高中数学会考试题及答案

合集下载

山东普通高中会考数学真题及答案A

山东普通高中会考数学真题及答案A

山东普通高中会考数学真题及答案A一、选择题(每小题3分,共75分)1.(3分)已知集合A={0,1},B={﹣1,1,3},那么A∩B等于()A.{0} B.{1} C.{0,1} D.{0,1,3} 2.(3分)平面向量,满足=2,如果=(1,2),那么等于()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣4)D.(2,4)3.(3分)如果直线y=kx﹣1与直线y=3x平行,那么实数k的值为()A.﹣1 B.C.D.34.(3分)如图,给出了奇函数f(x)的局部图象,那么f(1)等于()A.﹣4 B.﹣2 C.2 D.45.(3分)如果函数f(x)=a x(a>0,且a≠1)的图象经过点(2,9),那么实数a等于()A.2 B.36.(3分)某中学现有学生1800人,其中初中学生1200人,高中学生600人.为了解学生在“阅读节”活动中的参与情况,决定采用分层抽样的方法从全校学生中抽取一个容量为180的样本,那么应从高中学生中抽取的人数为()A.60 B.90 C.100 D.110(3分)已知直线l经过点O(0,0),且与直线x﹣y﹣3=0垂直,那么直线l的方程是()7.A.x+y﹣3=0 B.x﹣y+3=0 C.x+y=0 D.x﹣y=0 8.(3分)如图,在矩形ABCD中,E为CD中点,那么向量等于()A.B.C.D.9.(3分)实数的值等于()A.1 B.2 C.3 D.410.(3分)函数y=x2,y=x3,,y=lgx中,在区间(0,+∞)上为减函数的是()A.y=x2B.y=x3C.D.y=lgx11.(3分)某次抽奖活动共设置一等奖、二等奖两类奖项.已知中一等奖的概率为0.1,中二等奖的概率为0.1,那么本次活动中,中奖的概率为()A.0.1 B.0.2 C.0.3 D.0.712.(3分)如果正△ABC的边长为1,那么•等于()A.B.C.1 D.213.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果a=10,A=45°,B=30°,那么b等于()A.B.C.D.14.(3分)已知圆C:x2+y2﹣2x=0,那么圆心C到坐标原点O的距离是()A.B.C.1 D.15.(3分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB =1,那么该四棱柱的体积为()A.1 B.2 C.4 D.816.(3分)函数f(x)=x3﹣5的零点所在的区间是()A.(1,2)B.(2,3)C.(3,4)D.(4,5)17.(3分)在sin50°,﹣sin50°,sin40°,﹣sin40°四个数中,与sin130°相等的是()A.sin50°B.﹣sin50°C.sin40°D.﹣sin40°18.(3分)把函数y=sin x的图象向右平移个单位得到y=g(x)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.19.(3分)函数的最小值是()A.﹣1 B.0 C.1 D.220.(3分)在空间中,给出下列四个命题:①平行于同一个平面的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③平行于同一条直线的两个平面互相平行;④垂直于同一个平面的两个平面互相平行.其中正确命题的序号是()A.①B.②C.③D.④21.(3分)北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2018年1月份各区域的PM2.5浓度情况如表:各区域1月份PM2.5浓度(单位:微克/立方米)表区域PM2.5浓度区域PM2.5浓度区域PM2.5浓度怀柔27 海淀34 平谷40密云31 延庆35 丰台42门头沟32 西城35 大兴46顺义32 东城36 开发区46昌平32 石景山37 房山47朝阳34 通州39从上述表格随机选择一个区域,其2018年1月份PM2.5的浓度小于36微克/立方米的概率是()A.B.C.D.22.(3分)已知,那么=()A.B.C.D.23.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果,那么△ABC的最大内角的余弦值为()A.B.C.D.24.(3分)北京故宫博物院成立于1925年10月10日,是在明、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年到2017年每年参观人数的折线图.根据图中信息,下列结论中正确的是()A.2013年以来,每年参观总人次逐年递增B.2014年比2013年增加的参观人次不超过50万C.2012年到2017年这六年间,2017年参观总人次最多D.2012年到2017年这六年间,平均每年参观总人次超过160万25.(3分)阅读下面题目及其证明过程,在横线处应填写的正确结论是()如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,BC⊥AC求证:BC⊥PA证明:因为平面PAC⊥平面ABC平面PAC∩平面ABC=ACBC⊥AC,BC⊂平面ABC所以______.因为PA⊂平面PAC.所以BC⊥PAA.AB⊥底面PAC B.AC⊥底面PBC C.BC⊥底面PAC D.AB⊥底面PBC 二、解答题(共4小题,满分25分)26.(7分)已知函数(Ⅰ)A=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)函数f(x)的最小正周期T=(将结果直接填写在答题卡的相应位置上)(Ⅲ)求函数f(x)的最小值及相应的x的值.27.(7分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,D,E,分别为PB,PC的中点.(Ⅰ)求证:BC∥平面ADE;(Ⅱ)求证:BC⊥平面PAB.28.(6分)已知圆O:x2+y2=r2(r>0)经过点A(0,5),与x轴正半轴交于点B.(Ⅰ)r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)圆O上是否存在点P,使得△PAB的面积为15?若存在,求出点P的坐标;若不存在,说明理由.29.(5分)种植于道路两侧、为车辆和行人遮阴并构成街景的乔木称为行道树.为确保行人、车辆和临近道路附属设施安全,树木与原有电力线之间的距离不能超出安全距离.按照北京市《行道树修剪规范》要求,当树木与原有电力线发生矛盾时,应及时修剪树枝.《行道树修剪规范》中规定,树木与原有电力线的安全距离如表所示:树木与电力线的安全距离表电力线安全距离(单位:m)水平距离垂直距离≤1KV≥1 ≥13KV~10KV≥3 ≥335KV~110KV≥3.5 ≥4154KV~220KV≥4 ≥4.5 330KV≥5 ≥5.5500KV≥7 ≥7现有某棵行道树已经自然生长2年,高度为2m.据研究,这种行道树自然生长的时间x(年)与它的高度y(m)满足关系式(Ⅰ)r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)如果这棵行道树的正上方有35kV的电力线,该电力线距地面20m.那么这棵行道树自然生长多少年必须修剪?(Ⅲ)假如这棵行道树的正上方有500kV的电力线,这棵行道树一直自然生长,始终不会影响电力线段安全,那么该电力线距离地面至少多少m?参考答案与解析一、选择题(每小题3分,共75分)1.(3分)已知集合A={0,1},B={﹣1,1,3},那么A∩B等于()A.{0} B.{1} C.{0,1} D.{0,1,3}【考点】1E:交集及其运算.菁优网版权所有【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】利用交集定义直接求解.【解答】解:∵集合A={0,1},B={﹣1,1,3},∴A∩B={1}.故选:B.【点评】本题考查交集的求法,考查交集定义、不等式等基础知识,考查运算求解能力,是基础题.2.(3分)平面向量,满足=2,如果=(1,2),那么等于()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣4)D.(2,4)【考点】96:平行向量(共线).菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5A:平面向量及应用.【分析】利用数乘向量运算法则直接求解.【解答】解:∵平面向量,满足=2,=(1,2),∴=2(1,2)=(2,4).故选:D.【点评】本题考查向量的求法,考查数乘向量运算法则等基础知识,考查运算求解能力,是基础题.3.(3分)如果直线y=kx﹣1与直线y=3x平行,那么实数k的值为()A.﹣1 B.C.D.3【考点】II:直线的一般式方程与直线的平行关系.菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5B:直线与圆.【分析】利用两条直线相互平行的充要条件即可得出.【解答】解:∵直线y=kx﹣1与直线y=3x平行,∴k=3,经过验证满足两条直线平行.故选:D.【点评】本题考查了两条直线相互平行的充要条件,考查了推理能力与计算能力,属于基础题.4.(3分)如图,给出了奇函数f(x)的局部图象,那么f(1)等于()A.﹣4 B.﹣2 C.2 D.4【考点】3K:函数奇偶性的性质与判断.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;51:函数的性质及应用.【分析】根据题意,由函数的图象可得f(﹣1)的值,结合函数的奇偶性可得f(1)的值,即可得答案.【解答】解:根据题意,由函数的图象可得f(﹣1)=2,又由函数为奇函数,则f(1)=﹣f(﹣1)=﹣2,故选:B.【点评】本题考查函数的奇偶性的性质,关键是掌握函数单调性的性质,属于基础题.5.(3分)如果函数f(x)=a x(a>0,且a≠1)的图象经过点(2,9),那么实数a等于()A.2 B.3【考点】4B:指数函数的单调性与特殊点.菁优网版权所有【专题】38:对应思想;4R:转化法;51:函数的性质及应用.【分析】由题意代入点的坐标,即可求出a的值.【解答】解:指数函数f(x)=a x(a>0,a≠1)的图象经过点(2,9),∴9=a2,解得a=3,故选:B.【点评】本题考查了指数函数的图象和性质,属于基础题.6.(3分)某中学现有学生1800人,其中初中学生1200人,高中学生600人.为了解学生在“阅读节”活动中的参与情况,决定采用分层抽样的方法从全校学生中抽取一个容量为180的样本,那么应从高中学生中抽取的人数为()A.60 B.90 C.100 D.110【考点】B3:分层抽样方法.菁优网版权所有【专题】11:计算题;38:对应思想;4O:定义法;5I:概率与统计.【分析】根据分层抽样的定义和题意知,抽样比例是,根据样本的人数求出应抽取的人数【解答】解:根据分层抽样的定义和题意,则高中学生中抽取的人数 600×=60(人).故选:A.【点评】本题的考点是分层抽样方法,根据样本结构和总体结构保持一致,求出抽样比,再求出在所求的层中抽取的个体数目.(3分)已知直线l经过点O(0,0),且与直线x﹣y﹣3=0垂直,那么直线l的方程是()7.A.x+y﹣3=0 B.x﹣y+3=0 C.x+y=0 D.x﹣y=0【考点】IJ:直线的一般式方程与直线的垂直关系.菁优网版权所有【专题】11:计算题;34:方程思想;4O:定义法;5B:直线与圆.【分析】由题意可求出直线l的斜率,由点斜式写出直线方程化简即可.【解答】解:∵直线l与直线x﹣y﹣3=0垂直,∴直线l的斜率为﹣1,则y﹣0=﹣(x﹣0),即x+y=0故选:C.【点评】本题考查了直线方程的求法,属于基础题.8.(3分)如图,在矩形ABCD中,E为CD中点,那么向量等于()A.B.C.D.【考点】9H:平面向量的基本定理.菁优网版权所有【专题】35:转化思想;5A:平面向量及应用.【分析】直接利用向量的线性运算求出结果.【解答】解:在矩形ABCD中,E为CD中点,所以:,则:=.故选:A.【点评】本题考查的知识要点:向量的线性运算的应用,主要考查学生的运算能力和转化能力,属于基础题型.9.(3分)实数的值等于()A.1 B.2 C.3 D.4【考点】41:有理数指数幂及根式;4H:对数的运算性质.菁优网版权所有【专题】33:函数思想;4A:数学模型法;51:函数的性质及应用.【分析】直接利用有理指数幂及对数的运算性质求解即可.【解答】解:=2+0=2.故选:B.【点评】本题考查了有理指数幂及对数的运算性质,是基础题.10.(3分)函数y=x2,y=x3,,y=lgx中,在区间(0,+∞)上为减函数的是()A.y=x2B.y=x3C.D.y=lgx【考点】3E:函数单调性的性质与判断.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;51:函数的性质及应用.【分析】根据题意,依次分析4个函数在区间(0,+∞)的单调性,综合即可得答案.【解答】解:根据题意,函数y=x2,为二次函数,在区间(0,+∞)为增函数;y=x3,为幂函数,在区间(0,+∞)为增函数;,为指数函数,在区间(0,+∞)上为减函数;y=lgx中,在区间(0,+∞)为增函数;故选:C.【点评】本题考查函数单调性的判定,关键是掌握常见函数的单调性,属于基础题.11.(3分)某次抽奖活动共设置一等奖、二等奖两类奖项.已知中一等奖的概率为0.1,中二等奖的概率为0.1,那么本次活动中,中奖的概率为()A.0.1 B.0.2 C.0.3 D.0.7【考点】C2:概率及其性质.菁优网版权所有【专题】38:对应思想;4R:转化法;5I:概率与统计.【分析】根据互斥事件概率加法公式即可得到其发生的概率的大小.【解答】解:由于中一等奖,中二等奖,为互斥事件,故中奖的概率为0.1+0.1=0.2,故选:B.【点评】此题考查概率加法公式及互斥事件,是一道基础题.12.(3分)如果正△ABC的边长为1,那么•等于()A.B.C.1 D.2【考点】9O:平面向量数量积的性质及其运算.菁优网版权所有【专题】38:对应思想;4R:转化法;5A:平面向量及应用.【分析】根据向量的数量积的运算性质计算即可.【解答】解:∵正△ABC的边长为1,∴•=||•||cos A=1×1×cos60°=,故选:B.【点评】本题考查了向量的数量积的运算,是一道基础题.13.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果a=10,A=45°,B=30°,那么b等于()A.B.C.D.【考点】HP:正弦定理.菁优网版权所有【专题】38:对应思想;4R:转化法;58:解三角形.【分析】根据正弦定理直接代入求值即可.【解答】解:由正弦定理==,得=,解得:b=5,故选:B.【点评】本题考查了正弦定理的应用,考查解三角形问题,是一道基础题.14.(3分)已知圆C:x2+y2﹣2x=0,那么圆心C到坐标原点O的距离是()A.B.C.1 D.【考点】J2:圆的一般方程.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;5B:直线与圆.【分析】根据题意,由圆的一般方程分析可得圆心C的坐标,进而由两点间距离公式,计算可得答案.【解答】解:根据题意,圆C:x2+y2﹣2x=0,其圆心C为(1,0),则圆心C到坐标原点O的距离d==1;故选:C.【点评】本题考查圆的一般方程,涉及两点间距离公式,属于基础题.15.(3分)如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB =1,那么该四棱柱的体积为()A.1 B.2 C.4 D.8【考点】LF:棱柱、棱锥、棱台的体积.菁优网版权所有【专题】11:计算题;31:数形结合;4O:定义法;5F:空间位置关系与距离.【分析】该四棱柱的体积为V=S正方形ABCD×AA1,由此能求出结果.【解答】解:∵在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是正方形,A1A⊥底面ABCD,A1A=2,AB=1,∴该四棱柱的体积为V=S正方形ABCD×AA1=12×2=2.故选:B.【点评】本题考查该四棱柱的体积的求法,考查四棱柱的性质等基础知识,考查运算求解能力,是基础题.16.(3分)函数f(x)=x3﹣5的零点所在的区间是()A.(1,2)B.(2,3)C.(3,4)D.(4,5)【考点】52:函数零点的判定定理.菁优网版权所有【专题】11:计算题;34:方程思想;35:转化思想;49:综合法;51:函数的性质及应用.【分析】求得f(1)f(2)<0,根据函数零点的判定定理可得函数f(x)的零点所在的区间.【解答】解:由函数f(x)=x3﹣5可得f(1)=1﹣5=﹣4<0,f(2)=8﹣5=3>0, 故有f(1)f(2)<0,根据函数零点的判定定理可得,函数f(x)的零点所在区间为(1,2),故选:A.【点评】本题主要考查函数的零点的判定定理的应用,属于基本知识的考查.17.(3分)在sin50°,﹣sin50°,sin40°,﹣sin40°四个数中,与sin130°相等的是()A.sin50°B.﹣sin50°C.sin40°D.﹣sin40°【考点】GF:三角函数的恒等变换及化简求值.菁优网版权所有【专题】35:转化思想;56:三角函数的求值.【分析】利用诱导公式化简可得答案.【解答】解:由sin130°=sin(180°﹣50°)=sin50°.∴与sin130°相等的是sin50°故选:A.【点评】题主要考察了诱导公式的应用,属于基本知识的考查.18.(3分)把函数y=sin x的图象向右平移个单位得到y=g(x)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为()A.B.C.D.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.菁优网版权所有【专题】35:转化思想;49:综合法;57:三角函数的图象与性质.【分析】由题意利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.【解答】解:把函数y=sin x的图象向右平移个单位得到y=g(x)=sin(x﹣)的图象,再把y=g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),所得到图象的解析式为y=2sin(x﹣),故选:A.【点评】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于基础题.19.(3分)函数的最小值是()A.﹣1 B.0 C.1 D.2【考点】3H:函数的最值及其几何意义.菁优网版权所有【专题】33:函数思想;48:分析法;51:函数的性质及应用.【分析】分别讨论两段函数的单调性和最值,即可得到所求最小值.【解答】解:当x>﹣1时,f(x)=x2的最小值为f(0)=0;当x≤﹣1时,f(x)=﹣x递减,可得f(x)≥1,综上可得函数f(x)的最小值为0.故选:B.【点评】本题考查分段函数的最值求法,注意分析各段的单调性和最值,考查运算能力,属于基础题.20.(3分)在空间中,给出下列四个命题:①平行于同一个平面的两条直线互相平行;②垂直于同一个平面的两条直线互相平行;③平行于同一条直线的两个平面互相平行;④垂直于同一个平面的两个平面互相平行.其中正确命题的序号是()A.①B.②C.③D.④【考点】2K:命题的真假判断与应用.菁优网版权所有【专题】38:对应思想;48:分析法;5F:空间位置关系与距离.【分析】由线面平行的性质可判断①;由线面垂直的性质定理可判断②;由两个平面的位置关系可判断③;由面面平行的判定定理可判断④.【解答】解;对于①,平行于同一个平面的两条直线互相平行或相交或异面,故①错误;对于②,垂直于同一个平面的两条直线互相平行,故②正确;对于③,平行于同一条直线的两个平面互相平行或相交,故③错误;对于④,垂直于同一个平面的两个平面互相平行或相交,故④错误.故选:B.【点评】本题考查空间线线和面面的位置关系的判断,考查平行和垂直的判断和性质定理的运用,属于基础题.21.(3分)北京市环境保护监测中心每月向公众公布北京市各区域的空气质量状况.2018年1月份各区域的PM2.5浓度情况如表:各区域1月份PM2.5浓度(单位:微克/立方米)表区域PM2.5浓度区域PM2.5浓度区域PM2.5浓度怀柔27 海淀34 平谷40密云31 延庆35 丰台42门头沟32 西城35 大兴46顺义32 东城36 开发区46昌平32 石景山37 房山47朝阳34 通州39从上述表格随机选择一个区域,其2018年1月份PM2.5的浓度小于36微克/立方米的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.菁优网版权所有【专题】11:计算题;38:对应思想;4O:定义法;5I:概率与统计.【分析】由表可知从上述表格随机选择一个区域,共有17种情况,其中2018年1月份PM2.5的浓度小于36微克/立方米的地区有9个,根据概率公式计算即可.【解答】解:从上述表格随机选择一个区域,共有17种情况,其中2018年1月份PM2.5的浓度小于36微克/立方米的地区有9个,则2018年1月份PM2.5的浓度小于36微克/立方米的概率是,故选:D.【点评】本题主要考查频率分布表、古典概型、统计等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等22.(3分)已知,那么=()A.B.C.D.【考点】GP:两角和与差的三角函数.菁优网版权所有【专题】35:转化思想;36:整体思想;56:三角函数的求值.【分析】直接利用同角三角函数关系式的应用求出结果.【解答】解:知,那么,则:=sin==, 故选:D.【点评】本题考查的知识要点:三角函数关系式的恒等变变换,主要考查学生的运算能力和转化能力,属于基础题型.23.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,如果,那么△ABC的最大内角的余弦值为()A.B.C.D.【考点】HR:余弦定理.菁优网版权所有【专题】38:对应思想;4O:定义法;58:解三角形.【分析】先判断△ABC的最大内角为A,再利用余弦定理计算cos A的值.【解答】解:△ABC中,,∴△ABC的最大内角为A,且cos A===.故选:A.【点评】本题考查了余弦定理的应用问题,是基础题.24.(3分)北京故宫博物院成立于1925年10月10日,是在明、清朝两代皇宫及其宫廷收藏的基础上建立起来的中国综合性博物馆,每年吸引着大批游客参观游览.下图是从2012年到2017年每年参观人数的折线图.根据图中信息,下列结论中正确的是()A.2013年以来,每年参观总人次逐年递增B.2014年比2013年增加的参观人次不超过50万C.2012年到2017年这六年间,2017年参观总人次最多D.2012年到2017年这六年间,平均每年参观总人次超过160万【考点】F4:进行简单的合情推理.菁优网版权所有【专题】11:计算题;31:数形结合;44:数形结合法;5I:概率与统计.【分析】由从2012年到2017年每年参观人数的折线图,得2012年到2017年这六年间,2017年参观总人次最多.【解答】解:由从2012年到2017年每年参观人数的折线图,得:在A中,2013年以来,2015年参观总人次比2014年参观人次少,故A错误;在B中,2014年比2013年增加的参观人次超过50万,故B错误;在C中,2012年到2017年这六年间,2017年参观总人次最多,故C正确;在D中,2012年到2017年这六年间,平均每年参观总人次不超过160万,故D错误.【点评】本题考查命题真假的判断,考查折线图的应用,考查运算求解能力,考查数形结合思想,是基础题.25.(3分)阅读下面题目及其证明过程,在横线处应填写的正确结论是()如图,在三棱锥P﹣ABC中,平面PAC⊥平面ABC,BC⊥AC求证:BC⊥PA证明:因为平面PAC⊥平面ABC平面PAC∩平面ABC=ACBC⊥AC,BC⊂平面ABC所以______.因为PA⊂平面PAC.所以BC⊥PAA.AB⊥底面PAC B.AC⊥底面PBC C.BC⊥底面PAC D.AB⊥底面PBC 【考点】LW:直线与平面垂直.菁优网版权所有【专题】38:对应思想;4R:转化法;5F:空间位置关系与距离.【分析】根据面面垂直的性质定理判断即可.【解答】解:根据面面垂直的性质定理判定得:BC⊥底面PAC,故选:C.【点评】本题考查了面面垂直的性质定理,考查数形结合思想,是一道基础题.二、解答题(共4小题,满分25分)26.(7分)已知函数(Ⅰ)A= 2 ;(将结果直接填写在答题卡的相应位置上)(Ⅱ)函数f(x)的最小正周期T=2π(将结果直接填写在答题卡的相应位置上)(Ⅲ)求函数f(x)的最小值及相应的x的值.【考点】HW:三角函数的最值.菁优网版权所有【专题】33:函数思想;4O:定义法;57:三角函数的图象与性质.【分析】(Ⅰ)由f(0)=1求得A的值;(Ⅱ)由正弦函数的周期性求得f(x)的最小正周期;(Ⅲ)由正弦函数的图象与性质求得f(x)的最小值以及对应x的值.【解答】解:(Ⅰ)函数由f(0)=A sin=A=1,解得A=2;(Ⅱ)函数f(x)=2sin(x+),∴f(x)的最小正周期为T=2π;(Ⅲ)令x+=2kπ﹣,k∈Z;x=2kπ﹣,k∈Z;此时函数f(x)取得最小值为﹣2.故答案为:(Ⅰ)2,(Ⅱ)2π.【点评】本题考查了正弦函数的图象与性质的应用问题,是基础题.27.(7分)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,AB⊥BC,D,E,分别为PB,PC的中点.(Ⅰ)求证:BC∥平面ADE;(Ⅱ)求证:BC⊥平面PAB.【考点】LS:直线与平面平行;LW:直线与平面垂直.菁优网版权所有【专题】14:证明题;31:数形结合;49:综合法;5F:空间位置关系与距离.【分析】(Ⅰ)由D、E分别为PB、PC的中点,得DE∥BC,由此能证明BC∥平面ADE.(Ⅱ)推导出PA⊥BC,AB⊥BC,由此能证明BC⊥平面PAB.【解答】证明:(Ⅰ)在△PBC中,∵D、E分别为PB、PC的中点,∴DE∥BC,∵BC⊄平面ADE,DE⊂平面ADE,∴BC∥平面ADE.(Ⅱ)∵PA⊥平面ABC,BC⊂平面ABC,∴PA⊥BC,∵AB⊥BC,PA∩AB=A,∴BC⊥平面PAB.【点评】本题考查线面平行、线面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.28.(6分)已知圆O:x2+y2=r2(r>0)经过点A(0,5),与x轴正半轴交于点B.(Ⅰ)r= 5 ;(将结果直接填写在答题卡的相应位置上)(Ⅱ)圆O上是否存在点P,使得△PAB的面积为15?若存在,求出点P的坐标;若不存在,说明理由.【考点】J9:直线与圆的位置关系.菁优网版权所有【专题】34:方程思想;4R:转化法;5B:直线与圆.【分析】(Ⅰ)直接由已知条件可得r;(Ⅱ)存在.由(Ⅰ)可得圆O的方程为:x2+y2=25,依题意,A(0,5),B(5,0),求出|AB|=,直线AB的方程为x+y﹣5=0,又由△PAB的面积,可得点P到直线AB的距离为,设点P(x0,y0),解得x0+y0=﹣1或x0+y0=11(显然此时点P不在圆上,故舍去),联立方程组,求解即可得答案.【解答】解:(Ⅰ)r=5;(Ⅱ)存在.∵r=5,∴圆O的方程为:x2+y2=25.依题意,A(0,5),B(5,0),∴|AB|=,直线AB的方程为x+y﹣5=0,又∵△PAB的面积为15,∴点P到直线AB的距离为,设点P(x0,y0),∴,解得x0+y0=﹣1或x0+y0=11(显然此时点P不在圆上,故舍去),联立方程组,解得或.∴存在点P(﹣4,3)或P(3,﹣4)满足题意.【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,是中档题.29.(5分)种植于道路两侧、为车辆和行人遮阴并构成街景的乔木称为行道树.为确保行人、车辆和临近道路附属设施安全,树木与原有电力线之间的距离不能超出安全距离.按照北京市《行道树修剪规范》要求,当树木与原有电力线发生矛盾时,应及时修剪树枝.《行道树修剪规范》中规定,树木与原有电力线的安全距离如表所示:树木与电力线的安全距离表电力线安全距离(单位:m)水平距离垂直距离≤1KV≥1 ≥13KV~10KV≥3 ≥335KV~110KV≥3.5 ≥4154KV~220KV≥4 ≥4.5330KV≥5 ≥5.5500KV≥7 ≥7现有某棵行道树已经自然生长2年,高度为2m.据研究,这种行道树自然生长的时间x(年)与它的高度y(m)满足关系式(Ⅰ)r=;(将结果直接填写在答题卡的相应位置上)(Ⅱ)如果这棵行道树的正上方有35kV的电力线,该电力线距地面20m.那么这棵行道树自然生长多少年必须修剪?(Ⅲ)假如这棵行道树的正上方有500kV的电力线,这棵行道树一直自然生长,始终不会影响电力线段安全,那么该电力线距离地面至少多少m?【考点】5C:根据实际问题选择函数类型.菁优网版权所有【专题】11:计算题;33:函数思想;4A:数学模型法;51:函数的性质及应用.【分析】(Ⅰ)将x=2,y=2代入计算即可,(Ⅱ)函数解析式为y=,令y=20﹣4=16,解得x=10,问题得以解决, (Ⅲ)根据指数函数的性质可得y=<30,问题得以解决【解答】解:(Ⅰ)r=,故答案为:(Ⅱ)根据题意,该树木的高度为16米时需要及时修剪这颗行道数,函数解析式为y=,令y=20﹣4=16,解得x=10,故这棵行道树自然生长10年必须修剪;(Ⅲ)因为>0,所以1+28×>1,所以y=<30,所以该电力线距离地面至少37米,这这棵行道树一直自然生长,始终不会影响电力线段安全.【点评】本题考查了函数在实际生活中的应用,考查了分析问题解决问题的能力,属于中档题.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/7/25 12:12:34;用户:qgjyuser10448;邮箱:qgjyuser10448.21957750;学号:21985455。

2020年普通高中学业水平合格性考试(会考)数学试卷二(含答案)

2020年普通高中学业水平合格性考试(会考)数学试卷二(含答案)

2020年普通高中学业水平合格性考试数学试卷(考试时间:90分钟满分:100分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至4页,第Ⅱ卷5至6页。

考生注意:1.答题前,考生务必将自己的考生号、姓名填写在试题卷答题卡上。

考生要认真核对答题卡上粘贴的条形码的“考生号、姓名”与考生本人考生号、姓名是否一致。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

第Ⅱ卷用黑色字迹签字笔在答题卡上作答。

在试题卷上作答,答案无效。

3.考试结束,监考员将试题卷和答题卡一并收回。

第Ⅰ卷(选择题45分)一、选择题(本大题有15小题,每小题3分,共45分。

每小题只有一个选项符合题目要求)1.设集合A={1,2,3},B=2,3,4},则AUB=()A.{1,2,3,4}B.{1,2,3}C.{2,3,4}D.{1,3,4}2.下列函数中,在区间(0,+∞)上单调递的是()A.y=x12B.y=2−xC.y=log12x D.y=533.在等差数列{a n}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.144.已知向量BA =(BA =(12,32),则∠ABC=()A.30°B.45°C.60°D.120°5.若a>b>0,c<d<0,则一定有()A.a c>b dB.a c<b dC.a d>b cD.a d<b c6.已知互相垂直的平面α,β交于直线l。

若直线m,n满足m∥α,n⊥β,则()A.m∥lB.m∥nC.n⊥lD.m⊥n7.对任意等比数列{a n},下列说法一定正确的是()A.a1,a3,a9成等比数列B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列D.a3,a6,a9成等比数列8.在x轴上与点(3,2,1)的距离为3的点是()A.(-1,0,0)B.(5,0,0)C.(1,0,0)D.(5,0,0)和(1,0,0)9.设 = ,0< <1,2 −1, 1,,若 =2,则a=()A.2B.4C.6D.810.若tanα=13,tanα+β=12,则tanβ=()A.17B.16C.57D.5611.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为()A.15B.56C.55D.2212.若将一个质点随机投入如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB为直径的半圆内的概率是()A.π2B.π4C.π6D.π813.在△ABC中,a,b,c分別为内角A,B,C所対边的边长,若c2=(a-b)2-+6,C=π3,则ab的值是()A.3B.6C.9D.1214.平行于直线2x+y+1=0,且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y-5=0B.2x+y+5=0或2x+y-5=0C.2x-y+5=0或2x-y-5=0D.2x-y+5=0或2x-y-5=015.在天文学中,天体的明暗程度可以用星等或亮度来描述。

2020年山东普通高中会考数学真题及答案

2020年山东普通高中会考数学真题及答案

2020年山东普通高中会考数学真题及答案一、单选题(共20小题)1.设集合A={1,3,5},B={2,3},则A∪B=( )A.{3} B.{1,5}C.(1,2,5)∩{1,2,5} D.{1,2,3,5}2.函数的最小正周期为( )A.B.πC.2πD.4π3.函数的定义域是( )A.[1,4)B.(1,4] C.(1,+∞)D.(4,+∞)4.下列函数中,既是偶函数又在(0,+∞)上是减函数的是( )A.y=﹣x3B.y=C.y=|x| D.y=5.已知直线l过点P(2,﹣1),且与直线2x+y﹣l=0互相垂直,则直线l的方程为( )A.x﹣2y=0 B.x﹣2y﹣4=0 C.2x+y﹣3=0 D.2x﹣y﹣5=0 6.已知函数f(x)=,则f(﹣1)+f(1)=( )A.0 B.1 C.D.27.已知向量与的夹角为,且||=3,||=4,则•=( )A.B.C.D.68.某工厂抽取100件产品测其重量(单位:kg).其中每件产品的重量范围是[40,42].数据的分组依据依次为[40,40,5),[40,5,41),[41,41,5),[41,5,42),据此绘制出如图所示的频率分布直方图,则重量在[40,41)内的产品件数为( )A.30 B.40 C.60 D.809.sin 110° cos40°﹣cos70°•sin40°=( )A.B.C.﹣D.﹣10.在平行四边形ABCD中,+﹣=( )A.B.C.D.11.某产品的销售额y(单位:万元)与月份x的统计数据如表.用最小二乘法求出y关于x的线性回归方程为=7x+,则实数=( )x 3 4 5 6y25 30 40 45A.3 B.3.5 C.4 D.10.512.下列结论正确的是( )A.若a<b,则a3<b3B.若a>b,则2a<2bC.若a<b,则a2<b2D.若a>b,则lna>lnb13.圆心为M(1,3),且与直线3x﹣4y﹣6=0相切的圆的方程是( )A.(x﹣1)2+(y﹣3)2=9 B.(x﹣1)2+(y﹣3)2=3C.(x+1)2+(y+3)2=9 D.(x+1)2+(y+3)2=314.已知袋中有大小、形状完全相同的5张红色、2张蓝色卡片,从中任取3张卡片,则下列判断不正确的是( )A.事件“都是红色卡片”是随机事件B.事件“都是蓝色卡片”是不可能事件C.事件“至少有一张蓝色卡片”是必然事件D.事件“有1张红色卡片和2张蓝色卡片”是随机事件15.若直线(a﹣1)x﹣2y+1=0与直线x﹣ay+1=0垂直,则实数a=( )A.﹣1或2 B.﹣1 C.D.316.将函数y=sin x的图象上所有的点的横坐标缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位,得到的图象对应的函数解析式为( )A.y=sin(3x﹣)B.y=sin(3x﹣)C.y=sin(x﹣)D.y=sin(x﹣)17.3名同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.B.C.D.18.如图,在正方体ABCD﹣A1B1C1D1中,下列判断正确的是( )A.A1D⊥C1C B.BD1⊥AD C.A1D⊥AC D.BD1 ⊥AC19.已知向量,不共线,若=+2,=﹣3+7,=4﹣5,则( )A.A,B,C三点共线B.A,B,D三点共线C.A,C,D三点共线D.B,C,D三点共线20.在三棱锥P﹣ABC中,PA,PB,PC两两垂直,且PA=1,PB=PC=2,则该三棱锥的外接球体的体积为( )A.B.C.9πD.36π二、填空题(共5小题)21.某校田径队共有男运动员45人,女运动员36人.若采用分层抽样的方法在全体运动员中抽取18人进行体质测试,则抽到的女运动员人数为 .22.已知α为第二象限角,若sinα=,则tanα的值为 ﹣ .23.已知圆锥底面半径为1,高为,则该圆锥的侧面积为 .24.已知函数f(x)=x2+x+a在区间(0,1)内有零点,则实数a的取值范围为 ﹣ .25.若P是圆C1:(x﹣4)2+(y﹣5)2=9上一动点,Q是圆C2:(x+2)2+(y+3)2=4上一动点,则|PQ|的最小值是 .三、解答题(共3小题)26.如图,在四棱锥P﹣ABCD中,四边形ABCD是平行四边形,E、F分别是AB、PC中点,求证:EF∥面PAD.27.在△ABC中,a,b,c分别是角A,B,C的对边,且a=6,cos B=.(1)若sin A=,求b的值;(2)若c=2,求b的值及△ABC的面积S.28.已知函数f(x)=ax+log3(9x+1)(a∈R)为偶函数.(1)求a的值;(2)当x∈[0,+∞)时,不等式f(x)﹣b≥0恒成立,求实数b的取值范围.2020年山东普通高中会考数学参考答案一、单选题(共20小题)1.选:D.2.选:D.3.选:A.4.选:D.5.选:B.6.选:C.7.选:D.8.选:B.9.选:A.10.选:B.11.选:D.12.选:A.13.选:A.14.选:C.【知识点】随机事件15.选:C.16.选:A.17.选:D.18.选:D.19.选:B.20.选:A.二、填空题(共5小题)21.答案为:8.22.答案为:.23.答案为:2π.24.答案为:(﹣2,0)25.答案为:5.三、解答题(共3小题)26.【解答】证明:取PD的中点G,连接FG、AG.因为PF=CF,PG=DG,所以FG∥CD,且FG=CD.又因为四边形ABCD是平行四边形,且E是AB的中点.所以AE∥CD,且AE=CD.所以FG∥AE,且FG=AE,所以四边形EFGA是平行四边形,所以EF∥AG.又因为EF⊄平面PAD,AG⊂平面PAD,所以EF∥平面PAD.27.【解答】解:(1)由cos B=可得sin B=,由正弦定理可得,,所以b===,(2)由余弦定理可得,cos B===,解可得,b=4,S===4.28.【解答】解:(1)根据题意可知f(x)=f(﹣x),即ax+log3(9x+1)=﹣ax+log3(9﹣x+1),整理得=﹣2ax,即﹣2ax==2x,解得a=﹣1;(2)由(1)可得f(x)=x+log3(9x+1),因为f(x)﹣b≥0对x∈[0,+∞)恒成立,即x+log3(9x+1)≥b对x∈[0,+∞)恒成立,因为函数g(x)=x+log3(9x+1)在[0,+∞)上是增函数,所以g(x)min=g(0)=log32,则b≤log32.。

合肥高中会考试题及答案

合肥高中会考试题及答案

合肥高中会考试题及答案一、单项选择题(每题2分,共20分)1. 合肥高中会考中,下列哪一项不是历史学科的考查内容?A. 中国古代的政治制度B. 世界近现代史C. 中国古代的文学艺术D. 现代科技的发展答案:D2. 在数学会考中,以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B3. 英语会考中,以下哪个选项是正确的动词不定式用法?A. To go to schoolB. Go to schoolC. Going to schoolD. To went to school答案:A4. 在物理会考中,下列哪个选项是正确的?A. 光速是宇宙中最快的速度B. 光速是宇宙中第二快的速度C. 光速是宇宙中第三快的速度D. 光速是宇宙中第四快的速度答案:A5. 化学会考中,下列哪个元素的化学符号是正确的?A. 铜 - CuB. 铁 - FeC. 氧 - O2D. 氢 - H2答案:A6. 在生物会考中,下列哪个选项是正确的?A. 细胞是所有生物体的基本单位B. 病毒没有细胞结构C. 所有生物都有线粒体D. 植物细胞和动物细胞的主要区别在于植物细胞有细胞壁答案:B7. 政治会考中,下列哪个选项是正确的?A. 市场经济是社会主义市场经济的基础B. 社会主义市场经济是市场经济的特例C. 市场经济是资本主义市场经济的特例D. 社会主义市场经济是市场经济的高级形式答案:D8. 地理会考中,下列哪个选项是正确的?A. 地球的自转周期是24小时B. 地球的公转周期是365天C. 地球的自转轴与公转轴垂直D. 地球的自转和公转方向都是自东向西答案:A9. 在信息技术会考中,下列哪个选项是正确的?A. 二进制数1011转换为十进制数是11B. 二进制数1011转换为十进制数是13C. 二进制数1011转换为十进制数是15D. 二进制数1011转换为十进制数是17答案:B10. 合肥高中会考中,下列哪个选项是正确的?A. 会考成绩不计入高考总分B. 会考成绩计入高考总分C. 会考成绩只作为参考,不计入总分D. 会考成绩只作为参考,但会影响高考录取答案:A二、填空题(每题2分,共20分)11. 合肥高中会考中,语文学科的作文部分要求学生在规定时间内完成一篇不少于______字的文章。

湖北高一高中数学水平会考带答案解析

湖北高一高中数学水平会考带答案解析

湖北高一高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.成等比数列,其中则()A.B.C.D.或2.已知集合,,则( )A.B.C.D.3.已知平行四边形的三个顶点的坐标分别为,,,则顶点的坐标为( )A.(2,2)B.(-2,2)C.(2,-2)D.(-2,-2)4.远望灯塔高七层,红光点点倍加增,只见顶层灯一盏,请问共有几盏灯?答曰:( )A.64B.128C.63D.1275.在中则的值为()A.B.C.D.6.给出下列命题,其中正确的是( )A.若,则;B.若,则;C.若,则;D.若,则.7.某市环保局为增加城市的綠地面积,提出两个投资方案:方案A为一次性投资100万元;方案B为第一年投资10 万元,以后每年都比前一年增加10万元。

则按照方案B经过多少年后,总投入不少于方案A的投入。

答曰:( )A.4B.5C.9D.108.锐角使同时成立,则的值为( )A.B.C.D.9.已知,则( )A.B.C.D.二、填空题1.函数在区间上单调递减( )A.B.(-C.D.2.设等差数列的前n项和为已知则3.若,则4.5.已知关于的不等式,对一切实数都成立,则的取值范围是6.在中分别为角所对的边,已知,且的面积为,则三、解答题1.(本题满分12 分)(1)计算,(2)已知,求sin的值。

2.(本题满分12 分)已知数列为等比数列,且首项为,公比为,前项和为.(Ⅰ)试用,,表示前项和;(Ⅱ)证明(Ⅰ)中所写出的等比数列的前项和公式。

3.(本题满分12 分)如图,从气球上测得正前方的河流的两岸的俯角分别为,如果这时气球的高度米,求河流的宽度.4.(本题满分12 分)已知(Ⅰ)将化成的形式;(Ⅱ)求的最小正周期和最大值以及取得最大值时的的值;(Ⅲ)求的单调递增区间。

5.(本题满分13 分)据气象部门预报,在距离某码头南偏东方向600km处的热带风暴中心,正以每小时20km的速度向正北方向移动,距风暴中心450km以内的地区都将受到影响,从现在起多长时间后,该码头将受到热带风暴中心的影响,影响多长时间?(精确到0.1h)6.(本题满分14分)在等差数列中,已知。

陕西高一高中数学水平会考带答案解析

陕西高一高中数学水平会考带答案解析

陕西高一高中数学水平会考班级:___________ 姓名:___________ 分数:___________一、选择题1.已知等差数列中,的值是A.15B.30C. 31D. 642.若全集U=R,集合M=,S=,则=A.B.C.D.3.若1+2+22+……+2n>128,nÎN*,则n的最小值为A. 6B. 7C. 8D. 94.在中,,,则一定是A.等腰三角形B.等边三角形C.锐角三角形D.钝角三角形5.若不等式的解集为,则a-b值是A.-10B.-14C.10D.146.在等比数列{a}中,=1,=3,则的值是nA.14B.16C.18D.207.已知,则的最小值为A.8B.6C.D.8.黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案,则第个图案中有白色地面砖的块数是A.B.C.D.9.已知变量满足,目标函数是,则有A.B.无最小值C.无最大值D.既无最大值,也无最小值10.在R上定义运算,若不等式成立,则实数a的取值范围是A.B.C.D.二、填空题1.已知△ABC的三个内角A、B、C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为.2.b克糖水中有a克糖(b>a>0),若再加入m克糖(m>0),则糖水更甜了,将这个事实用一个不等式表示为 .3.在数列中,,且对于任意正整数n,都有,则= ________________.4.把正整数按上小下大、左小右大的原则排成如图三角形数表(每行比上一行多一个数):设(i、j∈N*)是位于这个三角形数表中从上往下数第i行、从左往右数第j个数,如=8.若=2006,则i、j的值分别为________ ,__________5.△ABC中,D在边BC上,且BD=2,DC=1,∠B=60o,∠ADC=150o,求AC的长及△ABC的面积。

6.已知数列为等差数列,且(1)求数列的通项公式;(2)求数列的前n项和。

2021年3月河北省高中会考数学试题

2021年3月河北省高中会考数学试题

1、若一个等差数列的首项是5,公差是3,那么第5项是多少?A. 11B. 14C. 17D. 20解析:等差数列的通项公式为an=a1+(n-1)d,其中a1是首项,d是公差,n是项数。

代入a1=5,d=3,n=5,得到a5=5+(5-1)×3=17。

(答案)C2、一个圆的半径为r,若其面积增加了一倍,则半径变为多少?A. r/2B. rC. √2rD. 2r解析:圆的面积公式为S=πr²。

若面积增加了一倍,则新面积为2πr²。

设新半径为R,则2πr²=πR²,解得R=√2r。

(答案)C3、在三角形ABC中,若角A=60度,角B=45度,则角C等于多少度?A. 45度B. 60度C. 75度D. 90度解析:三角形内角和为180度。

已知角A=60度,角B=45度,所以角C=180-60-45=75度。

(答案)C4、若一个正方体的体积是27立方厘米,那么它的表面积是多少平方厘米?A. 9B. 18C. 27D. 54解析:正方体的体积公式为V=a³,其中a为棱长。

由题意得a³=27,解得a=3厘米。

正方体的表面积公式为S=6a²,代入a=3得S=6×3²=54平方厘米。

(答案)D5、下列哪个数不是有理数?A. 1/2B. √2C. -3D. 0解析:有理数是可以表示为两个整数之比的数。

√2无法表示为两个整数的比,所以√2不是有理数。

(答案)B6、若一个长方形的长是8厘米,宽是长的一半,则这个长方形的面积是多少平方厘米?A. 16B. 32C. 64D. 128解析:长方形的宽为8/2=4厘米,面积为长×宽=8×4=32平方厘米。

(答案)B7、在直角坐标系中,点A(3,4)到原点O(0,0)的距离是多少?A. 3B. 4C. 5D. 7解析:两点间距离公式为d=√[(x2-x1)²+(y2-y1)²]。

泰安高中会考往年试题及答案

泰安高中会考往年试题及答案

泰安高中会考往年试题及答案试题一:语文1. 请解释下列词语的含义:- 踌躇满志- 栩栩如生2. 阅读下面的古诗文,回答问题:- 古诗文内容:(此处可以插入一段古诗文)- 问题:请分析这首诗的意境和作者表达的情感。

试题二:数学1. 解下列方程:- \( x^2 + 4x + 4 = 0 \)2. 计算下列几何图形的面积:- 一个半径为5的圆。

试题三:英语1. 将下列句子翻译成英文:- 他每天都坚持跑步。

2. 阅读下面的短文,回答问题:- 短文内容:(此处可以插入一段英语短文)- 问题:请概述短文的主要内容。

试题四:物理1. 描述牛顿第二定律的物理意义。

2. 解释什么是电磁感应现象。

试题五:化学1. 请列举常见酸碱指示剂及其变色范围。

2. 描述化学反应速率的三个主要影响因素。

答案:试题一答案:1. 踌躇满志:形容人志向远大,信心满满。

栩栩如生:形容艺术作品或描写生动逼真,如同活的一样。

2. 古诗文意境分析:(此处根据古诗文内容给出分析)作者情感表达:(此处根据古诗文内容给出情感分析)试题二答案:1. 方程解为:\( x = -2 \)(这是一个完全平方的方程,解法为\( x = -b \pm \sqrt{b^2 - 4ac} / 2a \))2. 圆的面积:\( \pi r^2 = 25\pi \) 平方单位。

试题三答案:1. 翻译:He insists on running every day.2. 短文概述:(此处根据短文内容给出概述)试题四答案:1. 牛顿第二定律的物理意义是:物体的加速度与作用力成正比,与物体的质量成反比。

2. 电磁感应现象是指当导体在磁场中移动时,会在导体中产生电流。

试题五答案:1. 常见酸碱指示剂及其变色范围:- 酚酞:pH 4.4-8.2,无色变为粉红色。

- 甲基橙:pH 3.1-4.4,红色变为黄色。

2. 化学反应速率的三个主要影响因素:- 反应物浓度- 温度- 催化剂结束语:本试题及答案仅供学习参考,实际会考内容可能会有所变化,请同学们根据最新的教学大纲和考试要求进行复习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学会考试题及答案
第一部分:选择题
1. 下列哪个不是一次函数?
A. f(x) = 2x + 3
B. f(x) = 5x^2 - 3
C. f(x) = 4x - 1
D. f(x) = x/2 + 1
2. 已知直角三角形ABC,∠A = 90°,AB = 5 cm,AC = 12 cm,求BC的长度。

A. 10 cm
B. 11 cm
C. 13 cm
D. 15 cm
3. 解方程2x + 5 = 17的解为:
A. x = 6
B. x = 7
C. x = 8
D. x = 9
4. 已知函数f(x) = 3x - 2,求f(a + b)的值。

A. 4a + b - 2
B. 2a + 3b - 2
C. 3a + 3b - 2
D. 3a + 3b + 2
5. 若三角形的三边分别为a, b, c,且满足c^2 = a^2 + b^2,这个三角形是:
A. 等腰三角形
B. 锐角三角形
C. 直角三角形
D. 钝角三角形
第二部分:填空题
6. 一个几何中心名为 ____________。

7. 一条直线和一个平面相交,交点个数为 ____________。

8. 未知数的指数为负数,表示 ____________。

9. 若两个角的和等于180°,则这两个角称为 ____________。

10. 在一个等边三角形中,每个内角大小为 ____________。

第三部分:解答题
11. 用二分法求方程x^2 - 4x + 3 = 0在区间[1, 3]上的一个根的精确值。

12. 已知函数f(x) = 3x^2 - 12x + 9,求f(x)的最小值。

13. 若平面内通过点A(-2, 3)和点B(4, 1)的直线与x轴交于点C,求直线AC的斜率和方程。

答案:
1. B
2. C
3. A
4. B
5. C
6. 几何中心
7. 一个
8. 负数
9. 互补角
10. 60°
11. 使用二分法可得根的精确值为2。

12. f(x)的最小值为 0。

13. 直线AC的斜率为 0.5,方程为 y = 0.5x + 4。

通过以上高中数学会考试题及答案,希望能帮助同学们复习和巩固数学知识,取得好成绩!。

相关文档
最新文档