1998年全国初中数学联赛试题(含答案)

合集下载

详解——1998年全国初中数学竞赛试题

详解——1998年全国初中数学竞赛试题

1998年全国初中数学联合竞赛试题答案及详解第 一 试1.3 15+=m ,4151511-=+=m , ∴ 435451+=+m m ,31=⎥⎦⎤⎢⎣⎡+m m . 2.322 如图,AD 为直角A 的平分线,过B 作DA BE //交CA 的延长线于点E .=∠EBA ︒=∠45BAD ,1==AB AE ,2=EB ,又CDA ∆∽CBE ∆,32==CE AC EB AD ,∴32232==EB AD . 3.22)1()(122233+--+--=+-x x x x x x x22)1()1(22=+--+--=x x x x x .4.3因为m 、n 为有理数,方程一根为25-,那么另一个根为25--,由韦达定理.得 4=m ,1-=n ,∴3=+n m .5.316 由原图 AEFG EF AE EG ED BE EF AE +===, ∴ EF EFAE FG -=23163352=-=(厘米). 6.1647175399522⨯⨯==-m n ,47175))((⨯⨯=+-m n m n .显然,对3995的任意整数分拆均可得到(m ,n ),故满足条件的整数对(m ,n )共162222=⨯⨯⨯(个).7.1111个相继整数的平方和为22222)5()4()4()5(+++++++-+-x x x x x ΛΛ22)10(11y x =+=,则y 最小时,从而12=x ,∴11=y .8.39∵ MBP ∆∽CBA ∆,3:1:=∆∆CBA MBP S S , 3:1:=BA BP ,∴ 32=BA ,13=AC . 39133221=⋅⋅=∆ABC S . 9.27204 ∵72==∆∆ABC ABF S S BC BF ,同理54=BA BE , 由原图,连BG .记a S AGE =∆,b S EGB =∆,c S BGF =∆,d S EGc =∆.又由已知 5=++c b a ,14=++d c b ,解之得 2728=b , 27100=c .∴ )(2720427128平方厘米==+=c b S BEGF . 10.13由题意,设有n 人,分苹果数分别为1,2,…,n 2)1(321+=++++n n n Λ≤100, ∴ n ≤13,所以至多有13人.11.-1b a b ab a 222--++b b a b a 2)1(22-+-+= 412343)21(22--+-+=b b b a 1)1(43)21(22--+-+=b b a ≥-1. 当 021=-+b a ,01=-b , 即 0=a ,1=b 时,上式不等式中等号成立,故所求最小值为-1. 12.73 对 ))((22m n m n m n x -+=-=(1≤m <n ≤98 m ,n 为整数)因为n +m 与n -m 同奇同偶,所以x 是奇数或是4的倍数,所以1至98共98个自然数中,满足条件的数有49+24=73个.13.15设算式∴ A ≤6.35876543219)(2=++++++=++B A .∴ 8=+B A .欲令A ·B 最大,取A =5,B =3,此时b ,e 为6,8;a ,c ,f 为2,4,7,故A ·B 最大值为15.14.62a c fB b e A d h + g 显然:g =1,d =9,h =0. a +c +f =10+Bb +e =9+A如图,AB PM ⊥,AC PN ⊥,BC PQ ⊥.P ,Q ,C ,N 四点共圆,P ,Q ,B ,N 四点共圆,NPQ NCQ MBQ MPQ ∠=∠-︒∠=∠-︒=∠180180,QNP BCP MBP MQP ∠=∠=∠=∠,∴ MPQ ∆∽QPN ∆, NP PQ PQ MP =, 62=⋅=NP MP PQ (厘米).15.7213047506778296109⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=y S∴ S 被11除所得的余数等于17+y 被11除所得的余数.由检查号码可知,S 被11除所得的余数是11-5=6,因此7y 被11除所得余数为6-1=5, ∴y =7第 二 试一、设两整数根为x ,y (x ≤y ),则⎩⎨⎧>=>=+04,0a xy a y x 2a ≤y ≤a ,4≤x ≤8.可推出4≠x , ∴ 42-=x x a ,由于x 为整数, ∴ 5=x 时,25=a ,20=y ; 6=x 时,18=a ,12=y ;7=x 时,a 不是整数;8=x 时,16=a ,8=y .于是25=a 或18或16均为所求.说明 没有说明理由,仅指出a 的每一个正确值给4分.二、证明 如原图,连PO ,设PO 与AN ,DM 分别交于点'Q ,''Q . 在PAC ∆中,∵OC AO =,NC PN =,∴'Q 为重心,'2'OQ PQ =在PDB ∆中,∵BO DO =,MP BM =,∴''Q 为重心,''2''OQ PQ =这样'''Q Q =,并且'Q ,''Q 就是AN ,DM 的交点Q .故P ,Q ,O 在一条直线上,且OQ PQ 2=.三、1680,1692,1694,1695,1696为满足条件的5个数(注:答案不唯一) 以上5个数可用以下步骤找出:第一步:2,3,4为满足要求的三个数.第二步:设a ,a +2,a +3,a +4为满足条件的四个数,则a 可被2,3,4整除.取a =12,得满足条件的四个数12,14,15,16.第三步:设b ,b +12,b +14,b +15,b +16.取12,14,15,16的最小公倍数为b .即b =1680,得满足条件的五个数1680,1692,1694,1695,1696.。

一九九八年全国初中数学竞赛试题及解答

一九九八年全国初中数学竞赛试题及解答

一九九八年全国初中数学竞赛试题及解答
陈宏伯
【期刊名称】《中学数学月刊》
【年(卷),期】1998(000)005
【摘要】根据国家教委的批示,中国教育学会中学数学教学专业委员会于1998年4月18日举办全国初中数学竞赛.这次竞赛在总结以往竞赛经验的基础上,其宗旨是:积极推进素质教育,根据国家教委颁布的义务教育初中课程方案和初中数学教学大纲提出的要求,促进初中活动课程的建设和初中数学课外活动的开展,激发学生学习数学的兴趣,培养学生应用数学的意识和能力,满足学有余力的学生学习数学的愿望,发展他们的才能.力求使竞赛活动成为学生课外主动的读书、学习活动,有利于他们数学知识、能力的发展和身心的健康成长,促进初中数学教学质量的提高.其命题的范围是:以义务教育初中数学教学大纲的内容、要求为基本依据,着重考查学生对数学知识的理解、技能的掌握和应用数学知识的能力.现将这次竞赛的试题及参考答案刊登如下,供读者研究.
【总页数】2页(P46-47)
【作者】陈宏伯
【作者单位】人民教育出版社
【正文语种】中文
【中图分类】G634.605
【相关文献】
1.2003年全国初中数学竞赛试题解答 [J],
2.2002年全国初中数学竞赛试题解答 [J],
3.2001年TI杯全国初中数学竞赛试题解答 [J],
4.2000年全国初中数学竞赛试题解答 [J],
5.2004年“TRULY信利杯”全国初中数学竞赛试题及解答 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

初中数学竞赛试题及答案汇编

初中数学竞赛试题及答案汇编

全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY?信利杯”全国初中数学竞赛试题 (17)2004年“TRULY?信利杯”全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2008年全国初中数学竞赛试题 (46)2009年全国初中数学竞赛试题 (47)2010年全国初中数学竞赛试题 (52)2011年全国初中数学竞赛试题 (57)2012年全国初中数学竞赛试题 (60)2013年全国初中数学竞赛试题 (73)2014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( )(A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)184、已知0≠abc ,并且p ba c a cbc b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。

1998年全国初中数学试题

1998年全国初中数学试题

1998年全国初中数学试题一、选择题(每小题6分,满分30分)1.已知a,b,c都是实数,并且a>b>c,那么下列式子中正确的是 [ ]A.ab>bc B.a+b>b+c. C.a-b>b-c; D. a bc c >.2.如果方程x2+px+1=0(p>0)的两根之差为l,那么p等于[ ]3.在△ABC中,已知BD和CE分别是两边上的中线,并且BD⊥CE,BD=4,CE=6,那么△ABC 的面积等于[ ] A. 12 B.14 C.16 D.184.已知abc≠0,,并且a b b c c apc a b+++===,那么直线y=px+p一定通过[ ]A.第一、二象限B.第二、三象限. C.第三、四象限D.第一、四象限5.如果不等式组9080x ax b-≥⎧⎨-<⎩的整数解仅为1,2,3,那么整数a,b的有序数对(a,b)共有[ ]A.17个B.64个. C.72个D.81个二、填空题(每小题6分,满分30分)6.在矩形ABCD中,已知AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=______.7.已知直线y=-2x+3与抛物线y=x2相交于A、B两点,O为坐标原点,那么△OAB的面积等于______.8.已知圆环内直径为acm,外直径为bcm,将50个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度为______cm.9.已知方程a2x2-(3a2-8a)x+2a2-13a+15=0(其中a是非负整数)至少有一个整数根,那么a=__.10.B船在A船的西偏北450,两船相距若A船向西航行,B船同时向南航行,且B船速度为A船速速度的2倍,那么A,B两船的最近距离是___________km.三、解答题(每小题20分,满分60分)11.如图,在等腰直角三角形ABC中,AB=1,∠A=90°,点E为腰AC的中点,点F在底边BC上,且FE⊥BE,求△CEF的面积.12.设抛物线y=x2+(2a+1)x+2a+54的图象与x轴只有一个交点.(1)求a的值;(2)求a18+323a-6的值.13.A市、B市和C市分别有某种机器10台、10台和8台,现在决定把这些机器支援给D市18台、E市10台,已知:从A市调运一台机器到D市、E市的运费分别为200元和800元;从B市调运一台机器到D市、E市的运费分别为300元和700元;从C市调运一台机器到D市、E市运费分别为400元和500元.(1)设从A市、B市各调x台到D市,当28台机器全部调运完毕后,求总运费W(元)关于x(台)的函数式,并求W的最小值和最大值.(2)设从A市x台到D市,B市调y台到D市,当28台机器全部调运完毕后,用x,y表示总运费W(元),并求W的最小值和最大值.1998年全国初中数学联赛参考答案一、选择题1.B根据不等式性质.2.D由△=p2-4>0及p>2,设x1,x2为方程的两根,那么有x1+x2=-p,x1x2=l.又由(x1-x2)2=(x1+x2)2-4x1x2,得l2=(-p)2-4.∴p2=5,3.C如图连ED,又∵DE是△ABC两边中点连线.故选C.4.B得2(a+b+c)=p(a+b+c).∴有p=2或a+b+c=0.当p=2时,y=2x+2.则直线通过第一、二、三象限.当a+b+c=0时,不妨取a+b=-c,于是∴y=-x-1,则直线通过第二、三、四象限.综合上述两种情况,直线一定通过第二、三象限,故选B.5.C在数轴上画出这个不等式组解集的可能区间,如下图∴a=1,2,3…9,共9个.∴b=3×8+1,3×8+2,3×8+3,…,3×8+8.共8个.∵9×8=72(个),故选C.二、填空题6.解如图,过A作AG⊥BD于G,∵“等腰三角底边上的任意一点到两腰距离的和等于腰上的高”.∴PE+PF=AG.∵AD=12,AB=5,∴BD=13.7.解如图,直线y=-2x+3与抛物线y=x2的交点坐标为A(1,1),B(-3,9),作AA1,BB1分别垂直于x轴,垂足为A1,B1,∴S△OAB=S梯形AA1B1B-S△AA1O-S△BB1O8.解如图,当圆环为3个时,链长为3a+故a可取1,3或5.10.解如图,设经过t小时后,A船、B船分别航行到A1,B1,设AA1=x,于是BB1=2x.∴A1C=|10-x|,B1C=|10-2x|.三、解答题11.解法1 过C作CD⊥CE与EF的延长线交于D,∵∠ABE+∠AEB=90°,∠CED+∠AEB=90°,∴∠ABE=∠CED.于是Rt△ABE∽△CED,又∠ECF=∠DCF=45°,所以,CF是∠DCE的平分线,点F到CE和CD的距离相等.解法2 作FH⊥CE于H,设FH=h.∵∠ABE+∠AEB=90°,∠FEH+∠AEB=90°,∴∠ABE=∠FEH.∴Rt△EHF∽Rt△BAE.即EH=2h,又∵HC=FH,12.解(1)因为抛物线与x轴只有一个交点,所以一元二次方程(2)由(1)知,a2=a+1,反复利用此式可得a4=(a+1)2=a2+2a+1=3a+2,a8=(3a+2)2=9a2+12a+4=21a+13,a16=(21a+13)2=441a2+546a+169=987a+610.a18=(987a+610)(a+1)=987a2+1597a+610=2584a+1597.∵a2-a-1=0,∴64a2-64a-65=-1,即(8a+5)(8a-13)=-1.∴a18+323a-6=2584a+1597+323(-8a+13)=5796.13.解(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.∴5≤x≤9.∴W=-800x+17200(5≤x≤9,x是整数)由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;当x=5时,W取到最大值13200元.(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是W=200x+800(10-x)+300y+700(10-y)+400(19-x-y)+500(x+y-10)=-500x-300y-17200∴W=-500x-300y+17200,W=-200x-300(x+y)+17200≥-200×10-300×18+17200=9800.当x=10,y=8时,W=9800.所以,W的最小值为9800.又W=-200x-300(x+y)+17200≤-200×0-300×10+17200=14200.当x=0,y=10时,W=14200,所以,W的最大值为14200.。

初中数学竞赛试题及答案大全

初中数学竞赛试题及答案大全

全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY信利杯”全国初中数学竞赛试题 (17)2004年“TRULY信利杯”全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2008年全国初中数学竞赛试题 (46)2009年全国初中数学竞赛试题 (47)2010年全国初中数学竞赛试题 (52)2011年全国初中数学竞赛试题 (57)2012年全国初中数学竞赛试题 (60)2013年全国初中数学竞赛试题 (73)2014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( )(A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)184、已知0≠abc ,并且p ba c a cbc b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。

初中数学竞赛试题及答案汇编

初中数学竞赛试题及答案汇编

全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY?信利杯”全国初中数学竞赛试题 (17)2004年“TRULY?信利杯”全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2008年全国初中数学竞赛试题 (46)2009年全国初中数学竞赛试题 (47)2010年全国初中数学竞赛试题 (52)2011年全国初中数学竞赛试题 (57)2012年全国初中数学竞赛试题 (60)2013年全国初中数学竞赛试题 (73)2014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)c b c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( )(A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( ) (A)12(B)14(C)16(D)184、已知0≠abc ,并且p ba c a cbc b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个 二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。

初中数学竞赛试题及答案汇编

初中数学竞赛试题及答案汇编

全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷 (1)1999年全国初中数学竞赛试卷 (6)2000年全国初中数学竞赛试题解答 (9)2001年TI杯全国初中数学竞赛试题B卷 (14)2002年全国初中数学竞赛试题 (15)2003年“TRULY?信利杯”全国初中数学竞赛试题 (17)2004年“TRULY?信利杯”全国初中数学竞赛试题 (25)2005年全国初中数学竞赛试卷 (30)2006年全国初中数学竞赛试题 (32)2007年全国初中数学竞赛试题 (38)2008年全国初中数学竞赛试题 (46)2009年全国初中数学竞赛试题 (47)2010年全国初中数学竞赛试题 (52)2011年全国初中数学竞赛试题 (57)2012年全国初中数学竞赛试题 (60)2013年全国初中数学竞赛试题 (73)2014年全国初中数学竞赛预赛 (77)2015年全国初中数学竞赛预赛 (85)2016年全国初中数学联合竞赛试题 (94)2017年全国初中数学联赛初赛试卷 (103)2018 年初中数学联赛试题 (105)1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)c b c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( )(A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)184、已知0≠abc ,并且p b a c a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。

初中数学竞赛试题及答案汇编

初中数学竞赛试题及答案汇编

全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cbc a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( ) (A)12(B)14(C)16(D)184、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限 (A)一、二(B)二、三(C)三、四(D)一、四 5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。

7、已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于___________。

8、已知圆环内直径为acm ,外直径为bcm ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为___________cm 。

9、已知方程()015132832222=+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a=___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1998年全国初中数学联赛试题(含答案)
1998年全国数学联赛试卷
一、选择题:(每小题6分,共30分) 1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( )
(A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)c
b c a > 2、如果方程()
0012
>=++p px x
的两根之差是1,那么p
的值为( )
(A)2(B)4(C)3(D)5
3、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )
(A)12(B)14(C)16(D)18
4、已知0≠abc ,并且p b
a c a c
b
c b a =+=+=+,那么直线p
px y +=一定通过第( )象限
(A)一、二(B)二、三(C)三、四(D)一、四
5、如果不等式组
⎩⎨
⎧<-≥-0
809b x a x 的整数解仅为1,2,3,
那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )
(A)17个(B)64个(C)72个(D)81个 二、填空题:(每小题6分,共30分)
6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。

7、已知直线32+-=x y 与抛物线2
x y =相交于A 、B 两
点,O 为坐标原点,那么△OAB 的面积等于___________。

8、已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为___________cm 。

9、已知方程()0
151328322
2
2
=+-+--a a x a a
x a (其中a 是非负
整数),至少有一个整数根,那么a =___________。

10、B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km 。

三、解答题:(每小题20分,共60分)
11、如图,在等腰三角形ABC 中,AB=1,∠A=900,点E 为腰AC 中点,点F 在底边
BC 上,且FE ⊥BE ,求△CEF 的面积。

12、设抛物线()4
5
2122
+
+++=a x a x
y 的图象与x 轴只有一
个交点,(1)求a 的值;(2)求6
18
323-+a a
的值。

13、A 市、B 市和C 市有某种机器10台、10台、8台,现在决定把这些机器支援给D 市18台,E 市10台。

已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B 市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元。

(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)
A
B C
E
F
的函数关系式,并求W的最大值和最小值。

(2)设从A市调x台到D市,B市调y台到D 市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值。

1998年全国初中数学联赛参考答案
一、选择题
1.B
根据不等式性质.
2.D
由△=p2-4>0及p>2,设x1,x2为方程
+x2=-p,x1x2=l.又由
的两根,那么有x
1
(x1-x2)2=(x1+x2)2-4x1x2,
得l2=(-p)2-4.∴p2=5,
3.C
如图连ED,
又∵DE是△ABC两边中点连线.
故选C.
4.B
得2(a+b+c)=p(a+b+c).
∴有p=2或a+b+c=0.
当p=2时,y=2x+2.则直线通过第一、二、三象限.
当a+b+c=0时,不妨取a+b=-c,于是
∴y=-x-1,则直线通过第二、三、四象限.
综合上述两种情况,直线一定通过第二、三象限,故选B.5.C
在数轴上画出这个不等式组解集的可能区间,如下图
∴a=1,2,3…9,共9个.
∴b=3×8+1,3×8+2,3×8+3,…,
3×8+8.共8个.
∵9×8=72(个),故选C.
二、填空题
6.解如图,过A作AG⊥BD于G,
∵“等腰三角底边上的任意一点到两腰距离的和等于腰上的高”.
∴PE+PF=AG.
∵AD=12,AB=5,
∴BD=13.
7.解如图,直线y=-2x+3与抛物线y=x2的交点坐标为A(1,1),B(-3,9),作AA1,BB1分别垂直于x轴,垂足为A1,B1,
∴S
△OAB =S梯形AA
1B1B
-S△AA
1O
-S△BB
1O
8.解如图,当圆环为3个时,链长为3a+
故a可取1,3或5.
10.解如图,设经过t小时后,A船、B船分别航行到A1,B1,设AA1=x,=2x.
于是BB
1
C=|10-x|,B1C=|10-2x|.
∴A
1
三、解答题
11.解法1 过C作CD⊥CE与EF的延长线交于D,
∵∠ABE+∠AEB=90°,
∠CED+∠AEB=90°,
∴∠ABE=∠CED.
于是Rt△ABE∽△CED,
又∠ECF=∠DCF=45°,所以,CF是∠DCE的平分线,点F到CE和CD的距离相等.
解法2 作FH⊥CE于H,设FH=h.
∵∠ABE+∠AEB=90°,
∠FEH+∠AEB=90°,
∴∠ABE=∠FEH.
∴Rt△EHF∽Rt△BAE.
即EH=2h,
又∵HC=FH,
12.解(1)因为抛物线与x轴只有一个交点,所以一元二次方程
(2)由(1)知,a2=a+1,反复利用此式可得
a4=(a+1)2=a2+2a+1=3a+2,
a8=(3a+2)2=9a2+12a+4=21a+13,
a16=(21a+13)2=441a2+546a+169
=987a+610.
a18=(987a+610)(a+1)=987a2+1597a+610=2584a+1597.
∵a2-a-1=0,∴64a2-64a-65=-1,
即(8a+5)(8a-13)=-1.
∴a18+323a-6=2584a+1597+323(-8a+13)=5796.
13.解(1)由题设知,A市、B市、C市发往D市的机器台数分x,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10.于是
W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)
=-800x+17200.
∴5≤x≤9.
∴W=-800x+17200(5≤x≤9,x是整数)
由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;当x=5时,W取到最大值13200元.
(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别是10-x,10-y,x+y-10,于是
W=200x+800(10-x)+300y+700(10-y)+400(19-x-y)+500(x+y-10)
=-500x-300y-17200
∴W=-500x-300y+17200,
W=-200x-300(x+y)+17200
≥-200×10-300×18+17200=9800.
当x=10,y=8时,W=9800.所以,W的最小值为9800.
又W=-200x-300(x+y)+17200
≤-200×0-300×10+17200=14200.
当x=0,y=10时,W=14200,所以,W的最大值为14200.。

相关文档
最新文档