初一数学图形测试题
初一数学《生活中的立体图形》测试题(北师大版)

初一数学《生活中的立体图形》测试题(北师大版)北师大版七上数先生活中的平面图形例题剖析〔含解析〕1.生活中罕见的平面图形(1)罕见的平面图形和对应的几何体图(1)是生活中几种罕见的实物图形,其对应的几何体如图(2)所示.图(1)图(2)生活中包括着少量的几何图形,这些几何图形可以笼统为几何体.罕见的几何体有长方体、正方体、圆柱、圆锥、球和棱柱等.留意:棱锥也是一种罕见的几何体.如下面的最后一图.(2)几何体的组成几何体是由平面或曲面围成的平面图形.假设围成的面都是平的,叫做多面体.【例1】以下图形中,下面一行是一些详细的实物图形,下面一行是一些几何体,试用线衔接几何体和相似的实物图形.剖析:对照实物图与几何体,从实物图形中笼统出数学几何体即可.解:如下图.2.几何图形的构成(1)几何图形的构成几何图形包括平面图形战争面图形,几何图形是由点、线、面构成的.面有平面和曲面,面不分厚薄;线有直线和曲线,线不分粗细.面与面相交失掉线,线与线相交失掉点,点不分大小.(2)点、线、面的关系从运动的角度看,点动成线,线动成面,面动成体.例如,把笔尖看做一个点,笔尖在纸上移动就能构成一条线,即点动成线.点动成线的实例还有:流星划过天空、粉笔在黑板上划动、保龄球滚动过的路途等.钟表的分针旋转一周构成一个圆面,即线动成面.线动成面的实例还有:汽车上的雨刷扫过玻璃窗、用刷子涂油漆等.长方形绕它的一边旋转一周就能构成一个圆柱,即面动成体.面动成体的实例还有:以三角形的一边为轴旋转一周构成的几何体等.【例2】如下图的平面图形,是由__________个面组成的,其中有__________个平面,有__________个曲面;面与面相交成__________条线,其中曲线有__________条.解析:该几何体的两个底面是平面;两个正面中一个是平面,一个是曲面.两个底面与曲正面相交成两条曲线,两个底面与平正面相交成两条直线,两个正面相交成两条直线.答案:43162点技巧线与面的数法关于几何体,面与面相交失掉线,线与线相交失掉点.在数面时可先数底面,再数正面;数线时,可先数底面与正面相交成的线,再数正面与正面相交成的线.3.平面图形的识别几何图形的特征:(1)圆柱:两个底面是等圆,正面是曲面.如八宝粥盒、茶杯等.(2)圆锥:底面是圆,正面是曲面.像锥子.如烟囱帽、铅锤、漏斗等.(3)长方体:有6个面,底面是长方形,相对的两个面平行且完全相反.如砖、文具盒等.(4)正方体:6个面是大小完全相反的正方形.如魔方等.(5)棱柱:一切侧棱长都相等,底面是多边形,上、下底面的外形相反,正面的外形都是平行四边形.(6)球:由一个曲面组成,圆圆的.如足球、乒乓球等.(7)棱锥:一个面是多边形,其他各面是一个有公共顶点的三角形.多边形的面称为棱锥的底面,其他各面称为棱锥的正面.依据底面的边数可将棱锥分为三棱锥、四棱锥……谈重点从哪几个方面看法几何体的特征①有几个面围成,是平面还是曲面;②有无顶点,有几个顶点;③正面是平面还是曲面;④底面是什么外形,是多边形还是圆,有几个底面等.【例3-1】请在每个几何体下面写出它们的称号.解析:依据平面图形的定义特征就可得出图形的称号.答案:三棱柱圆柱长方体圆锥四棱柱正方体球【例3-2】如图,在下面四个物体中,最接近圆柱的是().解析:圆柱是〝直〞的,与弯管B有清楚区别;D中的饮料瓶的盖确实可以看成是圆柱,但它在该物中只占很小的一局部,该物体从全体上讲更接近于棱柱;A中烟囱上下粗细不同,不是圆柱,故应扫除A,B,D;作为柱体的实质特征之一是〝粗细〞处处相反,而与高、矮(长、短)有关,C中玩具硬币虽然扁一些,但是最接近圆柱,所以应选C.答案:C4.几何体的分类(1)几何体按柱、锥、球的特征分为:(2)按围成的面分为:分类是数学中的基本方法,在分类时要一致规范,做到不重不漏.___________________________________________________ ______________________________________________________________________________________________________________ _______________________________________________________ _______________________________________________________ ____【例4-1】在粉笔盒、三棱镜、乒乓球、易拉罐瓶、书本、热水瓶胆等物体中,外形相似于棱柱的有().A.1个B.2个C.3个D.4个解析:粉笔盒、三棱镜、书本可以看成棱柱,乒乓球是球体,易拉罐瓶是圆柱,热水瓶胆既不是棱柱,也不是圆柱和球体.故答案选C.答案:C【例4-2】将以下几何体分类,并说明理由.剖析:分类时,先确定分类规范.分类规范不同,所属类别也不同,同时应留意分类要不重不漏.解:(1)按柱、锥、球划分:①②④⑤为一类,它们都是柱体;③⑦为一类,它们都是锥体;⑥为一类,它是球体.(2)按围成几何体的面是平面或曲面分:①④⑤⑦为一类,它们是多面体;②③⑥为一类,它们是旋转体.(3)按几何体有无顶点分:①③④⑤⑦为一类,它们都有顶点;②⑥为一类,它们都无顶点.5.几何体的构成(1)长方形绕其一边所在直线旋转一周失掉圆柱;(2)直角三角形绕其一条直角边所在直线旋转一周失掉圆锥;(3)半圆绕其直径所在直线旋转一周失掉球体.释疑点旋转体的构成①平面图形旋转会构成几何体;②平面图形绕某不时线旋转一周才可以构成几何体;③由平面图形旋转而失掉的几何体有:圆柱、圆锥、球以及它们的组合体.___________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ ____【例5】我们曾学过圆柱的体积计算公式:V=Sh=πR2h(R 是圆柱底面半径,h为圆柱的高),现有一个长方形,长为2cm,宽为1cm,以它的一边所在的直线为轴旋转一周,失掉的几何体的体积是多少?剖析:效果中的几何体可由两种方式旋转失掉.一种是绕这个长方形的长所在的直线旋转,另一种是绕这个长方形的宽所在的直线旋转,其结果不同,留意不要漏解.解:(1)当以长方形的宽所在的直线为轴旋转时,如图(1)所示,失掉的圆柱的底面半径为2cm,高为1cm.所以,其体积是V1=π×22×1=4π(cm3).(2)当以长方形的长所在的直线为轴旋转时,如图(2)所示,失掉的圆柱的底面半径为1cm,高为2cm.所以,其体积是V2=π×12×2=2π(cm3).所以,失掉的几何体的体积是4πcm3或2πcm3.。
(必考题)初中数学七年级数学上册第四单元《基本平面图形》测试卷(含答案解析)(1)

一、选择题1.如图,C ,D 是线段AB 上的两点,且D 是线段AC 的中点,若13AB cm =,5BC cm =,则BD 的长为( )A .7cmB .8cmC .9cmD .10cm2.如图,上午8:20,钟表的时针与分针所成的角是( )A .120°B .125°C .130°D .135°3.如图,OC 是AOB ∠的平分线,OD 是AOC ∠的平分线,且25COD ∠=︒,则AOB∠等于( )A .25︒B .50︒C .75︒D .100︒4.如图,线段CD 在线段AB 上,且3CD =,若线段AB 的长度是一个正整数,则图中以A ,B ,C ,D 这四点中任意两点为端点的所有线段长度之和可能是( )A .28B .29C .30D .不能确定5.下列说法中,错误的是( )A .两点之间直线最短B .两点确定一条直线C .一个锐角的补角一定比它的余角大90°D .等角的补角相等6.如图,点C 为线段AB 上一点且AC BC >,点D 、E 分别为线段AB 、CB 的中点,若7AC =,则DE =( )A .3.5B .4C .4.5D .无法确定7.如图,两条直线相交,有一个交点.三条直线相交,最多有三个交点,四条直线相交,最多有六个交点,当有10条直线相交时,最多有多少个交点( )A .60B .50C .45D .408.已知线段AB =8cm ,在直线AB 上画线BC ,使BC=12AB ,则线段AC 等于( ) A .12cm B .4cm C .12cm 或4cm D .8cm 或12cm 9.已知点A ,B ,C 在同一条直线上,线段5AC =,2BC =,则线段AB 的长度为( ) A .7B .3C .7或3D .不能确定10.如图,OA 是北偏东30方向的一条射线,OB 是北偏西50︒方向的一条射线,那么AOB ∠的大小为( )A .70︒B .80︒C .100︒D .110︒11.探究多边形内角和公式时,从n 边形(4n ≥)的一个顶点出发引出(3n -)条对角线,将n 边形分割成(2n -)个三角形,这(2n -)个三角形的所有内角之和即为n 边形的内角和,这一探究过程运用的数学思想是( ) A .方程思想 B .函数思想 C .数形结合思想 D .化归思想 12.下列正多边形中,能够铺满地面的是( )A .正方形B .正五边形C .正七边形D .正八边形二、填空题13.已知直线AB 与射线OC 相交于点O .(1)如图,90AOC ∠=︒,射线OD 平分AOC ∠,求BOD ∠的度数;(2)如图,120AOC ∠=︒,射线OD 在AOC ∠的内部,射线OE 在BOC ∠的内部,且4BOD BOE ∠=∠,2COD COE ∠=∠.若射线OF 使12COF COE ∠=∠,请在图中作出射线OF ,并求出BOF ∠的度数.14.(1)先化简,再求值.22113122323ab ab b ab b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中a ,b 满足()21103a b ++-=. (2)如图,直线AB 、CD 相交于点O ,射线OM 平分AOC ∠,OM ON ⊥,垂足为O .若33AOM ∠=︒,试求CON ∠的度数.15.如图,若120AOB ∠=︒,射线OC 在AOB ∠的内部,射线OM ,ON 分别是AOC ∠,BOC ∠的平分线.(1)当40AOC ∠=︒时,MON ∠= ︒; (2)当OC 为AOB ∠的平分线时,MON ∠= ︒;(3)当射线OC 在AOB ∠内部转动(不与边OA ,OB 重合),求MON ∠的度数. 16.已知,线段20AB =,M 是线段AB 的中点,P 是线段AB 上任意一点,N 是线段PB 的中点.(1)当P 是线段AM 的中点时,求线段NB 的长; (2)当线段1MP =时,求线段NB 的长;(3)若点P 在线段BA 的延长线上,猜想线段PA 与线段MN 的数量关系,并画图加以证明.17.已知,∠AOD=120°,若B 是∠AOD 内任意一点,连接OB .(1) 如图①,若OM 平分∠AOB ,ON 平分∠BOD ,求∠MON 的度数.(2) 如图②,OC 是∠BOD 内的射线,且∠BOC=20°,若OM 平分∠AOC ,ON 平分∠BOD ,求∠MON 的大小.18.如图,点O 是线段AB 的中点,14cm OB =,点P 将线段AB 分为两部分,:5:2AP PB =.若点M 在线段AB 上,且点M 与点P 的距离为4cm ,求线段AM 的长.19.已知线段AC 和线段BC 在同一直线上,若12cm AC =,8cm BC =,线段AC 的中点为M ,线段BC 的中点为N ,试求M 、N 两点之间的距离. 20.已知:如图,O 是直线AB 上一点,90MON ∠=︒,作射线OC .(1)如图,若ON 平分BOC ∠,60BON ∠=︒,则COM ∠=______°(直接写出答案);(2)如图,若OC 平分AOM ∠,BON ∠比COM ∠大36°,求COM ∠的度数;(3)如图,若OC 平分AON ∠,当2BON COM ∠=∠时,能否求出COM ∠的度数?若可以,求出度数;若不可以,请说明理由.三、解答题21.(1)如图1,∠AOC :∠COD :∠BOD =4:2:1,若∠AOB =140°,求∠BOC 的度数;(2)如图2,∠AOC :∠COD :∠BOD =4:2:1,OP 平分∠AOB ,若∠AOB =β,求∠COP 的度数(用含β的的代数式表示);(3)如图3,∠AOC =80°,∠BOD =20°,OE 平分∠AOD ,OF 平分∠BOC ,求∠EOF 的度数.22.已知线段a ,线段b ,动手画线段3,,AM a AN b ==点A M N 、、在一条直线上; (1)画图:(只要求画图,不必写画法) (2)写出线段MN 表示的长度是多少?(3)线段3a cm =,线段4b cm =,取线段AN 的中点P ,取线段MN 的中点Q ,直接写出PQ 的长.23.如图,不在同一条直线上的四个点A ,B ,C ,D ,请按下列要求画图.(不写画法)(1)连接AC ,BD 相交于点O ;(2)连接CB ,DA ,延长线段CB 交DA 延长线交于点P ; (3)连接BA ,并延长,在射线BA 上用圆规截取线段BE BD =.24.如图,已知O 是直线AC 上一点,OC 平分BOD ∠,160AOB ∠=︒,OE AC ⊥,求DOE ∠的度数.25.如图,已知两点A 、B . (1)画出符合要求的图形. ①画线段AB ;②延长线段AB 到点C ,使BC =AB ; ③反向延长线段AB 到点D ,使DA =2AB .(2)请问点A ,点B 分别是哪两条线段的中点?并说明理由; (3)若已知线段AB 的长是2cm ,求线段CD 的长.26.如图,OB,OC 是AOD 内部的两条射线,OM 平分AOB ,ON 平分COD ,BOC=40,(1)若20AOM ∠=︒,求AOC ∠的度数; (2)若118AOD ∠=︒,求MON ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先根据CB =5cm ,AB =13cm 求出A C 的长,再根据D 是AC 的中点即可得出DC 的长,即可求出BD . 【详解】解:∵CB =5cm ,AB =13cm , ∴AC=AB-CB=13-5=8cm ∵D 是AC 的中点, ∴AC =2CD =8cm . ∴CD=4 cm∴DB =CB+CD =5+4=9cm , 故选:C . 【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.2.C解析:C 【分析】根据时针与分针相距的份数乘以每份的度数,可得答案.解:8:20时,时针与分针相距4+2060=133份,8:20时,时针与分针所夹的角是30°×133=130°,故选:C.【点睛】本题考查了钟面角,确定时针与分针相距的分数是解题关键.3.D解析:D【分析】根据角平分线定义得出∠AOC=2∠COD,∠AOB=2∠AOC,代入求出即可.【详解】解:∵OD是AOC∠的平分线,∠COD=25°,∴∠AOC=2∠COD=50°,∵OC是AOB∠的平分线,∴∠AOB=2∠AOC=100°,故选:D.【点睛】本题考查了角平分线定义的应用,能理解角平分线定义是解此题的关键.4.C解析:C【分析】写出所有线段之和为AC+AD+AB+CD+CB+BD=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AB-CD)=3(AB+1),从而确定这个结果是3的倍数,即可求解.【详解】解:所有线段之和=AC+AD+AB+CD+CB+BD,∵CD=3,∴所有线段之和=AC+AC+3+AC+3+BD+3+3+BD+BD=12+3(AC+BD)=12+3(AB-CD)=12+3(AB-3)=3AB+3=3(AB+1),∵AB是正整数,∴所有线段之和是3的倍数,故选:C.【点睛】本题考查线段的和差、线段计数,根据图形写出所有线段之和是解题的关键.5.A解析:A【分析】根据基本平面图的性质判断即可;A 两点之间线段最短,故错误;B 两点确定一条直线,故正确;C 一个锐角的补角一定比它的余角大90°,故正确;D 等角的补角相等,故正确; 故答案选A . 【点睛】本题主要考查了基本平面图形的性质应用,准确分析判断是解题的关键.6.A解析:A 【分析】根据线段的中点的意义可得12DB AB =,12BE BC =,再根据12DE DB EB AC =-=即可得到结论. 【详解】解:∵点D 、E 分别为线段AB 、CB 的中点, ∴12AD DB AB ==,12CE BE BC == 又1111()2222DE DB EB AB BC AB BC AC =-=-=-= ∵7AC = ∴ 3.5DE = 故选:A . 【点睛】本题考查的是两点间的距离,关键是通过中点确定所求线段和整体线段的数量关系,进而求解.7.C解析:C 【分析】根据交点个数的变化规律:n 条直线相交,最多有1+2+3+…+(n ﹣1)= (1)2n n -个交点,然后计算求解即可. 【详解】解:两条直线相交,最多一个交点, 三条直线相交,最多有三个交点,1+2=3=3(31)2-, 四条直线相交,最多有六个交点,1+2+3=6= 4(41)2-, ……∴n 条直线相交,最多有1+2+3+…+(n ﹣1)= (1)2n n -个交点, 故10条直线相交,最多有1+2+3+…+9= 10(101)2-=5×9=45个交点, 故选:C . 【点睛】本题考查了图形的变化规律探究,在相交线的基础上,着重培养学生的观察,猜想归纳的能力,掌握从特殊到一般的方法,找出变化规律是解答的关键.8.C解析:C 【分析】分两种情形:①当点C 在线段AB 上时,②当点C 在线段AB 的延长线上时,再根据线段的和差即可得出答案 【详解】 解:∵BC=12AB ,AB =8cm , ∴BC=4cm①当点C 在线段AB 上时,如图1,∵AC=AB-BC , 又∵AB=8cm ,BC=4cm , ∴AC=8-4=4cm ;②当点C 在线段AB 的延长线上时,如图2,∵AC=AB+BC , 又∵AB=8cm ,BC=4cm , ∴AC=8+4=12cm .综上可得:AC=4cm 或12cm . 故选:C . 【点睛】本题考查的是两点间的距离,在画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.9.C解析:C 【分析】分类讨论,点B 在线段AC 上或在线段AC 外,即可得到结果. 【详解】解:①如图所示:∵5AC =,2BC =, ∴527AB AC BC =+=+=; ②如图所示:∵5AC =,2BC =, ∴523AB AC BC =-=-=. 故选:C . 【点睛】本题考查线段的和差问题,解题的关键是进行分类讨论,画出图象,求出线段的和或差.10.B解析:B 【分析】根据方向角可得∠1的度数,从而可得∠AOB 的值. 【详解】 解:如图,∵OB 是北偏西50︒方向的一条射线, ∴∠1=50°∴∠AOB=∠1+30°=50°+30°=80° 故选:B . 【点睛】本题考查了方向角,方向角的表示方法是北偏东或北偏西,南偏东或南偏西.11.D解析:D 【分析】根据探究多边形的内角和的过程即可解答. 【详解】解:探究多边形内角和公式时,从n 边形的一个顶点出发引出(n-3)条对角线,将n 边形分割成(n-2)个三角形,这(n-2)个三角形的所有内角之和即为多边形的内角和,这一探究过程运用了化归思想.故答案为D .【点睛】本题考查了多边形的内角和公式的推导以及化归思想,熟练掌握数学思想的意义是解答本题的关键.12.A解析:A【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可作出判断.【详解】A 、正方形的每个内角是90°,4个能密铺,符合题意;B 、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺,不符合题意;C 、正七边形每个内角是180°-360°÷7=9007,不能整除360°,不能密铺,不符合题意; D 、正八边形每个内角是180°-360°÷8=135°,不能整除360°,不能密铺,不符合题意. 故选:A .【点睛】 本题考查了一种多边形的镶嵌问题,考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.二、填空题13.(1);(2)45°或75°【分析】(1)由可求由OD 是的平分线得可求;(2)由可求∠BOC=60º由设∠BOE=xº可得∠BOD=4x°∠DOE=3x°由可求可得∠COE=∠BOE=由可求当OF 在解析:(1)135︒;(2)45°或75°.【分析】(1)由90AOC ∠=︒可求90BOC ∠=°,由OD 是AOC ∠的平分线得=45AOD DOC ∠∠=︒,可求=+135BOD DOC BOC ∠∠∠=︒;(2)由120AOC ∠=︒,可求∠BOC=60º,由4BOD BOE ∠=∠,设∠BOE=xº可得∠BOD=4x°,∠DOE=3x°由2COD COE ∠=∠, 可求2,COD x COE x ∠=︒∠=︒,可得∠COE=∠BOE=30由12COF COE ∠=∠,可求15COF ∠=︒,当OF 在∠EOC 内部时,当OF 在∠DOC 内部时利用角和差计算即可.【详解】证明:(1)∵90AOC ∠=︒∴18090BOC AOC ∠=︒-∠=︒∵OD 是AOC ∠的平分线,∴AOD DOC ∠=∠.∴=45AOD DOC ∠∠=︒,∴=+4590135BOD DOC BOC ∠∠∠=︒+︒=︒;(2)∵120AOC ∠=︒,∴∠BOC=180º-∠AOC=60º,∵4BOD BOE ∠=∠,设∠BOE=xº,∴∠BOD=4x°,∠DOE=3x°,∵2COD COE ∠=∠,+=3COD COE DOE x ∠∠∠=︒,∴2,COD x COE x ∠=︒∠=︒,∴∠COE=∠BOE=11BOC=60=3022∠⨯︒︒, ∵12COF COE ∠=∠, ∴11=30=1522COF COE ∠=∠⨯︒︒,当OF 在∠EOC 内部时,=601545BOF BOC COF ∠∠-∠=︒-︒=︒,当OF 在∠DOC 内部时,=+60+1575BOF BOC COF ∠∠∠=︒︒=︒,BOF ∠的度数为45°或75°.【点睛】本题考查了角平分线的定义及角的和差,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.14.(1);;(2)57°【分析】(1)首先根据绝对值非负性和偶次方的非负性求得a 和b 的值然后对原式进行化简代入即可求解;(2)根据角角平分线的定义求得然后根据两角互余的关系即可求解【详解】(1)原式因解析:(1)23ab b -+;109;(2)57° 【分析】(1)首先根据绝对值非负性和偶次方的非负性求得a 和b 的值,然后对原式进行化简代入即可求解;(2)根据角角平分线的定义求得33MOC ∠=︒,然后根据两角互余的关系即可求解.【详解】(1)原式22123122323ab ab b ab b =-+-+ 23ab b =-+ 因为()21103a b ++-=, 所以10a +=,103b -=, 所以1a =-,13b =. 所以原式()2111103113399⎛⎫=-⨯-⨯+=+= ⎪⎝⎭. (2)∵射线OM 平分AOC ∠,33AOM ∠=︒,33MOC ∴∠=︒,ON OM ⊥,90MON ∴∠=︒,903357CON MON MOC ∴∠=∠-∠=︒-︒=︒,57CON ∴∠=︒.【点睛】本题考查了整式的化简求值,绝对值非负性和偶次方的非负性,以及角平分线的定义、角的和与差,关键是掌握每部分的性质进行求解.15.(1)60;(2)60;(3)60°【分析】(1)根据角平分线的定义和角的和差即可得到结论;(2)根据角平分线的定义和角的和差即可得到结论;(3)根据角平分线的定义和角的和差即可得到结论【详解】解:解析:(1)60;(2)60;(3)60°【分析】(1)根据角平分线的定义和角的和差即可得到结论;(2)根据角平分线的定义和角的和差即可得到结论;(3)根据角平分线的定义和角的和差即可得到结论.【详解】解:(1)∵OM ,ON 分别是∠AOC 和∠BOC 的角平分线,∴∠COM =12∠AOC =20°,∠CON =12∠BOC =12(∠AOB-∠AOC )=12(120°-40°)=40°,∴∠MON =∠MOC +∠NOC =60°,故答案为:60;(2)∵OC 为AOB ∠的平分线,∴∠AOC=∠BOC=1260AOB ∠=︒, ∵OM ,ON 分别是∠AOC 和∠BOC 的角平分线,∴∠COM =12∠AOC =30°,∠CON =12∠BOC=30°, ∴∠MON =∠MOC +∠NOC =60°,故答案为:60;(3)∵射线OM ,ON 分别是AOC ∠,BOC ∠的平分线, ∴∠COM =12∠AOC ,∠CON =12∠BOC , ∴MON ∠=∠COM+∠CON=12∠AOC+12∠BOC=12(∠AOC+∠BOC )=1260AOB ∠=︒. 【点睛】本题主要考查了角平分线的定义,解题的关键是利用了角平分线的定义和图中各角之间的和差关系,难度中等.16.(1)75;(2)45或55;(3)画图证明见解析【分析】(1)画出符合题意的图形先求解再求解可得再利用中点的含义可得答案;(2)分两种情况讨论:当在左边时当在右边时先求解再利用中点的含义可得答案;解析:(1)7.5;(2)4.5或5.5;(3)2PA MN =,画图证明见解析.【分析】(1)画出符合题意的图形,先求解10AM =,再求解5AP =, 可得15PB =, 再利用中点的含义可得答案;(2)分两种情况讨论:当P 在M 左边时,当P 在M 右边时,先求解,PB 再利用中点的含义可得答案;(3)当P 在线段BA 延长线上时,如图,设PA t =,求解1102NB t =+,再求解12MN NB MB t =-=,从而可得结论. 【详解】解:(1)如图,∵M 是线段AB 的中点,20AB =∴1102MA AB == ∵P 是线段AM 的中点, ∴152AP AM == ∴20515PB AB AP =-=-=∵N 是线段PB 的中点∴17.52NB PB == (2)∵1MP =, ∴当P 在M 左边时,如图,11BP MB MP =+=,∵N 是线段PB 的中点, ∴1 5.52NB PB ==, 如图,当P 在M 右边时,9BP MB MP =-=,∵N 是线段PB 的中点,∴1 4.52NB PB ==. (3)线段PA 和线段MN 的数量关系是:2PA MN =,理由如下:当P 在线段BA 延长线上时,如图,设PA t =,则20PB t =+∵N 是线段PB 的中点∴111022NB PB t ==+ ∵M 是线段AB 的中点,20AB =∴1102MB AB == ∴12MN NB MB t =-=又∵PA t =∴2PA MN =【点睛】本题考查的是线段的和差关系,线段的中点的含义,整式的加减运算,分类思想的运用,掌握以上知识是解题的关键.17.(1)60°;(2)50°【分析】(1)根据角平分线的定义求出∠MOB 和∠BON 然后根据∠MON=∠MOB+∠BON 代入数据进行计算即可得解;(2)由图②可知∠MON=∠MOC+∠BON-∠BOC根解析:(1)60°;(2)50°【分析】(1)根据角平分线的定义求出∠MOB和∠BON,然后根据∠MON=∠MOB+∠BON代入数据进行计算即可得解;(2)由图②可知,∠MON=∠MOC+∠BON-∠BOC,根据角平分线的定义求出∠MOC=12∠AOC,和∠BON=12∠BOD,将其代入到∠MON=∠MOC+∠BON-∠BOC中,然后进行角度的等量转换,即可求得.【详解】(1)∵OM平分∠AOB,∴∠MOB=12∠AOB,又∵ ON平分∠BOD,∴∠BON=12∠BOD,∴∠MON=∠MOB+∠BON,=12∠AOB+12∠BOD,=12∠AOD,=12×120°,=60°;(2) ∵OM平分∠AOC,∴∠MOC=12∠AOC,又∵ ON平分∠BOD,∴∠BON=12∠BOD,∴∠MON=∠MOC+∠BON-∠BOC,=12∠AOC+12∠BOD-∠BOC,=12×(∠AOC+∠BOD)-∠BOC,=12×(∠AOD+∠BOC)-∠BOC,=12(120°+20°)-20°,=50°.【点睛】本题考查了角的计算、角平分线的定义,准确识图是解题的关键,难点在于要注意整体思想的利用.18.的长为或【分析】根据小段中点的定义求得AB 的长度然后结合可求的AP 的长度再分点M 在点P 左边和右边两种情况求解【详解】解:∵O 为中点∴又∵∴①当点M 在点P 左边时如图1当点M 在点P 右边时如图2综上的长为 解析:AM 的长为16cm 或24cm【分析】根据小段中点的定义求得AB 的长度,然后结合:5:2AP PB =可求的AP 的长度,再分点M 在点P 左边和右边两种情况求解.【详解】解:∵O 为中点∴221428cm AB OB ==⨯=又∵:5:2AP PB = ∴552820cm 77AP AB ==⨯= ① 当点M 在点P 左边时,如图1,20416cm AM AP MP =-=-=当点M 在点P 右边时,如图2,20424cm AM AP MP =+=+=综上,AM 的长为16cm 或24cm .【点睛】本题考查线段的和差计算,理解线段中点的定义,并数形结合思想分情况讨论解题是关键.19.或【分析】分两种情况解答:当点B 位于AC 的延长线上当点B 位于AC 之间根据线段中点把线段分成相等的两部分以及线段的和差关系即可解答【详解】解:∵点M 是线段的中点∴同理(1)当点B 位于AC 外如图1所示( 解析:10cm 或2cm 【分析】分两种情况解答:当点B 位于AC 的延长线上,当点B 位于AC 之间,根据线段中点把线段分成相等的两部分,以及线段的和差关系即可解答【详解】解:∵点M 是线段AC 的中点,∴12MC AC =,同理12NC BC =.(1)当点B 位于AC 外,如图1所示,1122MN MC NC AC BC =+=+ ()()()1112810cm 22AC BC =+=+=.(2)当点B 位于AC 之间,如图2所示,1122MN MC NC AC BC =-=- ()()()111282cm 22AC BC =-=⨯-=. 综上,M 、N 两点间的距离为10cm 或2cm .【点睛】本题考查了线段中点的定义,解题关键是分情况确定点B 的位置,进行解答.20.(1)30;(2)18°;(3)不能求出的度数理由见解析【分析】(1)根据若平分可得到∠CON=60°然后计算∠COM 即可;(2)可设然后得到再利用角平分线性质得到然后利用平角定义列方程即可;(3)解析:(1)30;(2)18°;(3)不能求出COM ∠的度数,理由见解析【分析】(1)根据若ON 平分BOC ∠,60BON ∠=︒可得到∠CON =60°,然后计算∠COM 即可; (2)可设COM x ∠=︒,然后得到(36)BON x ∠=+︒,再利用角平分线性质得到AOC x ∠=︒,然后利用平角定义列方程即可;(3)思路和(2)相同,设出∠COM ,然后根据题意列出方程判断即可.【详解】解:(1)∵ON 平分BOC ∠∴BON CON ∠=∠=60°∵∠MON =90°∴∠COM =∠MON -∠CON =30°故答案为:30;(2)设COM x ∠=︒,则(36)BON x ∠=+︒,∵OC 平分AOM ∠,∴AOC x ∠=︒,∴ 9036180x x x ++++=,∴18x =,即18COM ∠=︒;(3)不能求出COM ∠的度数,理由如下:设COM x ∠=︒,2BON x ∠=︒,∵OC 平分AON ∠,∴21802AON CON x ∠=∠=︒-︒,∴90CON x ∠=︒-︒,∵90MON ∠=︒,∴9090x x +-=,方程恒成立,故不论COM ∠等于多少度,只能得出BON ∠始终COM ∠的2倍,所以求不出COM ∠的度数.【点睛】本题主要考查角的简单计算和角平分线的简单性质,解题的关键是能够梳理角关系,利用直角和平角是解题的关键.三、解答题21.(1)60°;(2)114β;(3)50° 【分析】(1)设∠BOD =x°,则∠AOC =4x°,∠COD =2x°,根据题意列方程即可得到结论; (2)设∠BOD =x°,则∠AOC =4x°,∠COD =2x°,根据题意列方程得到∠AOC =47β;然后根据角平分线的定义即可得到结论;(3)根据角平分线的定义和角的和差即可得到结论.【详解】解:(1)由∠AOC :∠COD :∠BOD =4:2:1,设∠BOD =x°,则∠AOC =4x°,∠COD =2x°,∵∠AOB =140°,∴x+2x+4x =140,解得:x =20,∴∠BOD =20°,∠COD =40°,∠AOC =80°,∴∠BOC =20°+40°=60°;(2)设∠BOD =x°,则∠AOC =4x°,∠COD =2x°,∴x+2x+4x =β,∴x =17β, ∴∠AOC =47β; ∵OP 平分∠AOB , ∴∠AOP =12β, ∴∠COP =47β﹣12β=114β; (3)∵OF 平分∠BOC ,∠BOD =20°,∴∠COF =12(∠BOD+∠COD )=10°+12∠COD , ∵OE 平分∠AOD ,∠AOC =80°, ∴∠AOE =12(∠AOC+∠COD )=40°+12∠COD , ∴∠COE =∠AOC ﹣∠AOE =80°﹣(40°+12∠COD )=40°﹣12∠COD , ∴∠EOF =∠COE+∠COF =40°﹣12∠COD+10°+12∠COD =50°. 【点睛】 本意考察查了角的计算,角平分线的定义,正确的理解题意是解题的关键 ;22.(1)见解析;(2)3MN a b =-或3a b +;(3)4.5cm【分析】(1)画线段AM=3a ,AN=b ,点A 、M 、N 在一条直线上;(2)分两种情况讨论:当点N 在线段AM 上时,MN=3a-b ,或当点N 在MA 的延长线上时,MN=3a+b ;(3)分两种情况讨论:依据点P 为线段AN 的中点,点Q 为线段MN 的中点,即可得到PQ=2+2.5=4.5cm ,或PQ=6.5-2=4.5cm .【详解】解:(1)如图所示,(2)当点N 在线段AM 上时,3MN a b =-,或当点N 在MA 的延长线上时,3MN a b =+;(3)线段3a cm =,线段4b cm =,∴4AN cm =,9AM cm =,945MN cm ∴=-=,或9413MN cm =+=,又点P 为线段AN 的中点,点Q 为线段MN 的中点,2 2.5 4.5PQ cm ∴=+=,或 6.52 4.5PQ cm =-=.∴PQ 的长为:4.5cm .【点睛】本题考查的是基本作图以及两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.23.(1)见解析;(2)见解析;(3)见解析【分析】(1)分别连结A 、C 和B 、D ,并把AC 、BD 的交点标记为O 即可;(2)连接CB 和DA 并分别延长,并把它们延长线的交点标记为P 即可;(3)以B 为端点,作一条射线经过A ,然后以B 为圆心、BD 长为半径画弧交射线BA 于点E 即可.【详解】解:(1)如图,AC ,BD 相交于点O .(2)如图,CB ,DA 相交于点P .(3)如答图,BE 为所求.【点睛】本题考查与线段有关的尺规作图,熟练掌握用尺规作线段及其延长线以及在射线上截取线段等于已知线段的方法和步骤是解题关键.24.70︒.【分析】根据平角的定义,求∠BOC ,后利用角的平分线,垂直的定义计算即可.【详解】解:∵160AOB ∠=︒,∴18016020BOC AOC AOB ∠=∠-∠=︒-︒=︒,∵OC 平分BOD ∠,∴20COD BOC ∠=∠=︒,∵OE AC ⊥,∴90COE ∠=︒,∴902070DOE COE COD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了平角的定义,角的平分线,垂直的定义,熟练掌握互补的定义,角的平分线的性质是解题的关键.25.(1)见解析;(2)A 是线段DC 的中点,B 是线段AC 的中点,理由见解析;(3)8cm【分析】(1)根据要求画图即可,(2)利用线线段的关系可得出A 是线段DC 的中点,B 是线段AC 的中点,(3)利用CD=4AB 求解即可.【详解】解:(1)如图,(2)A 是线段DC 的中点,B 是线段AC 的中点,∵BC=AB ,∴B 是线段AC 的中点,∴AC=2AB ,又∵DA=2AB ,∴A 是线段DC 的中点;(3)∵AB 的长度是2cm ,∴CD=4AB=4×2=8cm .【点睛】本题主要考查了线段及中点,距离的运算,解题的关键是明确线段之间的关系. 26.(1)∠AOC=80°;(2)∠MON=79°.【分析】(1)根据角平分线的定义可得40AOB ∠=︒,相加可得∠MON 的度数;(2)先求得78COD AOB ∠+∠=︒,根据角平分线的定义可得39CON BOM ∠+∠=︒,相加可得∠MON 的度数.【详解】(1)∵20AOM ∠=︒,OM 平分AOB ∠,∴240AOB AOM ∠=∠=︒,∴404080AOC AOB BOC ∠=∠+∠=︒+︒=︒;(2)∵1184078COD AOB AOD BOC ∠+∠=∠-∠=︒-︒=︒,∵OM 平分AOB ∠,ON 平分COD ∠, ∴11()783922CON BOM COD AOB ∠+∠=∠+∠=⨯︒=︒, ∴()403979MON BOC CON BOM ∠=∠+∠+∠=︒+︒=︒. 【点睛】本题是有关角的计算,考查了角平分线的定义及角的和差倍分,注意利用数形结合的思想.。
人教版数学七年级上册《几何图形初步》单元综合检测卷(带答案)

人教版数学七年级上学期第四章单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·四川初一期中)有以下五种立体图形:①正方体;②三棱柱;③四棱柱;④长方体;⑤圆柱.其中有六个面的立体图形是( )A .4B .3C .2D .12.(2019·西安交通大学附属中学初一月考)用如图所示的图形,旋转一周所形成的几何体是( )A .B .C .D .3.(2019·河北初二期中)一副三角板按如图方式摆放,已知∠1=5∠2,则∠1的度数是( )A .15°B .18°C .72°D .75°4.(2019·山西初三)如图,点O 是直线AB 上的一点,AOC 40∠=,OM 平分BOC ∠,则BOM ∠等于( )A .60B .65C .70D .755.(2019·贵州省织金县第六中学初一期中)将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市6.(2019·福建聚龙外国语学校初二月考)下列说法正确的是( )A.延长线段AB和延长线段BA的含义相同B.射线AB的长度为12cmC.经过两点可以画一条直线,并且只能画一条直线D.延长直线AB7.(2019·济宁高新区第五中学初一期末)下面说法错误的是( )A.两点确定一条直线B.射线AB也可以写作射线BAC.等角的余角相等D.同角的补角相等8.(2019·广东正德中学初一月考)下列说法正确的有()①长方体、正方体都是棱柱;②圆锥和圆柱的底面都是圆;③若直棱柱的底面边长相等,则它的各个侧面的面积相等;④棱锥底面的边数与侧棱数相等;⑤直棱柱的上、下底面是形状、大小相同的多边形,侧面都是长方形.A.2个B.3个C.4个D.5个9.(2018·河北省保定市第十七中学初一期末)已知线段AB=6cm,线段BC=8cm,则线段AC 的长度为( ) A.14cm B.2cm C.14cm或2cm D.不能确定10.(2019·山东初一期中)如图,在正方形网格中,∠1+∠2+∠3=( )A.90°B.120°C.135°D.150°二、填空题(每小题4分,共24分)11.(2019·河北初一期中)如图,直线AB和CD相交于点O,OE是∠DOB的平分线,若∠AOC=76°,则∠EOB=_______.12.(2019·重庆市第一一0中学校初一期中)三条直线两两相交,它们的交点个数是________个。
初一数学(上册)《第四章基本平面图形》单元测试题(十二)

初一数学(上册)《第四章基本平面图形》单元测试题(十二)一、选择题1.如果点A 在点B 北偏东400的方向上,那么点B 在点A 的( )A.北偏东500B.南偏西500C.南偏西400D.南偏东4002.图是一块手表早上8时的时针、分针的位置,那么分针与时针所成的角的度数是( )A.600B.800C.1200D.15003.如图所示,C 是AB 的中点,D 是BC 的中点,下面等式不正确的是( )A.CD=AC-DBB.CD=AD-BCC.CD=21AB-BD D.CD=31ABA C DB 第3题图第2题图4.在∠AOB 内部任取一点C ,作射线OC ,则一定存在( )A.∠AOB ﹥∠AOCB.∠AOC ﹥∠BOCC.∠BOC ﹥∠AOCD.∠AOC=∠BOC 5.下列计算错误的是( ) 0=900//B.1.50=90/C.1000//=(185)0 0=125.45/6.直线l 外一点P 与直线l 上三点的连线长分别是4厘米、5厘米、6厘米,则点P 到直线l 的最短的线段长度是( ) A.4厘米 B.5厘米 C.不超过4厘米 D.大于6厘米7.下列说法正确的是( )A 、直线是平角 B.线段AB 的长度就是A ,B 两点间的距离C 、若∠AOB=2∠BOC ,则射线OC 是∠AOB 的平分线 D.若点P 使PA=PB ,则P 是AB 的中点 8.如果由多边形的一个顶点可以作6条对角线,那么这个多边形边数是( )A. 7B.9C.5D.49.下列各直线的表示法中,正确的是( )A .直线A B.直线ABC .直线ab D.直线Ab 10.下列说法正确的是( )A 、过一点P 只能作一条直线。
B 、射线AB 和射线BA 表示同一条射线C 、直线AB 和直线BA 表示同一条直线D 、射线a 比直线b 短 11.下列说法中,正确的有( )个。
A 、0 B 、1 C 、2 D 、3 A 过两点有且只有一条直线 B.连结两点的线段叫做两点的距离 C.两点之间,线段最短 D.AB =BC ,则点B 是线段AC 的中点 12.下面表示ABC 的图是 ( )AA B C D13.平面上有不同的三点,经过其中任意两点画直线,共可以画( )。
七年级数学上学期第四单元几何图形初步测试卷5套带答案

第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分)1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱C(2)A DB2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段 D.以上都不对4.下列语句正确的是( )A.如果PA=PB,那么P是线段AB的中点;B.作∠AOB的平分线CDC.连接A、B两点得直线AB;D.反向延长射线OP(O为端点)5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ.6.5点整时,时钟上时针与分钟之间的夹角是( )A.210°B.30°C.150°D.60°7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )A.互余B.互补C.既不互余也不互补D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对9.如果∠α=3∠β, ∠α=2∠θ,则必有( )2310.如图5所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )A.8°B.4°C.2°D.1°二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°.14.已知∠a=36°42′15″,那么∠a 的余角等于________.15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.航线铁路公路(6)A B18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,____________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线.三、解答题:(21、24、25、26每题6分,22、23题每题8分)21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC;(3)反向延长OC 得射线OD;(4)分别在射线OA、OB、OD 上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG 有什么关系?∠EFG、∠EGF、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23.如图,直线AB、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).北D CA B26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.参考答案一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.2414. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°22.AM=7cm或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。
图形的运动单元测试1(学生)

学科教师辅导讲义年级:初一科目:数学课时数:3 课题图形的运动章节测试教学目的查漏补缺;考前模拟.教学内容一、填空题(每小题2分,共24分)1.如果某个图形绕着它的中心点旋转180°后能够与原图形重合,那么这个图形叫做.2.如果一个图形沿某条直线翻折后能够与另一个图形重合,我们说这两个图形关于这条直线成.3.长方形有条对称轴.4.正方形有条对称轴.5.圆有条对称轴.6.图形在平移、旋转变换过程中,有一个共同的特征,图形的和不变.7.国旗上的五角星是旋转对称图形,它的旋转最小角度是.8.在26个英文大写字母中,是中心对称图形的共有个.9.在长方形、正方形、圆中,既是轴对称图形又是中心对称图形的有个.10.如果△ABC与△DEF关于点O成中心对称,那么△ABC与△DEF的关系是.11.如图,正方形ABCD的边BC上有一点E,延长AB至F,使BF=BE,AE的延长线交CF于G,则线段AE与CF的关系一定是.12.小明从镜子中看到电子钟的显示屏上的时间为15:20,那么实际时间为.二、选择题(每小题3分,共12分)13.香港于1 997年7月1日成为中华人民共和国的一个特别行政区,它的区徽图案(紫荆花)如图所示,这个图形( )A.是轴对称图形;B.是中心对称图形;C.既是轴对称图形,也是中心对称图形;D.既不是轴对称图形,也不是中心对称图形.15.下列图形中,对称轴最多的图形是()16.下列图形中,既是轴对称图形又是中心对称图形的是()三、简答题(每小题6分,共24分)17.在下列旋转对称图形下面的括号中,写出旋转的最小角度.18.画出下列各轴对称图形的对称轴.19.标出下列各旋转对称图形的旋转中心,用字母O注明.21.小明在镜子里看到身后墙上的时钟如下,你认为实际时间最接近八点的是()22.如图,已知点O是正六边形的中心,现要用一条直线把它的面积分成相等的两部分,并且使两部分关于这条直线成轴对称.请分别用两种不同的方法画出这条直线.'''.23.请你画出△ABC关于点O对称的△A B C24.如图的网格中有一个四边形和两个三角形.(1)请你画出三个图形关于点O的中心对称图形.(2)将(1)中画出的图形与原图看成一个整体图形,请写出这个整体图形的对称轴的条数;这个整体图像至少旋转多少度与自身重合.25.世界因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图案都有圆:它们看上去多么美丽和谐,这正是因为圆具有轴对称性和中心对称性.(1)请问以上三个图案中式轴对称图形的是,是中心对称的图形是.(2)请你在(D)(E)两个圆中,按要求分别画出与上面图案不重复的图案.(D)是轴对称图形但不是中心对称图形;(E)既是轴对称图形又是中心对称图形.。
(常考题)人教版初中数学七年级数学上册第四单元《几何图形初步》测试(包含答案解析)

一、选择题1.α∠和β∠的顶点和一边都重合,另一边都在公共边的同侧,且αβ∠>∠,那么α∠的另一半落在β∠的( )A .另一边上B .内部;C .外部D .以上结论都不对 2.如图,点C 是线段AB 的中点,点D 是线段CB 上任意一点,则下列表示线段关系的式子不正确的是( )A .AB=2ACB .AC+CD+DB=ABC .CD=AD-12ABD .AD=12(CD+AB ) 3.平面上有三个点A ,B ,C ,如果8AB =,5AC =,3BC =,则( ). A .点C 在线段AB 上 B .点C 在线段AB 的延长线上C .点C 在直线AB 外D .不能确定 4.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个C .3个D .4个 5.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线 6.如图,AD 是△ABC 的角平分线,点O 在AD 上,且OE ⊥BC 于点E ,∠BAC=60°,∠C=80°,则∠EOD 的度数为( )A .20°B .30°C .10°D .15°7.已知柱体的体积V =S•h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )A .2 r h πB .22?r h πC .23?r h πD .24?r h π8.已知线段8,6AB cm AC cm ==,下面有四个说法: ①线段BC 长可能为2cm ;②线段BC 长可能为14cm ;③线段BC 长不可能为5cm ;④线段BC 长可能为9cm .所有正确说法的序号是( )A .①②B .③④C . ①②④D .①②③④ 9.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .410.体育课上,小悦在点O 处进行了四次铅球试投,铅球分别落在图中的M ,N ,P ,Q 四个点处,则表示他最好成绩的点是( )A .MB .NC .PD .Q11.对于线段的中点,有以下几种说法:①若AM=MB ,则M 是AB 的中点;②若AM=MB=12AB ,则M 是AB 的中点;③若AM=12AB ,则M 是AB 的中点;④若A ,M ,B 在一条直线上,且AM=MB ,则M 是AB 的中点.其中正确的是( )A .①④B .②④C .①②④D .①②③④ 12.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cm B .10cm C .4cm 或10cm D .6cm 或10cm 二、填空题13.(1)375324'''°=________°;(2)1.45︒=________′.14.如图是一个正方体的表面展开图,已知正方体的每个面上都是一个有理数,且相对面上的两个数互为倒数,那么代数式a b c-的值是_________.15.如图是一个多面体的表面展开图,则折叠后与棱AB 重合的棱是________.16.按照图填空:(1)图中以点0为端点的射线有______条,分别是____________.(2)图中以点B为端点的线段有______条,分别是____________.(3)图中共有______条线段,分别是_____________.17.如图,点C是线段AB上一点,点M,N,P分别是线段AC,BC,AB的中点.若CP=,则线段PN的长为________.3AC=,118.将下列几何体分类,柱体有:______(填序号).19.如图,立体图形是由哪一个平面图形旋转得到的?请按对应序号填空.A对应___,B对应___,C对应___,D对应__,E对应__.20.已知∠A=67°,则∠A的余角等于______度.三、解答题21.读下列语句,画出图形,并回答问题.(1)直线l经过A,B,C三点,且C点在A,B之间,点P是直线l外一点,画直线BP,射线PC,连接AP;(2)在(1)的图形中,能用已知字母表示的直线、射线、线段各有几条?写出这些直线、射线、线段.22.计算(1)34°41′25″×5;(2)72°35′÷2+18°33′×4.23.如图,将一个长方形沿它的长或宽所在的直线旋转一周,回答下列问题:(1)得到什么几何体?(2)长方形的长和宽分别为6cm和4cm,分别绕它的长和宽所在直线旋转一周,得到不同的几何体,它们的体积分别为多少?(结果保留 )24.作图:如图,平面内有 A,B,C,D 四点按下列语句画图:(1)画射线 AB,直线 BC,线段 AC(2)连接 AD 与 BC 相交于点 E.25.如图,有一只蚂蚁想从A点沿正方体的表面爬到G点,走哪一条路最近?(1)请你利用部分平面展开图画出这条最短的路线,并说明理由.(2)探究若这只蚂蚁在正方体上爬行的最短路线,请你找出所有的最短路线,并画出示意. 26.直线上有,两点,,点是线段上的一点,.(1)__________,___________;(2)若点是线段上的一点,且满足,求的长;(3)若动点,分别从,同时出发向右运动,点的速度为,点的速度为,设运动时间为,当点与点重合时,,两点停止运动.①当为何值时,;②当点经过点时,动点从点出发,以的速度向右运动.当点追上点Q后立即返回.以同样的速度向点运动,遇到点后立即返回,又以同样的速度向点运动,如此往返,直到点,停止时,点也停止运动.在此过程中,点行驶的总路程为___________.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据题意画出图形,利用数形结合即可得出结论.【详解】解:如图所示:.故选C.【点睛】本题考查的是角的大小比较,能根据题意画出图形是解答此题的关键.2.D解析:D【解析】解:A、由点C是线段AB的中点,则AB=2AC,正确,不符合题意;B、AC+CD+DB=AB,正确,不符合题意;C、由点C是线段AB的中点,则AC=12AB,CD=AD-AC=AD-12AB,正确,不符合题意;D、AD=AC+CD=12AB+CD,不正确,符合题意.故选D.3.A解析:A【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【详解】如图:从图中我们可以发现AC BC AB +=,所以点C 在线段AB 上.故选A .【点睛】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.4.C解析:C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD =,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .【点睛】 本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.5.A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A .【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型. 6.A解析:A【分析】首先根据三角形的内角和定理求得∠B ,再根据角平分线的定义求得∠BAD ,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC ,最后根据直角三角形的两个锐角互余即可求解.∵∠BAC=60°,∠C=80°,∴∠B=180°-∠BAC-∠C=40°,又∵AD是∠BAC的角平分线,∠BAC=30°,∴∠BAD=12∴∠ADE=∠B+∠BAD=70°,又∵OE⊥BC,∴∠EOD=90°-∠ODE=90°-70°=20°.故选:A.【点睛】本题考查了三角形的内角和定理及其推论、角平分线的定义等知识,此类题要首先明确解题思路,再利用相关知识解答.7.C解析:C【分析】根据柱体的体积V=S•h,求出形成的几何体的底面积,即可得出体积.【详解】∵柱体的体积V=S•h,其中S表示柱体的底面面积,h表示柱体的高,现将矩形ABCD绕轴l旋转一周,∴柱体的底面圆环面积为:π(2r)2-πr2=3πr2,∴形成的几何体的体积等于:3πr2h.故选:C.【点睛】此题考查圆柱体体积公式,根据已知得出柱体的底面面积是解题的关键.8.C解析:C【分析】分三种情况: C在线段AB上,C在线段BA的延长线上以及C不在直线AB上结合线段的和差以及三角形三边的关系分别求解即可.【详解】解:当C在线段AB上时,BC=AB-AC= 8-6=2;当C在线段BA的延长线上时,BC=AB+AC =8+6=14;当C不在直线AB上时,AB、AC、BC三边构成三角形,则2<BC<14,综上所述①②④正确故选:C.【点睛】本题考查两点间的距离和三角形三边的关系,理解题意,进行正确的分类求解是关键.9.C解析:C确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.10.C解析:C【分析】根据点和圆的位置关系,知最好成绩在P点.【详解】P点与O点距离最长,且在有效范围内,所以最好成绩在P点.【点睛】考查了点和圆的位置关系.11.B解析:B【分析】根据线段中点的定义和性质,可得答案.【详解】若AM=MB,M不在线段AB上时,则M不是AB的中点,故①错误,若AM=MB=12AB,则M是AB的中点,故②正确;若AM=12AB,M不在线段AB上时,则M不是AB的中点,故③错误;若A,M,B在一条直线上,且AM=MB,则M是AB的中点,故④正确;故正确的是:②④故选B.【点睛】本题考查了线段中点的定义和性质,线段上到线段两端点距离相等的点是线段的中点.12.D解析:D【分析】由点C在直线AB上,分别讨论点C在线段AB上和在线段AB的延长线上两种情况,根据线段的和差关系求出AC的长即可.【详解】∵点C 在直线AB 上,AB=8,BC=2,∴当点C 在线段AB 上时,AC=AB-BC=8-2=6cm ,当点C 在线段AB 的延长线上时,AC=AB+BC=8+2=10cm ,∴AC 的长度是6cm 或10cm.故选D.【点睛】本题考查线段的和与差,注意点C 在直线AB 上,要分几种情况讨论是解题关键.二、填空题13.8987【解析】【分析】根据1°=60′1′=60″计算即可【详解】(1)==3789°;(2)=145×60′=87′故答案为:3789°87′【点睛】本题考查了度分秒的运算注意度分秒是60进制解析:89 87【解析】【分析】根据1°=60′,1′=60″,计算即可.【详解】(1)375324'''°=3753.4'°=37.89°;(2)1.45︒=1.45×60′=87′.故答案为:37.89°,87′.【点睛】本题考查了度分秒的运算.注意度分秒是60进制.14.【解析】【分析】将此正方体的表面展开图折叠成正方体观察abc 分别对应的值即可得出答案【详解】将图中所示图形折叠成正方体后a 与4相对应b 与2相对应c 与-1相对应∴∴【点睛】由平面图形的折叠及立体图形的 解析:34- 【解析】【分析】将此正方体的表面展开图折叠成正方体,观察a ,b ,c 分别对应的值,即可得出答案.【详解】将图中所示图形折叠成正方体后,a 与4相对应,b 与2相对应,c 与-1相对应, ∴1a 4=,1b 2=,c 1=- ∴3=-4a b c - 【点睛】由平面图形的折叠及立体图形的表面展开图的特点解题.15.BC 【分析】把展开图折叠成一个长方体找到与AB 重合的线段即可【详解】解:根据题意得:折叠后与棱AB重合的棱是BC故答案为BC【点睛】本题考查了展开图折叠成几何体解决这类问题时不妨动手实际操作一下即可解析:BC【分析】把展开图折叠成一个长方体,找到与AB重合的线段即可.【详解】解:根据题意得:折叠后与棱AB重合的棱是BC.故答案为BC.【点睛】本题考查了展开图折叠成几何体,解决这类问题时,不妨动手实际操作一下,即可解决问题.16.射线3线段6线段【解析】【分析】判断射线与线段的关键是:射线有一个端点有方向;线段有两个端点无方向表示射线必须把端点字母写在前面与线段的表示不同两字母书写时不能颠倒有始点无终点【详解】(1)由射线的解析:射线OA,OB,OC 3 线段AB,BC,OB 6 线段OA,OB,OC,AB,AC,BC【解析】【分析】判断射线与线段的关键是:射线有一个端点,有方向;线段有两个端点,无方向.表示射线必须把端点字母写在前面,与线段的表示不同.两字母书写时不能颠倒,有“始点”无“终点”.【详解】(1)由射线的含义可得以点O为端点的射线有3条,分别是OA、OB、OC;(2)由射线的含义可得以点B为端点的线段有3条,分别是AB,BC,OB;(3)由线段的含义可得图中共有6条线段,分别是线段OA、OB、OC、AB、AC、BC.【点睛】此题考查直线、射线、线段,解题关键在于掌握其性质定义.17.【解析】【分析】根据线段中点的性质计算即可CB的长结合图形根据线段中点的性质可得CN的长进而得出PN的长【详解】∵AP=AC+CPCP=1∴AP=3+1=4∵P为AB的中点∴AB=2AP=8∵CB=解析:3 2【解析】【分析】根据线段中点的性质计算即可CB的长,结合图形、根据线段中点的性质可得CN的长,进而得出PN的长.【详解】∵AP=AC+CP,CP=1,∴AP=3+1=4,∵P为AB的中点,∴AB=2AP=8,∵CB=AB-AC,AC=3,∴CB=5,∵N为CB的中点,∴CN=12BC=52,∴PN=CN-CP=32.故答案为32.【点睛】本题考查的是两点间的距离的计算,掌握线段的中点的性质、灵活运用数形结合思想是解题的关键.18.(1)(2)(3)【分析】解这类题首先要明确柱体的概念和定义然后根据图示进行解答【详解】柱体分为圆柱和棱柱所以柱体有:(1)(2)(3)故答案为(1)(2)(3)【点睛】此题主要考查了认识立体图形几解析:(1)(2)(3)【分析】解这类题首先要明确柱体的概念和定义,然后根据图示进行解答.【详解】柱体分为圆柱和棱柱,所以柱体有:(1)(2)(3).故答案为(1)(2)(3).【点睛】此题主要考查了认识立体图形,几何体的分类,一般分为柱体、锥体和球,注意球和圆的区别,球是立体图形,圆是平面图形.19.adecb【分析】根据面动成体的特点解答【详解】a旋转一周得到的是圆锥体对应Ab旋转一周得到的是圆台对应Ec旋转一周得到的是两个圆锥体对应的是Dd旋转一周得到的是圆台和圆柱对应的是Be旋转一周得到的解析:a d e c b【分析】根据面动成体的特点解答.【详解】a旋转一周得到的是圆锥体,对应A,b旋转一周得到的是圆台,对应E,c旋转一周得到的是两个圆锥体,对应的是D,d旋转一周得到的是圆台和圆柱,对应的是B,e旋转一周得到的是圆锥和圆柱,对应的是C,故答案为:a,d,e,c,b.【点睛】此题考查了面动成体的知识,具有良好的空间想象能力是解题的关键.20.23【解析】∵∠A=67°∴∠A的余角=90°﹣67°=23°故答案为23解析:23【解析】∵∠A=67°,∴∠A的余角=90°﹣67°=23°,故答案为23.三、解答题21.(1)见解析;(2)直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC 【分析】(1)根据直线、射线、线段的定义作图;(2)根据直线、射线、线段的定义解答.【详解】(1)如图所示.(2) 直线有2条,分别是直线PB,AB;射线有7条,分别是射线PC,PB,BP,AC,CB,BC,CA;线段有6条,分别是线段PA,PB,PC,AB,AC,BC.【点睛】此题考查作图,确定图形中的直线、射线、线段,掌握直线、射线、线段的定义是解题的关键.22.(1)173°27′5″;(2)110°29′30″.【分析】(1)根据角度与整数的乘法法则计算即可;(2)根据角度的四则混合运算法则计算即可.【详解】(1)34°41′25″×5=(34°+41′+25″)×5=34°×5+41′×5+25″×5=170°+205′+125″=173°27′5″;(2)72°35′÷2+18°33′×4=36°17′30″+72°132′=110°29′30″.【点睛】本题主要考查了角度的运算,正确理解角度的60进制是解答本题的关键.23.(1)圆柱;(2)它们的体积分别为3144cm π,396cm π【分析】(1)矩形旋转一周得到圆柱;(2)绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,从而可以计算出体积.【详解】解:(1)圆柱(2) 绕宽旋转得到圆柱底面半径为6cm ,高为4cm ,21V r h π=264π=⨯⨯144π=绕长旋转得到的圆柱的底面半径为4cm ,高为6cm ,2246V π=⨯⨯96π=∴它们的体积分别为3144cm π,396cm π【点睛】本题主要考查的是圆柱的体积,熟记圆柱的体积公式是解题的关键.24.答案见解析【分析】利用作射线,直线和线段的方法作图.【详解】如图:【点睛】本题考查了作图﹣复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图.25.如图①,(1)见解析,理由:两点之间线段最短;(2)见解析.【分析】(1)先把正方体展开,根据两点之间线段最短,即可得出由A 爬到G 的最短途径.(2)分情况讨论,作图解答即可.【详解】(1)如图①,理由:两点之间线段最短.(2)如图②,这种最短路线有4条.【点睛】本题考查了几何体的展开图和最短路线问题,把几何体展开为平面图形是解决“怎样爬行最近”这类问题的关键.26.(1),;(2);(3)①t=或16s;②48.【解析】【分析】(1)由OA=2OB,OA+OB=24即可求出OA、OB.(2)设OC=x,则AC=16-x,BC=8+x,根据AC=CO+CB列出方程即可解决.(3)①分两种情形①当点P在点O左边时,2(16-2t)-(8+t)=8,当点P在点O右边时,2(2t-16)-(8+x)=8,解方程即可.②点M运动的时间就是点P从点O开始到追到点Q的时间,设点M运动的时间为ts由题意得:t(2-1)=16由此即可解决.【详解】(1)∵AB=24,OA=2OB,∴20B+OB=24,∴OB=8,0A=16,故答案分别为16,8.(2)设的长为.由题意,得.解得.所以的长为.(3)①当点P在点O左边时,2(16−2t)−(8+t)=8,t=,当点P在点O右边时,2(2t−16)−(8+t)=8,t=16,∴t=或16s时,2OP−OQ=8.②设点M运动的时间为ts,由题意:t(2−1)=16,t=16,∴点M运动的路程为16×3=48cm.故答案为48cm.【点睛】此题考查一元一次方程的应用,两点间的距离,解题关键在于根据题意列出方程.。
初一数学:图形的初步认识测试题

初一数学:图形的初步认识测试题初一数学:图形的初步认识测试题一、选择题(每小题3分,共30分)1.下列物体的形状类似于球的是( )A.茶杯B.羽毛球C.乒乓球D.白炽灯泡2.正多面体的面数、棱数、顶点数之间存在着一个奇妙的关系,若用分别表示正多面体的面数、棱数、顶点数,则有,现有一个正多面体共有12条棱,6个顶点,则它的面数等于( )A.6B.8C.12D.203.如果与是邻补角,且,那么的余角是()A.B.C.D.不能确定4.下列四个立体图形中,主视图为圆的是( )A.B.C.D.5.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创”相对的字是( )A.文B.明C.城D.市6.如图,已知直线相交于点,平分,,则的大小为( )A.B.C.D.7.圆柱的侧面展开图可能是()8.下列平面图形不能够围成正方体的是()9.过平面上三点中的任意两点作直线,可作( )A.1条B.3条C.1条或3条D.无数条10.在直线上顺次取三点,使得,,如果是线段的中点,那么线段的长度是()A.B.C.D.二、填空题(每小题3分,共24分)11.如图,直线相交于点,平分,若则____.12.直线上的点有____个,射线上的点有____个,线段上的点有____个.13.两条直线相交有____个交点,三条直线相交最多有____个交点,最少有____个交点.14.如图,平分平分若则__.15.如图给出的分别有射线、直线、线段,其中能相交的图形有个.16.下列表面展开图的立体图形的名称分别是:______、______、______、______.17.如图,是线段上两点,若,,且是的中点,则_____.18.由一些大小相同的小正方形组成的一个几何体的主视图和俯视图如图所示,那么组成该几何体所需的小正方形的个数最少为______.三、解答题(共46分)19.(6分)马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示).20.(6分)如图是一个长方体的表面展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果面在长方体的底部,那么哪一个面会在上面?(2)如果面在前面,面在左面,那么哪一个面会在上面?(字母朝外)21.(6分)如图,线段,线段,分别是线段的中点,求线段的长.22.(6分)如图,直线相交于点,平分,求∠2和∠3的度数.23.(7分)已知:如图,是直角,,是的平分线,是的平分线.(1)求的.大小.(2)当锐角的大小发生改变时,的大小是否发生改变?为什么?24.(7分)如图,已知点是线段的中点,点是线段的中点,点是线段的中点.(1)若线段,求线段的长.(2)若线段,求线段的长.25.(8分)十八世纪瑞士数学家欧拉证明了简单多面体中顶点数()、面数()、棱数()之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:多面体顶点数()面数()棱数()四面体44长方体8612正八面体812正十二面体201230你发现顶点数()、面数()、棱数()之间存在的关系式是______;(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是______;(3)某个玻璃饰品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为个,八边形的个数为个,求的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学图形的初步认识
(时间:45分钟满分:100分)
姓名______________
一、选择题(每小题3分,共18分)
1.下列说法正确的是()
A.直线AB和直线BA是两条直线;
B.射线AB和射线BA是两条射线;
C.线段AB和线段BA是两条线段;
D.直线AB和直线a不能是同一条直线。
2.下列图中角的表示方法正确的个数有( )
C
B A
∠ABC
C
B A
∠CAB
直线是平角
∠AOB是平角
A.1个B.2个
C.3个D.4个
3.下面图形经过折叠可以围成一个棱柱的是( )
A.B.
C.D.
4.将如图所示的正方体沿某些棱展开后,能得到的图形是()
A.B.C.D.
5.若∠A = 20°18′,∠B = 20°15′30″,∠C = 20.25°,则()
A.∠A>∠B>∠C
B.∠B>∠A>∠C
C.∠A>∠C>∠B
D.∠C>∠A>∠B
6.经过任意三点中的两点共可画出()
A.1条直线B.2条直线
C.1条或3条直线D.3条直线
二、填空题(每小题3分,共12分)
7.有公共顶点的两条射线分别表示南偏15°与北偏东25°,则这两条射线组成的角的度数为_____________________.
8.如图,若CB = 4 cm,DB = 7 cm,且D是AC的中点,则AC =_________________.
B
C
D
A
9.八时三十分,时针与分针夹角度数是_______.
10.如图,从学校A到书店B最近的路线是①号路线,其道理用几何知识解释应是_____________________________________.
三、解答题(每小题10分,共30分) 11.计算: '
'
'
4839673121175+-⨯
12.一个角的余角比它的补角的2
3还少40°,求这个角。
13.如图,∠AOB 是直角,OD 平分∠BOC ,OE 平分∠AOC ,求∠EOD 的度数。
E D
C B
A
O
四、试一试,探一探(20分)
14.如图,BO 、CO 分别平分∠ABC 和∠ACB , (1)若∠A = 60°,求∠O ;
(2)若∠A =100°、120°,∠O 又是多少? (3)由(1)、(2)你又发现了什么规律?当∠A 的度数发生变化后,你的结论仍成立吗? (提示:三角形的内角和等于180°)
O C
B
A
4321
五、猜一猜,做一做(20分)
15.如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点。
(1)求线段MN 的长;
(2)若C 为线段AB 上任一点,满足AC + CB = a cm ,其它条件不变,你能猜想MN 的长度吗?
并说明理由。
你能用一句简洁的话描述你发现的结论吗?
(3)若C 在线段AB 的延长线上,且满足AC -BC = b cm ,M 、N 分别为AC 、BC 的中点,你能
猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由。
A
B
C
M
N
参考答案
一、选择题
B、B、D、
C、A、C.
二、填空题
7.140°8.6cm 9.75°10.两点之间,线段最短
三、解答题
11.9°45′12.30°13.45°14.(1)120°;(2)140°,150°;
(3)∠O = 90°+1
2∠A。
15.(1)MN =1
2AB = 7 cm;
(2)MN =1
2AB = a cm;
线段上任一点分线段两段的中点的距离等于线段长的一半
(3)MN =1
2AC
1
2BC =
1
2AB = a cm。