电子测量第4章测量用信号源

合集下载

电子测量4第2部分

电子测量4第2部分

被测信号
1 输入 电路 带阻 滤波器
标准电位器
电压表 2
图5.22简单的失真度仪测试仪
用失真度测量仪测量非线性失真系数时应注意 以下几点: ①测量时,应最大限度地滤出基波成分。因此 要反复调节带阻滤波电路中的调谐、微调和相位旋 钮。
②测量电路的非线性失真系数时,应在被测电 路的通频带范围内选择多个频率测试点进行多次测 试;最后取其中最大的一个非线性失真系数值作为 被测电路的非线性失真系数。
数字式电压表(DVM)利用模拟—数字(A/D) 转换器,将模拟的被测电压量转换成数字量,然后利 用十进制数字显示方式显示被测量数值。数字多用表 (DMM)的框图5.13所示。
V V
DC
AC
AC-DC 变换器
I

K
I-DC 变换器 数字电压表 Ω -DC 变换器
图5.13 数字多用表的框图
测量范围包括显示的位数、量程的范围和是否具 有超量程能力等。 (1)显示位数 位数是指能显示0~9共十个完整数码的显示器的 位数。其中1/2位,指的是最高位只能取“1”或“0”, 不能将0~9十个数码全部显示的位。 (2)量程的范围 DVM的量程范围包括基本量程和扩展量程。基 本量程是测量误差最小的量程,它不经过衰减和放 大器;扩展量程是采用输入衰减器和放大器来完成 的,它的测量精度比基本量程的测量精度降低。
以600Ω电阻上消耗1mW的功率作为基准功率 (2)电压电平dBV
UX LU 20 lg ( dBV ) 0.775
600 LP LU 10 lg RX
4.相对电平 (1)相对功率电平dBm
LP
LP

PA 10 lg (dB) P B
PA PA P0 10 lg 10lg ( LPA LPB )(dB) PB P0 PB

电子测量_第四章_信号源

电子测量_第四章_信号源

28
2. 频率合成分类及特点
• ⑴直接频率合成
通过频率的混频、倍频和分频等方法来产生一系列频率信 号并用窄带滤波器选出,下图是其实现原理。
谐波发生器(倍频)1Mz H 晶振 8M 分频(÷10)
2.8MHz
0.28MHz
1MHz
Hz 2MH
混频(+)
z 6MH
混频(+)
滤波
分频(÷10)
6.28MH
f
fmax
S fmax fmin f0
t 1天
fmin t
1天
征了老化漂移和随机起伏。 图a
图b
13
频率稳定度的表征
3)短期频率稳定度的表征
◆相对频率起伏
根式中据fx频由率于噪准声确引度起定寄义生调:频、 调 相ff0 ,,ffx应f为x 时f0 间t的函数,则频率准确
度和频率稳定度均为时间t的函数。
第4章 信号的产生
4.1 信号源概述 4.2 正弦、脉冲及函数发生器 4.3 锁相频率合成信号的产生 4.4 直接数字合成技术
1
4.1 信号源概述
• 信号源的作用和组成 • 信号源的分类 • 正弦信号源的性能指标
2
4.1.1 信号源在电子测量中的作用和组成
1.信号源的作用 信号源是能够产生不同频率、不同幅度的规则
或不规则波形的信号发生器。 信号源的用途主要有以下三方面:
☆ 激励源。 ☆ 信号仿真。 ☆ 标准信号源。
3
2. 信号源的组成
主振器
缓冲
调制
输出
电源
监测
信号发生器结构框图
信号 输出
4
4.1.2 信号源的分类
1. 按频率范围 大致可分为六类: 超低频信号发生器 0.0001Hz~1000Hz; 低频信号发生器 1Hz~200KHz;

实验指导书-电子测量原理

实验指导书-电子测量原理

电子科技大学实验指导书《电子测量原理》实验-----数字存储示波器的使用和带宽测试一.实验目的1.熟悉数字示波器基本工作原理2.了解数字示波器的主要技术指标3.掌握数字示波器的使用方法和带宽测试二.实验内容1.相关测试仪器的熟练使用2.边沿、脉宽等触发类型的使用3.触发释抑功能的使用4.预触发与延迟触发功能的使用5.脉冲参数的测量6.获取模式(标准、峰值、平均、高分辨率)的使用7.触发方式(自动、正常、单次)的使用8.带宽的测量三.预备知识1.了解数字存储示波器原理2.熟悉掌握数字存储示波器使用和带宽的测试方法。

四.实验设备与工具数字存储示波器、任意波形发生器、射频信号源五.实验原理与说明1.实验仪器简介⑴函数发生器Agilent Technologies 33220A 是高性能的20 MHz 任意波形发生器,其具有内置任意波形和脉冲功能。

实物如图1。

•10 个标准波形•内置的14 位50 MSa/s 任意波形功能•具有可调边沿时间的精确脉冲波形功能•LCD 显示器可提供数字和图形视图•易用的旋钮和数字小键盘•仪器状态存储器,用户可自定义名称•带有防滑支脚的便携式耐用机箱灵活的系统特性•四个可下载的64K 点任意波形存储器•GPIB (IEEE-488)、ΜS B 和LAN 远程接口为标准配置•符合LXI Class C 标准•SCPI(可编程仪器的标准命令)兼容图1 Agilent 33220A 20 MHz 任意波形发生器⑵数字存储示波器Agilent DSO5012AAgilent DSO5012A主要指标:•采样率2 GSa/sec 每通道•垂直分辨率8 位•模拟带宽:100MHz•上升时间(= 0.35/ 带宽):3.5 nsec•水平范围:5 nsec/div 至50 sec/div•触发系统模式:自动、正常(已触发)、单,释抑时间~60 ns 至10 秒•触发类型:边沿、脉冲宽度、码型、TV、持续时间•边沿:在任何源的上升沿、下降沿或交变沿触发•脉冲宽度:当正向或负向脉冲小于、大于或在任意源通道的特定范围内时触发。

电子测量技术与仪器ppt课件

电子测量技术与仪器ppt课件

电子测量技术与仪器ppt 课件
高频电子技术 电视、调频广播 雷达、导航、气象
• 2.1.3
信号发生器的一般组成
电子测量技术与仪器ppt 课件
• 信号发生器的一般组成框图如图2.2所示,主要由振荡器、变换器、 输出电路、电源、指示器五部分组成。
振荡器
变换器
输出电路
输出
电源
指示器
• 图2.2 信号发生器的一般组成框图
电子测量技术与仪器ppt 课件
• (3)频率稳定度 • 信号发生器的频率稳定度是指在一定时间内仪器输出频率准确度的变 化,它表示了信号源维持工作于某一恒定频率的能力。信号发生器的 频率稳定度是由振荡器的频率稳定度来保证的。频率稳定度可分为短 期频率稳定度和长期频率稳定度。
• 2.输出特性 • (1)输出形式
电子测量技术与仪器ppt 课件
被 测 设 备
输出 响应
测 试 仪
图2.1 信号发生器的用途
电子测量技术与仪器ppt 课件
• 一般来说,信号发生器的用途主要有以下三个方面:
• 1.用作激励源 • 2.用作信号仿真 • 3.用作校准源
• 2.1.2
• •
信号发生器的分类
信号发生器一般可分为通用信号发生器和专用信号发生器两大类。专用信号发 生器是为某种特殊用途而设计生产的仪器,能提供特殊的测量信号,如电视信 号发生器、调频信号发生器等。 通用信号发生器根据其工作频率的不同,可分为超低频、低频、视频、高频、 甚高频、超高频几大类。信号发生器的工作频率范围见表2.1。
电子测量技术与 仪器
电子测量技术与仪器ppt 课件
高等职业教育“十二五”规划教材(电子信息 类)
电子测量技术与仪器

信号源的使用方法

信号源的使用方法

信号源的使用方法
1 信号源的定义及作用
信号源是一种能够产生各种波形信号的电子设备,可以提供实验或测试时需要的各种信号波形。

信号源是电子测试仪器中重要的一部分,用于测试和校准各种电子设备。

2 信号源的分类
信号源可以按照输出方式分为数字信号源和模拟信号源;按照波形形状分为正弦波、方波、三角波、锯齿波等;按照输出电压分为低电平、中电平和高电平信号源。

3 信号源的使用方法
(1)连线:将信号源的输出连接到待测设备的输入端。

输出端和输入端应根据信号源和待测设备的电性能够匹配。

(2)选择波形:根据需要选择所需要的波形。

庆幸信号源方便的是,一个信号源可以同时输出多种信号波形。

(3)调节幅度:调节输出的幅度,保证待测设备在工作时能够正常工作,不影响测量结果。

(4)控制频率:根据需要调整信号源的输出频率,保证测量的准确性。

4 使用注意事项
(1)在连接信号源和待测设备时,注意两者的电性相符,以免损坏待测设备。

(2)在调节信号源的输出时,要注意不要超出待测设备的承受范围,避免损坏待测设备。

(3)在设定信号源的输出频率时,要注意选择合适的频率。

过高或过低的频率都会对测量结果产生影响。

5 总结
信号源作为电子测试仪器中重要的一部分,其使用方法要根据不同的需要进行调节。

在使用信号源时,需遵循一定的使用方法,才能更有效地进行测试或校准工作。

电子测量技术总结

电子测量技术总结

电子测量技术总结一、 综述电子测量技术泛指以电子技术为基本手段的一种测量技术。

除了对各种电量、电信号以及电路元器件的特性和参数进行测量外,它还可以对各类非电量进行测量。

我国法定计量单位采用国际单位制,包括基本单位、导出单位和辅助单位。

1、 电子测量技术分类:按性质分:时域测量、频域测量、数字域测量、随机量测量。

按测量手段分:直接测量、间接测量、组合测量。

2、测量仪器分类:信号发生器(信号源)、电压测量仪器、波形测试仪器、频率测量仪器、电路参数测量仪器、信号分析仪器、模拟电路特性测试仪器、数字电路特性测试仪器 3、电子测量仪器的性能指标:频率范围(有效频率范围)、准确度、量程与分辨力、稳定性与可靠性、环境条件、响应特性、输入特性与输出特性二、 测量误差及数据处理误差来源:仪器误差、使用误差(操作误差)、人身误差、环境误差、方法误差 测量误差在所难免。

测量误差分类:根据性质的不同,可将测量误差分为系统误差、随机误差和粗大误差三类。

测量误差的表示方法:绝对误差和相对误差。

绝对误差:Δx =测量值x –实际值A相对误差:1)实际相对误差 2)测量值相对误差测量结果表示方法:有效数字、有效数字加安全数字 数据处理:用数字方式表示测量结果时,应该根据要求确定有效数字。

不可以随意更改测量结果的有效数字位数。

在对多余数字位进行删略时,必须遵循数字的“四舍六入五成双”的舍入规则。

对数据进行近似运算也应遵循相应规则。

三、 常用电子元器件%100A⨯∆=A x γ%100x ⨯∆=x xγ1)标称值和允许误差是电阻、电容、电感等常用被动元件的两个主要参数。

标称值的标识方法有直标法、色环法、数字法等。

允许误差的标识有字母法、百分数法、分级法等,用字母F 、J 和K 表示的常用允许误差值。

2)半导体器件以其封装形式的不同又可以分为分立器件和集成电路两类,常见的半导体分立器件有二极管、三极管和场效应管等。

3)贴片元件体积小,容易集成,但是它并不能够完全取代传统的直插式元器件。

实验报告电子测量

实验报告电子测量

一、实验目的1. 熟悉电子测量仪器的基本原理和使用方法。

2. 掌握常用电子测量仪器的操作技巧。

3. 提高电子测量实验技能,培养严谨的科学态度。

二、实验原理电子测量是指利用电子技术和电子仪器对各种物理量进行测量。

本实验主要涉及以下测量原理:1. 电压测量:利用电压表直接测量电路中的电压值。

2. 电流测量:利用电流表直接测量电路中的电流值。

3. 电阻测量:利用欧姆定律,通过测量电压和电流,计算出电阻值。

4. 频率测量:利用频率计测量信号源的频率值。

5. 信号发生器:产生各种频率、幅度和波形的标准信号。

三、实验仪器1. 双踪示波器2. 数字万用表3. 欧姆表4. 频率计5. 信号发生器6. 滑动变阻器7. 电容8. 电感9. 电源四、实验内容1. 示波器使用方法(1)观察正弦波(2)观察矩形波(3)观察三角波(4)观察李萨如图形2. 电压测量(1)测量直流电压(2)测量交流电压3. 电流测量(1)测量直流电流(2)测量交流电流4. 电阻测量(1)测量固定电阻(2)测量可变电阻5. 频率测量(1)测量正弦波频率(2)测量矩形波频率6. 信号发生器使用(1)产生正弦波(2)产生矩形波(3)产生三角波五、实验步骤1. 示波器使用方法(1)打开示波器电源,调整亮度、对比度等参数。

(2)将示波器探头连接到待测电路,调整探头衰减倍数。

(3)观察波形,调整示波器参数,使波形清晰可见。

2. 电压测量(1)将电压表的正极探头连接到电路中待测电压点,负极探头接地。

(2)选择合适的量程,读取电压值。

3. 电流测量(1)将电流表串联接入电路中待测电流点。

(2)选择合适的量程,读取电流值。

4. 电阻测量(1)将待测电阻接入电路。

(2)选择合适的量程,读取电阻值。

5. 频率测量(1)将频率计探头连接到待测信号源。

(2)选择合适的量程,读取频率值。

6. 信号发生器使用(1)将信号发生器输出端连接到待测电路。

(2)调整信号发生器参数,产生所需波形。

电子测量仪器基础—信号源(第一部分 —CW源)

电子测量仪器基础—信号源(第一部分  —CW源)

本 文将 从 工作 原 理 、 指标 的 意义 及 应用 3个 方 面来详 细 讨 论 3种 不 同 的 信 号 源 的 特 性 : 续 波 连 ( W ) 、 源和信 号发 生器 。 C 源 扫

路来 测量 输 出电平 以保 持幅度 精度 。分辨 率指 最 小
的幅度增 量 切换 速度 指源从 一个 输 出电平转 换 到 另一 电平 的速 度 。源通 常用 于测试 收发信 机 。收 发 信机 里有 发射机 , 这样 , 就会 有 一个 信号从 收发 信机 的输 出端 口接 到源 的 输 出端 口上 , 以源 应具 备 反 所 向功率 保 护电路 , 的 目的是 为 了 防止 沿 错误 方 向 它 传 输 的信号 损坏 信号 源 。 与频谱纯 度相 关 的指 标最难 理 解 。理 想的 C W 输 出的是 一个单 一 频 率 的正 弦 波 。不幸 的是 , 不 并 存 在理 想 的 C 源 。所 有 的源 都 是 由 非理 想 的 器 W 件 制造 出来 的 , 们 会 引 ^ 相 位 噪 声 和失 真 产 物 。 它 谐 渡是 C 输 出 的 整数 倍 。源 之 中 还 有 许 多 的 非 W 线性 器件 , 这是 因为只有 这样 , 能产 生宽 的频 率 范 才 围和幅度 范 围 。2次谐 波 的典型值 应 < 3 d c 即 0B (
这种 源 就叫信 号发生 器 。信号 发生 器输 出的 信号是
带信 息 的 。添 加信 息的 方法有很 多 种 。基本 的信号
发生 器有 调幅 ( AM ) 调 频 ( M ) 调 相 ( M ) 功 、 F 和 P 的
能 。更 高级的信 号 发生 器 有 脉冲 调 制 和 I Q调 制 能
个 只产 生 正 弦 波 的源 称 为 C 源 。在 大 多 W
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 按输出波形,大致可分为: ? 正弦波形发生器; ? 脉冲信号发生器; ? 函数信号发生器; ? 噪声信号发生器。
3. 按照信号发生器的性能指标 可分为: ? 一般信号发生器; ? 标准信号发生器;
4.2.1 脉冲信号发生器
? 常见的脉冲信号有矩形、锯齿形、阶梯形、钟形和数字编 码序列等 :

号 发 生
输入 激励
被 测 设
输出 响应
测 试 仪



信号源的功用
2. 信号源的组成
主振器
缓冲
调制
输出
电源
监测
信号发生器结构框图
信号 输出
信号源的模型
低频信号发生器电压输出端的输出阻抗一般为600Ω(或1kΩ) 功率输出端依输出匹配变压器的设计而定,通常有50Ω、75Ω、 150Ω、600Ω和5 kΩ等档
老化率:主要考虑系统误差影响。
通常在一周或更长时间内,在确定的时间间隔测一次信号源频率,
用最小二乘法拟合直线。老化率一般指直线上一天频率的变
化和标称值之比,称日老化率。
K ? ?f f0
4.3 信号源的技术指标
阿仑方差(Allan):反映频率在很短时间内变化的常用指标。 由于时间间隔很短,因此主要反映随机变化。
1. 频率特性
? (1)频率范围 ? (2)输出频率的相对误差
? ? f0 ? fc
fc
? (3)频率稳定度 是指在预热后,信号源在规定时间内频率的相对变化。 包含系统误差影响和随机误差影响。
4.3 信号源的技术指标
? (3)频率稳定度
? ? fmax ? fmin
fo

测量方法:
4.3 信号源的技术指标
主振级
外同步 同步放大
外触发 触发输入
脉宽,上升/下降沿 控制
延时级
脉冲形成
输出级
输出
同步脉冲输出
同步脉冲输出
脉冲信号发生器组成原理
4.2.2 函数信号发生器
1. 多波形信号发生原理
? ⑴方波三角波发生器
A
C
双稳态 电路
R
W
U1
I1
B U2
V1
VC1
VC2
V2
方波、三角波发生器原理框图
设充放电电流为I,输出三角波的频率为fsc,则:
I-Q调制(正交调制)
首先将载波信号分解为相差90度的相互正交分量。用数字信 号分别对其I信号和Q信号进行调制。最后合成已调波。
正交调幅( QuadratureAmplitudeModulation )星座 图
在通信中常把二进制调制信号分组编码,如果四位 构成一组,调制信号就有 16种码等。
4.3 信号源的技术指标
第4章 测量用信号源
4.1 信号源概述 4.2 正弦、脉冲及函数发生器 4.3 锁相频率合成信号的产生 4.4 直接数字合成技术 4.5 合成信号源简介
4.1 信号源概述
? 信号源的作用和组成 ? 信号源的分类 ? 信号源的性能指标
4.1.1 信号源在电子测量中的作用和组成
1.信号源的作用 信号源是能够产生不同频率、不同幅度的规则
u
u
u
o
t
(a)矩形波
u
o
t
(b)锯齿波 u
o
t
(c)阶梯波
o
t
(d)钟形脉冲
o
t
(e)数字编码序列
常见的脉冲信号
? 脉冲发生器的分类(根据用途和产生脉冲的方法):通用 脉冲发生器、快速(广谱)脉冲发生器、函数发生器、数 字可编程脉冲发生器及特种脉冲发生器等。
1. 通用脉冲发生器
? 通用脉冲发生器能够满足一般测试的要求,能够调节脉冲 重复频率、脉冲宽度、输出幅度及极性等。
? a (?) ?
1 f0
m
? ( fi2 ? fi1)2
i?1
2m
阿伦方差测量方法
早期采用间隔测量法,现在多采用连续取数法
u
u
t
t
(a)
(c)
u
t
u
t
(b)
(d) 锯齿波的获得原理
4.2.3 调制信号发生器
调制信号被广泛用于通信、传输和控制。调制方式分为 模拟调制和数字调制两种。
模拟调制时载波信号的幅度、频率和相位随连续的模 拟调制信号而变化。
模拟信号先被采样量化,变换为数字信号,然后被编
码,最终用数字信号去调制载波。有幅移键控 (Amplitude Shift Keying)、频移键控和相移键控。
阿仑方差是讨论m组相邻两测量时间为t的频率值的差异。称 为双取样测量。在一组中,两个测量数据的方差估计值为:
?2(
fi
)
?
?? ?
fi1
?
fi1
? 2
fi 2
??2 ?
?
?? ?
fi 2
?
fi1 ? fi 2 ??2 ? 2?
1 2
(
fi 2
?
fi1 )2
该方差越小,说明两数据的离散性越小,即短时间频率变化越小。阿伦方差定义的是 m组双取样方差平均值方根的相对值:
R1 R2A
D2A D2B
R2B
R0 Vi
Vo R1A
D1A D1B
R1Bui ? ? E
R1 A
R1A ? R2 A ? ? ? R7 A
uo ? ?ui R1A ? R1 R1A ? R1 ? R0
? ⑶ 锯齿波形成电路
锯齿波可以通过方波与三角波而获得,将下图中( a)所 示三角波与图( b)所示方波直接叠加就可得到图( c)所 示的交错锯齿波,再经过全波整流,就得到了图( d)所 示的锯齿波。
f sc
?
I 2 C (V 1 ? V 2 )
i
usc
? ⑵ 正弦波形成电路
u
t
ust
t
分段折线逼近波形综合
?其电路实现原理如下图所示。
R6 R7A +E
-E R7B
R5 R6A
D6A D6B
R6B
R4 R5A
R3 R4A
R2 R3A
D5A D5B
D4A D4B
D3A D3B
R5B
R4B
R3B
分段逼近波形综合电路
或不规则波形的信号发生器。 信号源的用途主要有以下三方面:
☆ 激励源。 ☆ 信号仿真。 ☆ 标准信号源。
1.作激励源 作为某些电气设备的激励信号。
2.信号仿真 在设备测量中,常需要产生模拟实际环境相同特 性的信号,如对干扰信号进行仿真。 3.校准源 产生一些标准信号,用于对一般信号源进行校准 (或比对)。
高频信号发生器一般仅有50Ω或75Ω档。
信号发生器输出电压的读数是在匹配负载的条件下标定的,若 负载与信号源输出阻抗不相等,则信号源输出电压的读数是不 准确的。
4.1.2 信号源的分类
1. 按频率范围 大致可分为六类: ? 超低频信号发生器 0.0001Hz ~1000Hz; ? 低频信号发生器 1Hz~1MHz; ? 视频信号发生器 20Hz~10MHz; ? 高频信号发生器 200KHz~30MHz; ? 甚高频信号发生器 30KHz~300MHz; ? 超高频信号发生器 300MHz以上。
相关文档
最新文档