耐火材料基础知识及表征

合集下载

耐火材料基础知识

耐火材料基础知识

04
耐火材料的应用与选择
耐火材料的应用
钢铁工业
在钢铁工业中,耐火材料被广泛应用于高炉、热风炉、转 炉、连铸机等设备中,起到保护炉体、防止高温侵蚀的作 用。
能源工业
在煤炭、石油和天然气等能源工业中,耐火材料用于各种 加热炉、窑炉和反应器中,以保护设备并提高生产效率。
有色金属工业
在铜、铝、镁等有色金属冶炼过程中,耐火材料同样被广 泛应用于各种熔炼炉、保温炉和电解槽等设备中。
气孔结构
耐火材料中含有一定量的气孔,这 些气孔的大小和分布对材料的热导 率、抗热震性等具有重要影响。
03
耐火材料的性质与性能
耐火材料的物理性质
气孔率
耐火材料中含有一定量的气孔,这些气孔会降低材料的密 度,并影响其热学、机械等性能。气孔率可以通过实验测 量,是评价耐火材料质量的重要指标之一。
吸水率
耐火材料的趋势
要点一
高性能及环保要求
随着工业的持续发展,对耐火材料的 高性能要求越来越高,包括更高的耐 温性能、更低的导热系数、更好的抗 腐蚀性能等。同时,为了响应环保要 求,耐火材料行业正在积极开发低污 染、可再生和可循环利用的材料。
要点二
定制化及专业化
现代工业的多样性对耐火材料提出了 多样化的需求。为了满足不同工业领 域对耐火材料的特定要求,耐火材料 行业正朝着定制化和专业化方向发展 。
易破裂或损坏。
耐磨严重,因 此要求耐火材料具有较好的耐磨
性。
05
耐火材料的制备与加工
耐火材料的制备
直接制备法
直接将原材料按照配方比例混合,然后进行成型和烧结。这种方法最为简单,但要求原材 料的物理和化学性能必须稳定。
间接制备法
先合成或制备成中间产品,然后再进行烧结或加工成最终产品。这种方法需要更多的步骤 和工艺控制,但可以获得更精确的化学成分和性能。

耐火材料基本知识

耐火材料基本知识


用途:钢包砖(最重要的尺寸为230mm)
三,菱镁矿的基础知识





镁碳砖的主要原料是镁砂,镁砂是由菱镁矿经过煅烧或电熔方式制成的。 所以,了解一些菱镁矿的知识对我们来说是很有必要的。 就菱镁矿来说,我们国家不仅是一个资源大国,而且是一个生产大国。 世界上菱镁矿储量的2/3集中在中国,产量的1/2由我国提供。 菱镁矿是一种镁的碳酸盐,化学式为碳酸镁MgCO3。 菱镁矿加热到640℃以上时,开始分解成MgO和CO2。 在700~1000℃煅烧时,二氧化碳没有完全逸出,成为一种粉末状物质, 称为轻烧镁,(也叫苛性镁,煅烧镁、α-镁,俗名苦土)。 在1400~1800℃煅烧时,二氧化碳完全逸出,得到氧化镁致密块体,叫 重烧镁(也叫硬烧镁、死烧镁、β-镁、僵烧镁) 在2500~3000℃煅烧(此时已为熔融状态),得到电熔镁。

用途:钢包砖(最重要的尺寸为厚度方向100mm,弧度)
美国的砖型


表示法:长度×宽度×厚度
如:9 ×6 ×3 ---------直形 9 ×41/2×(3-2) ---------侧楔形 常见长度为:8″、9″、12″、13.5″、15″、18″、21″ 通常厚度为3″ 美国的SU形砖与标准的外形一样,只是厚度有两种:一种是 3″(76.2mm),一种是4″(100mm), 如:SU645-3 SU730-4
砖的基本形状

e.
SU形(semi-universal)
如SU645
Байду номын сангаас的基本形状

f. 异形、其它非标准形。
(2),镁碳砖几种常见砖型代号及意义


P系列 Key系列 Minikey系列 SU系列 日本LW系列 美国砖型

耐火材料基本知识

耐火材料基本知识

砌出钢 口方砖
砌炉底
砌渣线 及炉门 口
砌炉墙
交炉前 备用
-11-
4. 控制流程
砌包:
报耐材 计划 检查包 壳及机 构 设备 清理残 钢残渣 砌水口 座砖及 吹氩座 砖
砌包底
砌包墙
焊法兰
交连铸 备用
-12-
5. 操作流程说明:
5.1. 砌炉 5.1.1. 砌炉前必须对水冷系统进行确认,在确保不漏水的前提下,方可 进行操作。 5.1.2. 砌炉前准备号规格齐全的镁碳砖、镁砂等耐火材料。 5.1.3. 新炉壳砌炉底前先砌石棉板,再平砌两层粘土砖,最后砌镁碳砖。 镁碳砖炉底二层侧砌后,再立砌一层。炉坡第一层外圈砌长为350㎜的砖, 内圈砌长为450㎜的砖,第二层外圈砌长为250㎜的砖,内圈砌长为450㎜ 的砖,渣线部位砌三层长为550㎜的砖,渣线以上砖10层长为300㎜的砖或 回收旧镁碳砖。 5.1.4. 旧炉体拆除后应作认真检查,残钢残渣、松动的镁碳砖必须拆除, 清理干净,以见硬底为止。 5.1.5. 砌制每层砖都要用撬杠撬紧,并用≤2㎜以下镁碳粉填缝,要求砖 缝≤2㎜。 5.1.6. 负责冷、热补炉的工作。 5.1.7. 负责炉体的拆除及旧镁碳砖的回收工作。 -135.1.8. 负责做好耐材进料、验收、消耗、库存记录。
-24-
5. 操作流程说明:
5.3. 大包浇注作业标准 5.3.1. 大包吊至回转台定位,钢包下水口位必须对准中包冲击 区中心。 5.3.2. 开浇时必须用力均匀缓慢开启钢包机构,待引流沙流出 后开至全开位。如不能自开,则用氧管捅开,若捅不开,则必 须用氧吹开。 5.3.3. 钢水进入中包液面上升至300~350mm时,必须在浇注区 加入中包覆盖剂,以防二次氧化。并将保护套管及时套好后, 待钢水超过套管下口方可加入覆盖剂,以防卷渣进入浇注区。 5.3.4. 钢包对接时中包液面必须保持700mm以上。 5.3.5.中包温度每隔5~7分钟测量一次,高温慢注,低温快注, 随时保持中包液面的高度不低于600mm。 5.3.6. 大包拉完后及时通知机组长和主控室人员,卸落大包下 水口保护套管。

耐火材料基本知识

耐火材料基本知识

耐火材料基本知识耐火材料基本知识1、耐火材料的性能耐火材料的一般性质,包括组织结构、力学性质、热学性质和高温使用性质。

其中有些是在常温下测定的性质。

如“气孔率、体积密度、耐压强度等。

根据这些性质,可以预知耐火材料在高温下的使用情况,另一些是在高温下测定的性质,如:耐火度、荷重软化温度、热震稳定性、抗渣性、高温体积稳定性等,这些性质反映在一定高温下耐火材料所处的状态或者反映在该温度下它与外界作用的关系。

1.1气孔率1.2常温耐压强度常温耐压强度是指常温下耐火材料单位面积上所承受的最大压力。

耐火材料在使用过程中很少由于常温下的静负荷而破坏。

常温耐压强度主要是表明制品的烧结情况以及与其组织结构相关的性质,另一方面能通过常温耐压强度间接地评价其它指标。

如:耐磨性、耐冲击性以及不烧制品的结合强度。

1.4 耐火度耐火材料在无荷重时抵抗高温作用而不融化的性质称为耐火度。

决定耐火度高低的最基本因素是材料的化学矿物组成及其分布情况。

因此,耐火度无疑是判定耐火材料质量的一个指标。

但达到该温度时,材料不再有机械强度和耐侵蚀。

因而认为耐火度越高砖越好是不适宜的。

同时,耐火材料在使用中经受高温作用时,通常还伴有荷重和外物的熔剂作用,所以制品的耐火度不能视为制品使用温度的上限,必须综合考虑其它性能,作为合理选用耐火材料的参考。

1.5 荷重软化温度荷重变形指标是耐火材料在高温和荷重同时作用下的抵抗能力,也表示耐火材料呈现明显塑性变形的软化范围。

固定试样承受的压力不断升高温度,测定试样在发生一定变形量和坍塌时的温度,称为荷重软化温度,它能在较大的温度范围内把材料的结构性能明显地表示出来,因而可以对耐火材料作出较全面的估价。

但在实际应用中应注意:⑴实际使用条件下所承受的荷重要比0.2MPa低得多。

由于负荷低,制品开始变形的温度将升高。

⑵砌体沿厚度方向受热不均匀,而大部分负荷将由温度较低的部分承担。

⑶在使用条件下制品承受变形的时间,远远超过实验的时间。

耐火材料表征与性能测试方法整理报告

耐火材料表征与性能测试方法整理报告

耐火材料表征与性能测试方法整理报告概述耐火材料是一类能够在高温环境下保持其结构完整,抵抗热量传输和化学侵蚀的材料。

耐火材料广泛应用于冶金、建筑、化工等领域,并且在许多行业中扮演着重要的角色。

为了对耐火材料进行表征和评估,需要使用适当的测试方法来确定其性能和特性。

在本报告中,我们将整理和介绍几种常用的耐火材料表征和性能测试方法。

一、物理性质测试方法1. 密度测定耐火材料的密度是指其单位体积的质量,通常以克/立方厘米或千克/立方米表示。

用于测试耐火材料密度的常用方法有浸水法和测量体积法。

浸水法会将样品完全浸入水中,通过测量排水的体积和质量来计算密度。

测量体积法则是通过测量样品的尺寸来计算体积,再将质量除以体积得出密度。

2. 粒度分析粒度分析是判断耐火材料颗粒大小分布情况的方法。

常见的测试方法有筛分法和激光粒度仪分析法。

筛分法通过逐级将耐火材料颗粒分为不同的尺寸组别,从而得到粒径分布曲线。

激光粒度仪分析法则是利用激光粒度仪测量耐火材料中颗粒的直径,并绘制粒径分布曲线。

3. 孔隙度测试耐火材料的孔隙度是指耐火材料中空隙体积与总体积之比。

常见的孔隙度测试方法有饱和法和渗透法。

饱和法通过将样品完全浸入饱和液体中,通过测量饱和液体的体积来计算孔隙度。

渗透法则是将样品用压力将流体渗透进样品中,通过监测渗透时间和流体量来计算孔隙度。

二、热性能测试方法1. 热膨胀系数测定热膨胀系数是指物体在温度变化时的长度、面积或体积的相对变化率。

常用的测试方法有线膨胀系数法和激光干涉法。

线膨胀系数法通过测量样品长度的变化来计算膨胀系数。

激光干涉法则使用激光干涉原理来测量样品的膨胀量。

2. 热导率测试热导率是指物体导热能力强弱的物理量,通常以热流通过单位面积的速率表示。

常用的测试方法有平板法和激光闪蒸法。

平板法通过测量样品间的热传导来计算热导率。

激光闪蒸法则是利用激光和闪蒸技术来测量样品的热导率。

3. 热震性能测试热震性能是指耐火材料在急剧温度变化下的抗震裂性能。

耐火材料基本知识

耐火材料基本知识

有各自的加热处理热工设备, 相应根据不同工艺条件和不同设备类型 选择不同的耐火衬里, 在石化工业上以不定形耐火材料为主,重点应 用不定形耐火材料当中的轻质不定形耐火材料作为装置内衬保温, 以 达到节能降耗的目的, 有的是利用耐火浇注料的高温强度来抵抗气体 和介质的磨损和侵蚀, 总之石化工业炉已基本形成了比较完善的和比 较系统的耐火衬里材料, 根据不同的工艺要术和工况来选择适合使用 环境的耐火材料,才能达到长周期运行的良好效果。 象催化装置,虽然两器内工作温度并不高,约 750 ℃~800℃, 但由于容器内有高速运动的介质, 造成气体和介质对内衬耐火材料有 较严重的磨损, 故选择衬里材料时, 需考虑到衬里材料在该使用工艺 条件下的耐磨性能要较好,才能满足使用。 一般两器内壁采用高强耐 磨单层衬里;旋风分离器和再生立管等采用单层龟甲网衬里结构,该 衬里为高耐磨衬里,具有较好的耐磨性和耐腐蚀性。 一般常减压装置,焦化加热炉,制氢转化炉内内衬,基本工作温 度 800~1250 ℃之间,炉膛温度不变,气体冲刷,介质腐蚀也不是很 严重,故重点考虑材料的隔热性能来满足节能降耗的需求。目前一般 采用各种类型的轻质浇注料, 纤维可塑性或纤维模块结构,一般材料 容重在 300~800kg/m³,材料的隔热性能较好。 有的象制氢转化装置中的转化器内衬, 要严格按照设备内特殊的 工艺条件,选择特殊的材料,转化器中是较强的还原气氛,对于衬里 材料中的 SiO2 具有较强的还原性,造成 SiO2 气化,在低温区沉积, 故其内部衬里应避免含有 SiO2 成份,需使用较纯的 AL2O3 材料才能满
足气氛的要求。 这种情况在一些特殊炉型上表现尤为突出。象化肥行 业水煤浆气化炉, 合成氨装置中的转化炉具有较高的还原性和酸碱性 侵蚀,故需选用较为稳定的 AL2O3 制品,或者含 Cr2O3 制品作为其衬里 材料,来抵抗较强气氛的侵蚀和磨损。 当然, 在考虑到上述使用环境的情况下,最主要还要以设备内的 工作温度为主,结合工作介质,气氛,以及炉型结构对设备衬里结构 做出一个综合评价,才能设计出满足设备运行要求,优质高效,高寿 命的炉衬结构。 一、 衬里材料的选择原则: 首先在进行炉衬结构设计时, 要充分考虑该设备的工作条件,需 考虑最高工作温度、介质及炉内气氛、炉型结构等各个方面,要满足 温度、气氛,气流结构强度,隔热性能,使用寿命各个方面结合制订 衬里结构。 一般设备在工作温度低于 1100℃情况下,选用一层或者两层轻 质隔热材料即可,但炉膛温度大于 1000℃时,一般考虑工作层使用0℃以上时一般使用耐火砖作为工作层较好,同时耐火层(即工作 层)要考虑炉型结构、强度,铆固方式也非常关键。 二、 采用多层衬里结构各层衬里厚度,及锚固系统设计: 采用多层衬里结构时, 除遵循上述原则首先定出各层材质后,要 进行总的导热计算来确定各层厚度,要考虑耐火层(即工作层)厚度 要兼顾结构强度,经济性,炉型重量,工作气氛,设计寿命以及设计

耐火材料基础知识及表征

耐火材料基础知识及表征

耐火材料基础知识及表征通达耐火技术All rights reserved1目录一、耐火材料基础知识一、耐火材料基础知识耐火材料基本知识耐火材料的定义•传统的定义:耐火度不小于1580℃的无机非金属材料•ISO的定义:耐火度不小于1500℃的非金属材料及制品(但不排除那些含有一定比例的金属)不定形耐火材料的定义由耐火骨料和粉料、结合剂、外加剂以一定比例共同组成的,不经成形和烧成而直接使用或加适当液体调配后使用。

•耐火骨料一般指粒径(即粒度)大于0.088mm的颗粒料。

它是不定形耐火材料组织结构中的主体材料,起骨架作用,决定其物理力学和高温使用性能,也是决定材料属性及其应用范围的重要依据。

•良好的颗粒及其级配,能获得致密性高、性能良好的材料。

一般耐火骨料的品种和临界粒度,应根据炉衬厚度,施工方法和使用条件的要求来选择。

•常用耐火骨料:矾石,莫来石,刚玉,焦宝石,碳化硅,尖晶石,镁砂等。

•耐火粉料也称细粉,一般指粒径等于或小于0.088mm的颗粒料。

它是不定形耐火材料组织结构中的基质材料,在高温下起联结或胶结耐火骨料的作用,使材料获得高温物理力学和使用性能。

细粉能填充耐火骨料的空隙,也能改善材料的流动性,提高材料致密度。

•(高铝微粉,氧化铝微粉,刚玉微粉,碳化硅细粉,焦宝石粉,尖晶石粉,粘土粉,硅灰等)•当细粉粒径小于5μ时,则称为超微粉。

适量超微粉的加入能显著提高材料的性能。

使用超微粉所带来的主要优点是:1)不生成大量含结构水的水化产物,挥发和分解成分少,有利于材料受热后结构和强度的保持;2)微粉的表面活性高,有利于提高低、中温的结合强度,降低烧结温度;3)微粉分散后可填充更细小的空间,有利于减水,改善流动性和提高致密度及改善抗熔渣渗透性;SiO2微粉(硅灰)近年来,无水泥浇注料结合体系的一个新的结合方式是由无定形SiO2微粉与MgO和H2O作用产生的MgO-SiO2-H2O凝聚结合。

SiO2微粉(硅灰)为铁合金厂、金属硅厂的副产品(气相沉淀而成),粒度在0.1~0.5um,球形颗粒,活性适宜,能在颗粒表面形成硅胶薄膜,起到低温结合作用。

《耐火材料基础知识》课件

《耐火材料基础知识》课件
有色金属工业
在铜、铝等有色金属的冶炼和加工过程中,耐火 材料也扮演着重要的角色,对于保护炉衬和提高 产品质量具有重要作用。
核能领域
核能领域对于耐火材料的要求极高,需要具备优 良的高温性能、化学稳定性和抗辐照性能,为核 能技术的发展提供支撑。
耐火材料的发展趋势
高性能化
提高耐火材料的性能指标,以满足高温、高速、 高负荷等苛刻工况的需求。
复合耐火材料
通过将不同材质的耐火材 料进行复合,形成具有多 重性能的复合耐火材料, 以满足复杂工况的需求。
绿色耐火材料
研发低污染、低能耗的绿 色耐火材料,减少对环境 的负面影响,推动耐火材 料行业的可持续发展。
耐火材料的应用前景
1 2 3
钢铁工业
随着钢铁工业的发展,对耐火材料的需求量不断 增加,尤其在高炉、连铸和轧钢等关键部位,需 要高性能的耐火材料。
维护保养
为了延长耐火材料的使用寿命,需要 定期进行维护保养,如检查、修复、 更换等。
环境友好
耐火材料在使用过程中应尽量减少对 环境的污染,符合可持续发展的要求 。
05
耐火材料的发展趋势与展望
新型耐火材料的研发
纳米级耐火材料
利用纳米技术,开发出具 有高性能的纳米级耐火材 料,具有更佳的抗热震性 能和高温强度。
环保化
加强环保意识,研发低污染、低能耗的耐火材料 ,推动行业的可持续发展。
智能化
利用传感器、物联网等先进技术,实现耐火材料 的智能化监控和管理,提高生产效率和安全性。
晶体结构
指耐火材料中的晶体颗粒的大小 、形状、取向及分布情况,对耐 火材料的力学性能和高温性能有
重要影响。
玻璃质结构
指耐火材料中的玻璃质成分的粘度 、流动性及稳定性等,对耐火材料 的抗热震性能和高温性能有一定影 响。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

耐火材料基础知识及表征通达耐火技术All rights reserved1目录一、耐火材料基础知识一、耐火材料基础知识耐火材料基本知识耐火材料的定义•传统的定义:耐火度不小于1580℃的无机非金属材料•ISO的定义:耐火度不小于1500℃的非金属材料及制品(但不排除那些含有一定比例的金属)不定形耐火材料的定义由耐火骨料和粉料、结合剂、外加剂以一定比例共同组成的,不经成形和烧成而直接使用或加适当液体调配后使用。

•耐火骨料一般指粒径(即粒度)大于0.088mm的颗粒料。

它是不定形耐火材料组织结构中的主体材料,起骨架作用,决定其物理力学和高温使用性能,也是决定材料属性及其应用范围的重要依据。

•良好的颗粒及其级配,能获得致密性高、性能良好的材料。

一般耐火骨料的品种和临界粒度,应根据炉衬厚度,施工方法和使用条件的要求来选择。

•常用耐火骨料:矾石,莫来石,刚玉,焦宝石,碳化硅,尖晶石,镁砂等。

•耐火粉料也称细粉,一般指粒径等于或小于0.088mm的颗粒料。

它是不定形耐火材料组织结构中的基质材料,在高温下起联结或胶结耐火骨料的作用,使材料获得高温物理力学和使用性能。

细粉能填充耐火骨料的空隙,也能改善材料的流动性,提高材料致密度。

•(高铝微粉,氧化铝微粉,刚玉微粉,碳化硅细粉,焦宝石粉,尖晶石粉,粘土粉,硅灰等)•当细粉粒径小于5μ时,则称为超微粉。

适量超微粉的加入能显著提高材料的性能。

使用超微粉所带来的主要优点是:1)不生成大量含结构水的水化产物,挥发和分解成分少,有利于材料受热后结构和强度的保持;2)微粉的表面活性高,有利于提高低、中温的结合强度,降低烧结温度;3)微粉分散后可填充更细小的空间,有利于减水,改善流动性和提高致密度及改善抗熔渣渗透性;SiO2微粉(硅灰)近年来,无水泥浇注料结合体系的一个新的结合方式是由无定形SiO2微粉与MgO和H2O作用产生的MgO-SiO2-H2O凝聚结合。

SiO2微粉(硅灰)为铁合金厂、金属硅厂的副产品(气相沉淀而成),粒度在0.1~0.5um,球形颗粒,活性适宜,能在颗粒表面形成硅胶薄膜,起到低温结合作用。

由于硅灰是副产物,不同时间收集的硅灰内铁含量不同,会表现出不同的颜色,从而造成浇注料颜色的差异。

硅灰活性很高,易吸水,受潮后会结块,失去活性,使浇注料性能降低。

所以浇注料应避免受潮。

•结合剂是能使耐火骨料和粉料胶结起来显示一定强度的材料,是不定形耐火材料的重要组分,可用无机、有机、及其复合物等材料。

•结合剂在一定条件下通过水合、化学、聚合和凝聚等作用,使拌合物硬化获得强度。

•一般结合剂含有较多的低熔点物质,价格较贵,在保证材料的初始强度和高温性能的前提下,应尽量减少其用量。

•常用结合剂:各种铝酸盐水泥,硅溶胶,水玻璃,耐火粘土,磷酸,磷酸盐溶胶,偏磷酸盐等。

18001800160015001400浇注料使用温度,℃C3AH6+AH3水化产物速凝水化较慢水化较慢水化较慢水化较快特点14501750175017501600熔点,℃CA,C12A7 (少)CA2,CA(多)CA2,CA CA2~CA CA, CA2主要矿相电熔氧化铝水泥烧结氧化铝水泥铝-70水泥铝-60水泥铝-50水泥结合剂烧结氧化铝水泥和电熔氧化铝水泥属于纯铝酸钙水泥(工业氧化铝+优质石灰石制成),其它的为高铝水泥(铝矾土+石灰石制成)。

铝酸盐水泥•外加剂是强化结合剂作用和提高基质相性能的材料。

它是耐火骨料、耐火粉料和结合剂构成的基本组分之外的材料,故称外加剂。

•外加剂种类较多,分为促凝剂、分散剂、减水剂、抑制剂、早强剂、缓凝剂、防爆剂、快干剂、烧结剂、膨胀剂等。

前者用量一般较少,改善作业性和提高强度效果显著。

后者用量较多,有时按基本组分掺加,能降低材料收缩和提高烧结性,防止产生结构剥落。

•外加剂可用单一物质,也可用复合物质,根据材料性能及施工要求及使用条件决定。

常用外加剂减水剂:三聚、六偏等;促凝剂:Na2CO3、Na2SiO3缓凝剂:NaCl、AlCl3、硼酸等;膨胀剂:三石;烧结剂:软质粘土、金属硅等;钢纤维的作用1)增强韧性,提高抗应力-应变能力,提高抗机械冲击性能;2)提高抗热震稳定性能,提高材料抗开裂与剥落性;3)抑制在养护、干燥及热处理后的线收缩;加入量:0.6~2.5% (体积比)不锈钢纤维直径:0.4mm、0.5mm和0.6mm,长度:20mm、25mm和30mm。

钢纤维加入量不宜过多:高温物理化学性能恶化、抗侵蚀能力下降。

耐火材料的分类和存储•耐火材料按原料的种类分为:•碱性耐火材料(镁铬砖、镁铝尖晶石砖,镁铁尖晶石砖,镁钙锆砖、白云石砖等)易水化,需采取严格的防水措施,加工时采用干切,严禁受潮或见水。

•酸性耐火材料(硅莫砖,抗剥落高铝砖、耐碱砖等),不水化,防潮措施没有碱性砖严格。

•浇注料内含有微粉和水泥,易受潮结块,需采取严格的防潮措施。

浇注料分类按结合剂种类分:•水泥结合浇注料根据浇注料中的CaO含量分为传统水泥浇注料CaO(%):>2.5低水泥浇注料1-2.5超低水泥浇注料0.2-1无水泥或超微粉浇注料<0.2•非水泥结合浇注料(化学或有机结合浇注料)低水泥浇注料,颗粒级配精细,致密、高强、耐磨、抗侵蚀(升温过快易爆裂)。

二、耐火材料的表征不定形耐火材料的表征耐火材料除矿物相外还有气孔构成。

气孔的形状、大小和分布与矿物相之间的关系直接影响材料的性能。

•气孔分三类:一侧封闭另一侧和外界连通的称为开口气孔,封闭在试样中不与外界相通的称为闭口气孔,穿通试样几面的称为贯通气孔。

气孔率用显气孔率表示。

显气孔率指试样中的开口气孔总体积占试样总体积的百分比。

•体积密度系指试样烘干后的质量与其总体积之比,即多孔体的质量与其总体积的比值,用Kg/m3或g/cm3表示。

•材料的致密程度由气孔率和体积密度来表征。

显气孔率和体积密度是控制不定形耐火材料施工质量的依据之一。

常用耐火浇注料的体积密度和显气孔率•力学性能是指材料在不同温度下抵抗外力而不被破坏的能力。

是判断材料使用范围和探讨材料损坏机理的依据。

•力学性能的主要检测项目有不同温度下的抗折强度,耐压强度、耐磨性能等。

•常温强度是判断材料拆模的依据。

常温耐压强度指养护到期的试样在室温下单位面积上所能承受的极限压力,即在室温下试样受到压力负荷的作用而破坏时的极限应力。

强度的大小取决于结合剂及其外加剂的种类和用量,也受原材料纯度、配合比、拌和用液体数量、施工方法和养护制度等因素的影响。

•烘干耐压强度指试样养护到期,烘干后单位面积上所能承受的极限压力,是窑炉设计的依据,也是评价材料性能的参照标准。

不定形耐火材料性能的检查一般用烘干后的试样。

•烧后耐压强度指试样经加热到指定温度并保温后随炉自然冷却至室温,其单位面积上所能承受的极限压力。

该指标能宏观分析材料的矿物组成及其组织机构的变化,也能于是其某些使用性能。

•如:CA-50水泥耐火浇注料的中温强度低,使用中炉衬易发生开裂和剥落现象。

•抗折强度指试样在不同温度下受到弯曲负荷作用而断裂时的极限应力。

•高温耐压强度指试样在指定的高温状态下受到压力负荷的作用面破坏时的极限应力。

是评价不定形耐材的耐磨性、抗渣性和抗剥落性能的依据,也是选择材料及其使用部位的依据之一。

•高温抗折强度指试样在三点弯曲装置上和高温状态下受到弯曲负荷作用而断裂时的极限应力,亦称热态抗折强度。

•耐磨性指材料抵抗摩擦蚀损的能力,可预测耐材在磨损和冲刷环境中的适用性。

耐磨性分为摩擦、冲刷和撞击等。

•检验方法:用研磨料直接喷射在试样表面上,用磨损掉的体积数表示。

热学性能•热膨胀指试样长度或体积随温度升高而发生的增长变化,用线膨胀率或平均线膨胀系数表示。

•线膨胀率是试样由室温加热之检验温度时的长度相对变化百分率,是留设膨胀缝和拟定热工操作制度的理论依据。

•它与材料的化学组成,矿物组成及其微观结构有关,直接影响材料的抗热震性。

膨胀率越大,内部产生的热应力也越大,温度变化易产生剥落。

•热导率是在单位温度梯度下通过试样单位面积的热流速率。

是表征材料导热能力的物理量,与材料的属性、组织结构及使用温度等因素有关。

•材料品种和工作温度的不同,热导率也不同,同一种材料的热导率随温度的升高呈增大趋势,轻质耐火浇注料因气孔率大,故热导率低,重质耐火浇注料因气孔率低,故热导率高。

•热导率是计算衬里厚度或散热损失的主要参数,也是选择材料的重要依据。

•不定形耐火材料的线变化率分为烘干线变化率和烧后线变化率。

烘干线变化率较小,经常忽略不计。

•烧后线变化率指试样在规定温度下加热一定时间后的长度不可逆变化量与加热前期长度之比,以百分率表示。

负值表示收缩,正值表示膨胀。

•线变化率过大,对衬体的破坏越大,易产生结构剥落,降低使用寿命。

因此应采取添加外加剂等技术措施尽量降低材料的线变化率。

也是留设膨胀缝的依据之一。

•抗热震性指材料抵抗温度急剧变化作用而不破坏的能力。

材料使用过程中,温度的升高和降低都会产生膨胀和收缩,产生热应力。

当热应力超过材料自身机构强度时,就会发生开裂或剥落,甚至使衬体崩溃。

因此该性能是判断材料质量的重要指标。

•热震性与材料的化学矿物组成,微观结构,物料颗粒级配,热膨胀,热导率,材料强度等密切相关。

一般热膨胀率大,抗热震性差,热导率高,抗热震性好,磷酸盐结合浇注料要好于水泥结合浇注料。

•耐碱性,材料抵抗碱金属离子侵蚀的能力,一般用坩埚法测定。

通达耐火技术愿为全球高温工业提供耐火材料全面解决方案服务!谢谢!通达公司版权所有。

相关文档
最新文档