沉降观测方案

合集下载

沉降观测方案

沉降观测方案

一、工程概况本工程为珠海市水务建设管理中心投资兴建, 长江勘测规划计研究有限责任公司设计的、江苏科兴建设监理公司进行监理的堤防工程, 木乃南堤段位于大门水道入海口浅海区, 属于鸡啼门水道左岸堤防, 位于鸡啼门水道口左侧小木乃~三灶岛之间, 为海上新建堤防。

木乃南堤段起于红旗镇小木乃, 向南延伸到三牙石后向东与青洲连线, 跨过大门口水道后止于三灶岛横石基房间石, 为海上新建堤。

新建堤防长度为;新建水闸2座, 包括大门口闸(水闸和通航孔)和矿山电厂闸。

本工程所采用的平面坐标采用独立挂靠在1954年北京坐标系上, 高程1956年黄海高程。

本工程所需的平面及竖向测量控制点及水准点由设计院布控在现场的原海堤上, 基本达到通视的效果。

二、编制依据1.建筑工程施工测量规程(北京市标准DBJ 01-21-95)。

2.工程测量规范(GB50206-93)。

3.长江勘测规划计研究有限责任公司提供的施工测量坐标及标高数据。

4.长江勘测规划计研究有限责任公司提供的控制点测量坐标及引入水准基点标高数据。

5.水电水利工程施工测量规范(DLT5173-2003)。

6.《施工图纸》。

7、混凝土大坝安全检测技术规范(DLT5178-2003)。

三、沉降观测(一)海堤防护工程从施工开始到竣工, 以及建成运营之后很长一段时间, 沉降变形是不可避免的。

(二)木乃南堤段海堤沉降观测采用水准测量的方法, 周期性的观测海堤上沉降观测点和水准基点之间的高差变化值。

(三)测量准备1.人员准备。

根据本工程实际现场情况, 挑选有丰富测量经验的测量员、执尺员, 配置打桩人员, 建立职业及专职的测量组, 测量组成员如下:(1)、技术负责人: 黎文波—负责全面技术工作, 对测量工作进行复合和指导调配。

(2)、测量员: 陈根煜—负责全面的测量工作, 对测量资料记录整理, 形成文字文件。

计算测量数据居整理好测量成果。

(3)、执尺员: 刘梅斌—负责测量时棱镜、水准尺的摆放、调正, 并根据测量的指示, 定好桩位的位置, 并做好桩位标志。

沉降观测检测方案

沉降观测检测方案
2.建筑物倾斜观测:采用全站仪进行角度和距离测量。
3.基坑周边环境变形观测:采用全站仪或激光测距仪进行监测。
4.地下水位变化观测:采用水位计进行实时监测。
六、观测点布置
1.沉降观测点:沿建筑物四周及主要承重部位均匀布置,每侧不少于3个点,共计不少于12个观测点。
2.倾斜观测点:建筑物四角及主要受力部位均匀布置,每侧不少于2个点,共计不少于8个观测点。
3.基坑支护结构变形观测点:根据支护结构形式及设计要求进行布置。
4.地下水位观测点:在基坑周围均匀布置,数量根据基坑大小及设计要求确定。
七、观测周期及频率
1.沉降观测:施工期间,每完成一个施工阶段进行一次观测;工程完工后,每季度进行一次观测。
2.倾斜观测:施工期间,每完成一个施工阶段进行一次观测;工程完工后,每年进行一次观测。
1.掌握建筑物及地基在施工过程中的沉降变化情况,及时发现异常情况,防止工程质量事故的发生。
2.分析沉降原因,为调整施工方案和采取相应措施提供依据。
3.为建筑物后期使用和维护提供基础数据。
三、观测依据
1.《建筑基坑工程监测技术规范》(GB50497-2009)
2.《建筑变形测量规范》(JGJ8-2016)
2.全站仪测量法:采用全站仪进行建筑物及周围环境的倾斜观测。
3.基坑支护结构变形观测:采用全站仪或激光测距仪进行观测。
4.地下水位观测:采用水位计进行观测。
六、观测点布置
1.沉降观测点:沿建筑物四周及中间均匀布置,每边不少于3个,共计不少于12个观测点。
2.倾斜观测点:在建筑物四角及中间均匀布置,每边不少于2个,共计不少于观测过程中发现的问题及采取的措施进行总结,形成观测总结报告。
本沉降观测检测方案旨在确保工程质量和建筑物使用安全,观测过程中如遇特殊情况,可根据实际情况调整观测方案。在观测过程中,严格遵守国家法律法规,确保观测工作的合法合规。

沉降观测方案

沉降观测方案

沉降观测方案一、前言沉降观测方案是为了监测工程建设过程中土壤沉降情况,以保证工程建设的安全和质量,同时也为工程后续修缮提供重要的参考。

本文将针对沉降观测方案进行详细的介绍。

二、沉降观测目的本沉降观测方案的目的是在工程建设过程中,及时监测土壤沉降,掌握沉降的趋势和速率,为工程后续的设计、修缮等工作提供重要的数据。

三、沉降观测范围本次沉降观测的范围为工程建设的周围区域,包括建筑物、道路和水系等。

具体观测点的位置需要根据具体情况进行选择。

四、沉降观测内容1. 观测点的选择:根据建设工程的地理位置、工程规模和建筑结构等因素,选择一定数量的观测点。

2. 观测设备的布置:在每一个观测点选取一个合适的地点,安装沉降仪,确保设备的准确性和可靠性。

3. 观测内容的记录:每隔一段时间进行一次观测,记录相关数据,包括时间、沉降量、温度、湿度等。

4. 数据的处理和分析:对观测获得的数据进行处理和分析,得出沉降趋势和速率的变化情况,提供后续工作的参考。

五、沉降观测设备和工具1. 沉降仪:用于测量土壤的沉降量和变形情况。

2. 数据记录器:用于记录沉降仪测得的相关数据。

3. 温湿度计:用于记录环境温度和湿度,保证观测的准确性。

4. 其他相关工具:如电池、电缆、夹具等。

六、观测频率和时间1. 观测频率:每月进行一次观测,并进行数据记录,具体时间可以根据工程的情况进行灵活调整。

2. 观测的时间:可以根据需要在白天或夜间进行,但要保证每次观测的时间相同。

七、数据处理和报告撰写1. 数据处理:从沉降仪和数据记录器中获得数据后,进行处理和分析,得出沉降趋势和速率的变化情况。

2. 报告撰写:根据观测数据撰写沉降观测报告,包括观测数据、沉降趋势分析、结论和建议等内容。

以上即为沉降观测方案的详细内容,希望对大家有所帮助。

管网沉降观测专项方案

管网沉降观测专项方案

1. 《城市测量规范》CJJ/T8-20112. 《工程测量规范》GB50026-20073. 《建筑工程施工测量规范》DBJ01-2144. 《建筑工程资料管理规程》JGJT185-2009二、工程概况本项目为某市地下管网改造工程,主要涉及城市排水、供水、供电、通讯等管网设施。

为确保工程顺利进行,保障城市正常运行,特制定本沉降观测专项方案。

三、观测目的1. 监测地下管网在施工过程中的沉降情况,为施工提供实时数据,指导施工。

2. 评估施工对周边环境的影响,确保工程质量和城市安全。

四、观测范围及内容1. 观测范围:本项目施工范围内的地下管网设施,包括排水管道、供水管道、供电电缆、通讯光缆等。

2. 观测内容:地下管网设施的沉降量、沉降速率、沉降规律等。

五、观测方法1. 采用水准测量法进行沉降观测,选用DSZ2精密水准仪进行测量。

2. 采用电子水准仪进行辅助测量,提高观测精度。

3. 沉降观测点布设:根据工程实际情况,在地下管网设施周边每隔一定距离布设沉降观测点,确保观测点的均匀分布。

六、观测周期及精度要求1. 观测周期:施工过程中,每5天进行一次沉降观测;施工结束后,每10天进行一次沉降观测。

2. 精度要求:沉降观测误差应小于变形值的1/10。

七、观测人员及设备1. 观测人员:具备相关专业知识和技能的测量工程师、测量员。

2. 观测设备:DSZ2精密水准仪、电子水准仪、水准尺、三角网、全站仪等。

八、沉降观测数据处理及分析1. 对观测数据进行实时记录,并定期整理分析。

2. 分析沉降规律,预测沉降发展趋势。

3. 根据观测结果,及时调整施工方案,确保工程质量和城市安全。

九、沉降观测报告1. 观测报告内容包括:观测数据、沉降分析、结论及建议等。

2. 观测报告需在观测结束后及时提交给甲方及相关部门。

十、安全措施1. 观测人员需严格遵守操作规程,确保人身安全。

2. 观测设备应定期检查、维护,确保设备完好。

3. 施工现场应设置安全警示标志,防止意外事故发生。

已有建筑物沉降观测方案

已有建筑物沉降观测方案

已有建筑物沉降观测方案建筑物沉降观测方案一、研究背景建筑物沉降是指建筑物在使用过程中或施工完成后由于地基变形或松弛引起的下沉现象。

沉降问题对建筑物的安全性和使用寿命有着重要影响,因此建筑物沉降观测必不可少。

本方案旨在提出一种科学可行的建筑物沉降观测方案,以监测建筑物的沉降情况,及时采取相应措施,确保建筑物的使用安全。

二、观测目标本观测方案的目标是监测建筑物的沉降情况,包括建筑物整体的沉降情况和各个局部区域的沉降情况,以提供科学依据和参考数据,为建筑物的维护、修复和加固提供支持。

三、观测方法1. 使用水平测量仪:选择合适的水平测量仪器,如全站仪或高精度位移传感器等,将其安装在建筑物的关键位置,进行连续的水平位移测量。

2. 使用竖向测量仪:选择合适的竖向测量仪器,如测斜仪或水准仪等,将其安装在建筑物的不同层面,进行连续的竖向位移测量。

3. 安装地基沉降监测设备:在建筑物的地基上布设一定数量的地基沉降监测设备,如沉降点、沉降管等,定期测量地基的沉降情况。

4. 建立沉降观测点:在建筑物周围设置一定数量的沉降观测点,将水平测量仪和竖向测量仪等设备统一安装在这些点上,定期进行观测,以获得更全面的建筑物沉降数据。

四、观测频率与时间1. 设定观测频率:根据建筑物的类型、规模和重要性等因素,确定观测频率,如每周、每月或每季度进行观测。

2. 观测时间:观测时间应覆盖建筑物的使用寿命,对于新建的建筑物,观测应始于施工完成后;对于已存在的建筑物,观测应从启动阶段开始进行,并持续到使用寿命结束。

五、数据处理与分析1. 数据采集:对于连续的观测数据,采集频率应根据观测设备的规格和要求进行设置,确保数据的准确性和完整性。

2. 数据处理:对采集到的数据进行校正和补偿,消除或减小误差,得到可靠的沉降数据。

3. 数据分析:对观测数据进行统计和分析,评估建筑物的沉降情况,确定是否存在异常沉降,并及时采取相应的措施。

六、结果应用1. 建筑物维护:根据观测结果,定期评估建筑物的沉降情况,制定合理的维护计划,及时修复和加固建筑物。

沉降观测qc实施方案

沉降观测qc实施方案

沉降观测qc实施方案沉降观测QC实施方案。

一、前言。

沉降观测是土木工程中非常重要的一项工作,它可以帮助工程师监测土地或建筑物的沉降情况,及时发现问题并采取相应的措施。

为了确保沉降观测的准确性和可靠性,我们需要实施严格的QC(Quality Control)措施,以确保观测数据的准确性和可靠性。

二、实施方案。

1. 观测设备选择。

在进行沉降观测之前,我们首先需要选择合适的观测设备。

一般情况下,我们会选择高精度的水准仪、测距仪和GPS定位设备,以确保观测数据的精准度和可靠性。

2. 观测点设置。

在选择观测点时,我们需要考虑到地形、建筑物布局等因素,以确保观测点的选择能够全面、准确地反映土地或建筑物的沉降情况。

同时,我们还需要根据工程要求确定观测点的数量和布设方式,以确保观测数据的全面性和代表性。

3. 观测数据采集。

在进行沉降观测时,我们需要严格按照规定的时间间隔和方法进行数据采集,确保观测数据的连续性和一致性。

同时,我们还需要对观测数据进行实时监测和分析,及时发现异常情况并采取相应的措施。

4. 数据处理和分析。

在完成观测数据的采集后,我们需要对数据进行严格的处理和分析,确保观测数据的准确性和可靠性。

同时,我们还需要对观测数据进行统计分析,以得出准确的沉降情况和趋势。

5. 报告编制。

最后,我们需要编制沉降观测报告,将观测数据、处理分析结果以及相关结论进行详细的记录和总结,以便工程师和相关人员进行参考和决策。

三、总结。

通过严格的沉降观测QC实施方案,可以确保观测数据的准确性和可靠性,为工程建设提供可靠的依据和参考。

因此,在进行沉降观测时,我们需要严格按照上述实施方案进行操作,以确保观测工作的顺利进行和观测数据的准确可靠。

建筑沉降变形观测方案技术设计书三篇

建筑沉降变形观测方案技术设计书三篇

建筑沉降变形观测方案技术设计书三篇篇一:建筑沉降变形观测方案技术设计书一、工程概况:***大学***校区教三楼位于校道南侧,东临山丘,南临图书馆,西临教四楼,北面三栋广场,钢筋混凝土结构,地面高六层;场地地形较平坦,地基为粘性土地基。

由**建筑综合设计研究院设计,**公司第三分公司施工,*****公司监理,工程竣工日期为二0XX 年六月。

二、编制依据1、《建筑变形测量规程》(JGJ/T8-20XX )2、《工程测量规范》(GB 50026--20XX )3、《国家一、二等水准测量规范》(GB12987-91)4、****大学***校区教三栋1:500平面图5、教三楼结构情况及周边环境实况三、沉降观测方案(一)沉降观测精度、时间、次数:(1)、观测精度本次采用二级观测精度。

沉降基准网观测采用一级水准测量,往返高差较差或高差闭合差应n 3.0±≤mm ,(n 为测站数),最大不超过n 5.0±≤mm ,沉降观测往返高差较差或高差闭合差应n 0.1±≤mm ,(n 为测站数),最大不超过n 5.1≤mm 。

观测点测站高差中误差:≤0.5mm ;观测的视线长度:≤50m;前后视视距差:≤1.0m;视距累积差≤3.0m;观测成果在限差内按观测距离或测站数分配闭合差计算高程。

观测时一定要爱护观测标志,尺子放在观测点上应用力轻,立尺一定要直,每次把尺子立在观测标志之前,都要把观测标志点和尺子擦干净,以防止观测标或尺底粘泥土而影响观测精度。

(2)观测时间、次数观测周期每月一次,每期观测时间三个小时,总共进行6期观测。

首次观测时间为20XX年12月7日。

首次观测时,应观测多次取其平均值,以提高初始值的可靠性。

(二)基准点和工作点的布设1、观测点的设置:按照设计院的要求,并根据沉降观测的有关规定,布置沉降观测点依据以下原则布设:(1)参照设计图纸;(2)建筑物的各拐角极大转角处;(3)高低层建筑物、纵横墙的交接处两侧;(4)建筑物沉降缝两侧、基础埋深相差悬殊处。

沉降观测施工方案

沉降观测施工方案

沉降观测施工方案一、施工目的沉降观测是指在土地开发、基础工程施工等过程中,为了了解和监测地基的沉降情况,以便及时采取相应的措施,防止沉降引起的工程事故和安全隐患的一种技术手段。

本施工方案的目的是为了进行沉降观测,及时监测地基的沉降情况,确保工程施工的安全性和稳定性。

二、施工条件1.工程地点:选择地势平坦、无地基隐患、无人居住区域的地块进行施工。

2.施工设备:沉降仪、专业测量仪器等。

3.监测点设置:根据工程规模和要求,合理设置监测点,保证监测数据的全面和准确性。

三、施工流程1.准备工作(1)确定施工目的,明确沉降观测的目标和要求。

(2)选择合适的施工设备和工具,确保施工质量。

(3)确定监测点位置,根据工程实际情况和监测要求,合理设置监测点。

(4)制定施工计划,明确各个施工环节的具体工作内容和流程。

2.监测设备安装(1)将沉降仪和专业测量仪器准备好,确保设备的完好性和准确性。

(2)根据监测点位置,将监测设备安装在合适的位置上,保证设备的稳定和可靠性。

(3)根据设备的使用说明书,正确连接设备和电源,进行设备的调试和校准。

3.数据采集与分析(1)在施工过程中,按照预定的监测频率,定期进行数据的采集和记录。

(2)采集到的数据导入计算机,进行数据分析和处理,得出相应的数据结果。

(3)根据分析结果,判断地基的沉降情况,及时采取相应的措施。

4.结果呈报(1)根据监测结果,编写监测报告,详细说明沉降情况和分析结果。

(2)将监测报告提交给工程负责人和相关部门,供其参考和决策。

四、安全措施1.在施工过程中,严格遵守相关安全规定和操作规程,确保施工人员的人身安全。

2.使用专业仪器和设备时,保证设备的正常运行和操作,避免设备故障造成的事故。

3.施工现场设置警告标志,提醒相关人员注意施工区域,防止意外事故的发生。

4.对施工过程中可能造成的环境污染和噪声污染,采取相应的措施,保护环境和降低噪音。

五、质量控制1.监测设备的选择和安装要符合相关标准和规定,确保设备的质量和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西进贤经济开发区高新产业园污水处理厂(BOT)项目沉降观测监测专项方案批准人:____________职务/职称______________ 审核人:____________职务/职称______________ 编制人:____________职务/职称______________博天环境集团股份有限公司2017年月日目录第一章编制依据 (2)第二章工程概况 (3)一、参见单位 (3)二、工程简介 (3)三、工程地质条件 (5)四、水文地质条件 (6)五、施工条件及影响因素 (7)第三章施工部署 (8)一、组织机构 (8)二、人员安排 (8)三、器具准备 (9)第四章控制点的布置及施测 (10)一、监测项目 (10)二、沉降观测的原理 (10)三、沉降观测基准点 (10)四、沉降观测点的布设 (11)五、沉降观测 (12)六、沉降观测点的观测及计算 (14)第五章沉降观测的质量控制 (16)第六章成果资料的提交 (18)第七章测量管理制度 (19)一、测量管理制度 (19)二、仪器保养和使用制度 (19)第一章编制依据一、国家有关法律法规《中华人民共和国建筑法》《中华人民共和国安全生产法》《建筑工程安全生产管理条例》《建筑工程质量管理条例》《中华人民共和国环境保护法》《建筑工程消防监督审核管理规定》二、土建施工主要规程规范《工程测量规范》 GB 50026-2007《建筑变形测量规范》 JGJ 8-2016《国家一、二等水准测量规范》 GB/T12897-2006三、其它依据1、依据本工程设计图纸2、依据本工程地勘报告3、本工程施工组织设计4、本工程现场勘查记录第二章工程概况一、参见单位1、项目名称:进贤县经济开发区高新园区新建日处理2万吨污水处理厂项目工程(BOT)项目一期工程2、工程地点:江西省南昌市进贤经济开发区高新产业园污水处理厂3、建设单位:进贤县博华水务有限公司4、施工单位:博天环境集团股份有限公司5、设计单位:江西省建筑设计研究总院6、监理单位:江西省恒信建设工程监理咨询有限公司6、勘察单位:江西省物化探地质工程勘察院7、质量要求:满足合同签订要求8、计划工期:计划开始时间2017年6月10日,计划完成时间2018年6月10日;总工期366天。

工程进度将根据业主现场实际情况及时进行调整,以监理单位下达开工令为准。

二、工程简介本工程位于江西省进贤县经济开发区内,新320国道旁西北方向约600米处,一期建筑物总用地面积18731.00㎡,建筑物包含综合楼,尾水检测机房、变配车间、鼓风机房、综合加药间、机修间及仓库、污泥脱水机房,均采用框架结构;粗格栅及提升泵房、细格栅及曝气沉砂池、调节池及事故池、混凝反应池、初沉池、水解酸化池、BIODOPP生化池、滤布滤池、接触消毒池、尾气检测井、污泥浓缩池、污泥调理池、除臭实施,均采用钢筋混凝土结构,及配套辅助设施1座1F传达室,采用框架结构。

综合楼:本工程采用框架结构体系,地上2层,建筑总高度为8.700米,为钢筋混凝土多层建筑,建筑结构安全等级为二级,设计使用年限为50年,建筑耐火等级为二级,抗震设防烈度6度,本工程抗浮设计水位为22.500m,基础采用桩基础,桩顶标高为-1.200m,首层梁面标高0.250m。

抗震设防烈度为 6度,设计基本地震加速度为 0.05g,设计地震分组属第一组,设计特征周期为 0.35s。

尺寸为18.2×11.5米,建筑高度地面上4.50米,自然地面黄海高程为21.5米,基础厚为550mm,垫层厚度为100mm,池底板顶面标高为-7.300m和-4.300m。

本工程采用钢筋混凝土结构;设计使用年限为 50年, 抗震设防烈度为 6度,设计基本地震加速度为0.05g,设计地震分组属第一组,设计特征周期为 0.35s。

建筑场地类别:Ⅱ类,抗震等级三级。

抗浮水位标高为22.50m。

污泥储池:尺寸为6.20×6.20米,建筑高度地面上3.50米,自然地面黄海高程为21.50米,基础底板厚为500mm,垫层厚度为100m,池底板顶面标高为-1.500m。

本工程采用钢筋混凝土结构;设计使用年限为 50年, 抗震设防烈度为 6度,设计基本地震加速度为 0.05g,设计地震分组属第一组,设计特征周期为 0.35s。

建筑场地类别:Ⅱ类,抗震等级三级。

抗浮水位标高为21.50m。

鼓风机房、配电间:本工程采用框架结构体系,地上2层,建筑总高度为6.600米,为钢筋混凝土多层建筑,建筑结构安全等级为二级,设计使用年限为50年,建筑耐火等级为二级,抗震设防烈度6度,本工程抗浮设计水位为22.500m,基础采用桩基础,桩顶标高为-1.050m和-1.250m,首层梁面标高0.250m。

抗震设防烈度为 6度,设计基本地震加速度为 0.05g,设计地震分组属第一组,设计特征周期为 0.35s。

加药间、机修间、仓库:本工程采用框架结构体系,地上2层,建筑总高度为6.100米,为钢筋混凝土多层建筑,建筑结构安全等级为二级,设计使用年限为50年,建筑耐火等级为二级,抗震设防烈度6度,本工程抗浮设计水位为22.500m,基础采用桩基础,桩顶标高分别为-0.950m、-0.400m和-1.150m,首层梁面标高-0.300m,抗震设防烈度为 6度,设计基本地震加速度为 0.05g,设计地震分组属第一组,设计特征周期为 0.35s。

接触消毒池、出水计量槽:尺寸为17.525×6.750米,建筑高度地面上0.40米,自然地面黄海高程为21.50米,基础底板厚为400mm,垫层厚度为100m,池底板顶面标高为-3.600m。

本工程采用钢筋混凝土结构;设计使用年限为 50年, 抗震设防烈度为 6度,设计基本地震加速度为0.05g,设计地震分组属第一组,设计特征周期为 0.35s。

建筑场地类别:Ⅱ类,抗震等级三级。

抗浮水位标高为22.50m。

本工程采用外部框架、内部水池结构体系,地上1层,建筑总高度为8.100米,为钢筋混凝土多层建筑,建筑结构安全等级为二级,设计使用年限为50年,建筑耐火等级为二级,抗震设防烈度6度,本工程抗浮设计水位为22.500m,基础采用桩基础,桩顶标高分别为-1.950m、-1.200m和-1.050m,基础底板厚为400mm,垫层厚度为100m,池底板顶面标高为-1.600m(局部-0.700m)。

抗震设防烈度为 6度,设计基本地震加速度为 0.05g,设计地震分组属第一组,设计特征周期为 0.35s。

水解池:尺寸为38.00×58.70米,建筑高度地面上4.10米(局部4.7m、4.4m),自然地面黄海高程为21.50米,基础底板厚为750mm,垫层厚度为100m,池底板顶面标高为-2.500m。

本工程采用钢筋混凝土结构;设计使用年限为 50年, 抗震设防烈度为 6度,设计基本地震加速度为 0.05g,设计地震分组属第一组,设计特征周期为 0.35s。

建筑场地类别:Ⅱ类,抗震等级三级。

抗浮水位标高为18.80m。

三、工程地质条件一、地形、地貌及地质构造本场地地貌单元属Ⅲ级阶地,岗丘沟谷地貌,场地多为水塘,水田,场地未进行平整,保持原始地形,场地内地形相对平坦,个别部位地势起伏较大,场地及附近无明显构造活动。

勘察深度内为第四系全新统人工堆积(Q4ml)、第四系全新统冲积(Q4al)、第四系全新统冲洪积(Q4al+pl)、第四系上更新统残积物(Q3el)。

二、地层岩性及其工程地质特征根据野外鉴别及室内试验结果,场地岩土层(勘察深度内)自上而下划分为:①素填土(Q4ml):灰褐、浅黄色,松散,主要成分为粘土及砾石组成,为近期平整场地所至,仅在ZK22、ZK23、ZK24、ZK25号孔揭露,其余钻孔均未分布。

层厚0.50~1.30米。

②耕表土(Q4al):灰褐、褐黄色,松散,主要成分为砂、粘粒粉粒组成,含有植物根茎,新近堆积,除ZK1、ZK2、ZK3、ZK4、ZK5、ZK6、ZK7、ZK10、ZK13、ZK14、ZK15、ZK16、ZK17、ZK18、ZK19、ZK20、ZK22、ZK23、ZK24、ZK25、ZK26、ZK27未揭露外,其余钻孔均有揭露,层厚0.30~0.60m,层面高程15.26~17.09米。

③淤泥质粉质粘土(Q4al):深灰、灰黑色,流塑,干强度中等,韧性高,摇振无反应,物质组成以粉粒、粘粒为主,局部夹细砂,含有机质及腐植质,仅在ZK1、ZK2、ZK3、ZK4、ZK5、ZK6、ZK7、ZK10、ZK13、ZK14、ZK15、ZK16、ZK17、ZK18、ZK19、ZK20、ZK26、ZK27、ZK34号孔揭露,其余钻孔均未出露,层厚0.40~3.80m,层面高程12.79~15.22米。

④-1粉质粘土(Q4al):浅黄、褐黄色,可塑,切面光滑,稍有光泽,干强度中等,韧性中等,摇振无反应,物质组成以粉粒、粘粒为主,局部可见高岭土团块,全场地分布,层厚0.60~4.20m,层面高程11.16~16.69米。

⑤中砂(Q4al+pl):浅灰、灰白色,松散及稍密,饱和,主要成分为石英及硅质砂岩夹云母碎屑,颗粒级配不良,呈次圆状,泥质胶结,颗粒粒组为:粉砂粒组7.2-8.0%,平均值7.6%;细砂粒组21.8-23.6%,平均值22.7%;中砂粒组46.9-48.2%,平均值47.6%;粗砂粒组16.0-18.5%,平均值17.3%;砾砂粒组4.3-5.5%,平均值4.9%;全场地分布,层厚0.40~5.70m,层面高程8.66~15.18米。

④-2粉质粘土(Q4al):浅黄、褐黄色,可塑,切面光滑,稍有光泽,干强度中等,韧性中等,摇振无反应,物质组成以粉粒、粘粒为主,局部可见高岭土团块,除ZK7、ZK8、ZK9、ZK10、ZK11、ZK12、ZK14、ZK15、ZK16、ZK17、ZK18、ZK19、ZK22、ZK23、ZK24、ZK25、ZK31、ZK32、ZK37、ZK38、ZK44、ZK45、ZK46、ZK57、ZK58、ZK63、ZK64、ZK65、ZK66、ZK67、ZK68孔孔未揭露外,其余钻孔均有分布,层厚0.70~3.50m,层面高程7.95~13.31米。

⑥粗砂(Q4al+pl):浅灰、灰白色,稍密,饱和,主要成分为石英及硅质砂岩,颗粒级配不良,呈次圆状,局部可见少量砾石,粒径在0.1-8cm,泥质胶结,颗粒粒组为:粉砂粒组5.0-5.7%,平均值5.4%;细砂粒组7.6-9.1%,平均值8.4%;中砂粒组25.3-27.2%,平均值26.3%;粗砂粒组39.5-41.49%,平均值40.5%;砾石粒组16.9-20.4%,平均值18.7%;全场地分布,层厚0.60~6.50m,层面高程6.42~12.91米。

相关文档
最新文档