启制动过程的舒

永磁同步电动机控制策略

永磁同步电动机控制策略综述 1 引言 近年来,随着电力电子技术、微电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。永磁同步电动机具有体积小,损耗低,效率高等优点,在节约能源和环境保护日益受到重视的今天,对其研究就显得非常必要。因此,这里对永磁同步电机的控制策略进行综述,并介绍了永磁同步电动机控制系统的各种控制策略发展方向。 2 永磁同步电动机的数学模型 当永磁同步电动机的定子通入三相交流电时, 三相电流在定子绕组的电阻上产生电压降。由三相交流电产生的旋转电枢磁动势及建立的电枢磁场,一方面切割定子绕组,并在定子绕组中产生感应电动势; 另一方面以电磁力拖动转子以同步转速旋转。电枢电流还会产生仅与定子绕组相交链的定子绕组漏磁通, 并在定子绕组中产生感应漏电动势。此外,转子永磁体产生的磁场也以同步转速切割定子绕组,从而产生空载电动势。为了便于分析,在建立数学模型时,假设以下参数[2-3]: ② 忽略电动机的铁心饱和; ②不计电机中的涡流和磁滞损耗; ③定子和转子磁动势所产生的磁场沿定子内圆按正弦分布,即忽略磁场中所有的空间谐波;④各相绕组对称,即各相绕组的匝数与电阻相同,各相轴线相互位移同样的电角度。 在分析同步电动机的数学模型时,常采用两相同步旋转(d ,q )坐标系和两相静止(α,β)坐标系。图1 给出永磁同步电动机在(d ,q )旋转坐标系下的数学模型[4]。 (1) 定子电压方程为: d d d q f u p ri ψψω=+- (1) q q q d f u p ri ψψω=++ (2) 式中:r 为定子绕组电阻;p 为微分算子,p=d/dt ;d i ,q i 为定子电流;d u ,q u 为定子电压;d ψ,q ψ分别为磁链在d ,q 轴上的分量;f ω为转子角速度(ω=f ω p n );p n 为电动机极对数。 (2)定子磁链方程为: d d d f L i ψψ=+ (3) q q q L i ψ= (4) 式中:f ψ为转子磁链。 (3)电磁转矩为: ()[()]em p q d d q p f q d q d q T n i i n i L L i i ψψψ=-=+- (5) (4)电动机的运动方程为: em L p p J d T T n n ω?=- (6)

相关文档
最新文档