初一数学几何图形初步知识点汇总
七年级数学几何图形初步认识知识点

七年级数学几何图形初步认识知识点七年级数学几何图形初步认识知识点一、认识几何图形几何图形是数学中重要的一部分,它们是通过点、线、面等基本元素构成的抽象概念。
在七年级数学中,我们将会学习如何分类、识别以及求解各种几何图形。
二、几何图形的分类1、直线型:包括线段、射线、直线。
线段是指两点之间的距离,射线是线段的一个延伸,直线则是线段的两端无限延伸。
2、平面型:包括圆形、三角形、四边形等。
圆形是指所有到定点(圆心)的距离相等的点的集合,三角形是由三个不在同一直线上的点连接而成的图形,四边形则是有四条线段围成的图形。
3、立体型:包括长方体、正方体、圆柱等。
长方体是有六个面、八个顶点和十二条边的立体图形,正方体是长方体的特例,圆柱则是一个旋转的矩形。
三、几何图形的特征和性质1、线段:有两个端点,有一定的长度。
两点之间线段最短。
2、射线:有一个端点,可以向一端无限延伸。
3、直线:没有端点,可以向两端无限延伸。
4、圆形:到定点(圆心)的距离相等的点的集合。
有无数条半径和直径。
5、三角形:具有稳定性,三条边长确定后,形状就不能再改变。
6、四边形:容易变形,四边长度确定后,形状固定。
7、长方体:有六个面,每个面都是矩形。
8、正方体:是长方体的特例,六个面都是正方形。
9、圆柱:上下两个底面是圆,侧面展开后是一个矩形。
四、几何图形的计算1、计算长度:对于线段、弧长、面积等计算,我们通常会用到一些基本的公式。
例如,对于线段,我们可以用尺子直接测量;对于弧长,可以用弧长公式计算;对于面积,可以用面积公式计算。
2、计算角度:对于角度的计算,我们可以用量角器或者三角函数。
例如,对于一个直角三角形,我们可以利用勾股定理来计算角度。
3、计算体积和面积:对于立体图形,我们通常会计算它们的体积和表面积。
例如,对于一个长方体,我们可以利用它的长、宽、高来计算体积和表面积。
五、几何图形的应用几何图形在日常生活中有着广泛的应用。
例如,我们可以用三角形来稳定物品,用圆形来设计优美的曲线,用长方体和正方体来构建房屋和家具。
几何图形初步知识点

几何图形初步知识点在数学学科中,几何图形是一个重要的概念。
它是描述空间形状和结构的工具,可以帮助我们理解和研究物体的特征和性质。
本文将介绍一些几何图形的初步知识点,帮助读者建立对几何图形的基本认识。
1. 点、线段和射线在几何学中,最基本的图形是点。
点是一个没有大小和形状的位置。
两个点之间可以用线段来连接,线段是由两个端点确定的有限直线段。
线段有长度,并且可以用定理来计算。
类似于线段,射线也有长度,但是只有一个端点,另一端延伸到无穷远。
2. 直线和平面直线是由无限多个点连成的路径,它没有宽度和厚度。
直线可以用两个点确定,并且可以延伸到无限远。
平面是由无限多条直线组成的,它是一个无边无际的表面。
平面可以由三个不共线的点确定。
3. 角角是由两条射线共享一个相同起点而形成的图形。
角可以分为锐角、直角、钝角和平角。
锐角小于90度,直角等于90度,钝角大于90度,平角等于180度。
4. 三角形三角形是由三条线段组成,形成一个封闭的图形。
三角形的特点是三边之和等于180度,而三个内角之和等于180度。
根据边长和角度的大小,三角形可以分为等边三角形、等腰三角形和普通三角形。
5. 四边形四边形是由四条线段组成的封闭图形。
根据边的长度和角的大小,四边形可以分为正方形、矩形、菱形、平行四边形和梯形等。
6. 圆圆是一个封闭的曲线,由一条曲线围成的图形称为圆形。
圆具有许多特性,比如半径、直径和圆心等。
圆的内部的所有点到圆心的距离都相等。
7. 多边形多边形是由多个线段组成的封闭图形。
根据边的数量,多边形可以分为三角形、四边形、五边形等。
多边形的内角和外角之和有一定的关系。
8. 空间几何学除了平面几何学之外,还有空间几何学。
空间几何学研究的是在三维空间中的图形和结构。
例如,立方体、球体等都是三维空间中的几何图形。
以上是关于几何图形初步知识点的简要介绍。
几何图形在日常生活和数学学科中都有广泛的应用。
通过了解和掌握这些基本的知识点,我们可以更好地理解和解决与几何有关的问题。
人教版七年级数学上册 几何图形初步 知识点归纳

4.1几何图形知识点归纳从实物中抽象出来的各种图形叫做几何图形。
几何图形包括立体几何图形和平面几何图形。
各部分不都在同一平面内的几何图形叫做立体几何图形。
认识立体几何图形:长方体正方体球圆柱圆锥三棱柱三棱锥上下底面的形状大小相同且互相平行,侧棱平行且相等的封闭几何体叫做棱柱。
在棱柱中:①互相平行的两个面叫做棱柱的底面,其它面都是棱柱的侧面。
②两个面的公共边叫做棱柱的棱,两个相邻侧面的公共边叫做棱柱的侧棱。
③侧面与两个底面的公共顶点叫做棱柱的顶点。
④两个底面之间的距离叫做棱柱的高。
如果一个棱柱的底面是n边形,那么这个棱柱叫做n棱柱。
有一个面是多边形,其它面都是三角形且有一个公共顶点,这样的封闭几何体叫做棱锥。
在棱锥中:①形状是多边形的那个面叫做棱锥的底面,其它面都是棱锥的侧面。
②两个面的公共边叫做棱锥的棱,两个相邻侧面的公共边叫做棱锥的侧棱。
③相邻两个面的公共顶点叫做棱锥的顶点。
*在口头表述中,有时候说棱锥的顶点,可能指的是各个侧面的公共点。
下面④所说的顶点就是这个点。
④顶点到底面的距离叫做棱锥的高。
如果一个棱锥的底面是n边形,那么这个棱柱叫做n棱锥。
各部分都在同一平面内的几何图形叫做平面几何图形。
认识平面几何图形:线段角三角形长方形正方形平行四边形圆平面几何图形和立体几何图形是互相联系的,立体几何图形中的一部分可能是平面几何图形。
例子:圆柱的上底和下底都是圆,长方体的侧面可能是长方形,正方体的每个面都是正方形。
要观察立体几何图形,我们一般可以从三个方向来看:从正面看、从左面看、从上面看。
有一些立体几何图形是由一些平面几何图形围成的,如果将它们的表面用适当的方法剪开,就可以展开成平面几何图形。
这样的平面几何图形就是它们对应的立体几何图形的展开图。
几何体可以简称为体,包围着体的是面,面面相交的地方是线,线线相交的地方是点。
点动成线,线动成面,面动成体。
几何图形都是由点、线、面、体组合而构成的。
其中点是构成几何图形的基本元素。
初中数学几何知识点总结

第一章图形的初步认识考点一、直线、射线和线段(3分)1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、直线的概念一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
4、射线的概念直线上一点和它一旁的部分叫做射线。
这个点叫做射线的端点。
5、线段的概念直线上两个点和它们之间的部分叫做线段。
这两个点叫做线段的端点。
6、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示。
一条射线可以用端点和射线上另一点来表示。
一条线段可用它的端点的两个大写字母来表示。
注意:(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。
(2)直线和射线无长度,线段有长度。
(3)直线无端点,射线有一个端点,线段有两个端点。
(4)点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
7、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。
它可以简单地说成:过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
8、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
初中几何的图形知识点总结

初中几何的图形知识点总结几何图形是初中数学重要的内容之一,它是我们日常生活中经常接触到的一种数学形式。
几何图形的知识对学生的数学学习和生活实际应用都有着很重要的作用。
以下是初中几何图形知识点的总结:一、平面几何基础知识:1. 点、线、面的基本概念:点是最基本的几何图形,它没有长、宽、高,只有位置。
线是由无数个点组成的,是没有宽度的。
面是有无限多个点和线组成的,是有长度和宽度的。
2. 直线和线段的区别:直线是由无数个点组成的,方向不受限制。
线段是直线的一部分,有两个端点,有长度。
3. 射线和角的概念:射线是一条有一个起点且无穷延伸的直线,角是由两条有公共端点的射线组成的。
4. 多边形的概念:多边形是有限个线段组成的闭合图形,其中的线段都是直线。
这些线段的交点称为顶点。
5. 圆的概念:圆是平面上和一个定点的距离相等的所有点的集合。
6. 三角形的分类:三角形根据边长和角度的大小可以分为等边三角形、等腰三角形、直角三角形、钝角三角形和锐角三角形等。
7. 四边形的分类:四边形根据对边的对应边等长情况和对角线的长度关系,可以分为平行四边形、菱形、矩形、正方形和梯形等。
8. 梯形和平行四边形的性质:梯形有一组对边平行,这种梯形为平行四边形。
9. 直角三角形和勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
这被称为勾股定理。
二、立体几何基础知识:1. 立体几何的基本概念:立体几何是空间几何的一个重要分支,它研究的对象是有长度、宽度和高度的物体。
常见的立体图形有立方体、长方体、正方体和棱锥等。
2. 立体图形的表面积和体积:立体图形的表面积是指其所有的外表面的总和,而体积是指其内部所包含的所有空间。
3. 平面图形展开成立体图形:平面图形可以通过展开成一个立体图形,根据已知的平面图形可以构造出立体图形的表面积和体积。
4. 立体图形的三视图:立体图形通常可以通过正视图、俯视图和侧视图来全面地展现其形状和大小。
三、几何变换:1. 平移、旋转、翻转、对称变换的概念和性质:几何变换是指将原来的图形按照一定的规则进行改变的过程,其中包括平移、旋转、翻转和对称变换等。
人教版七年级数学上册第四章《几何图形初步》知识点汇总

⎧⎨⎩⎧⎨⎩人教版七年级数学上册第四章《几何图形初步》知识点汇总一、知识结构框图二、具体知识点梳理(一)几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形平面图形:三角形、四边形、圆等.主(正)视图---------从正面看;2、几何体的三视图 侧(左)视图-----从左面边看;俯视图---------------从上面看.(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.(2)能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.(二)直线、射线、线段1、基本概念图形直线射线线段端点个数无一个两个表示法直线a直线AB(BA)射线AB线段a线段AB(BA)作法叙述作直线AB作直线a 作射线AB作线段a作线段AB、连接AB延长叙述不能延长反向延长射线AB延长线段AB反向延长线段BA 2、直线的性质经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段(1)度量法(2)用尺规作图法4、线段的大小比较方法(1)度量法(2)叠合法5、线段的中点(二等分点)、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:A M B符号:若点M 是线段AB 的中点,则AM=BM=AB ,AB=2AM=2BM.126、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 (1)点在直线上; (2)点在直线外.(三)角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法(四种):∠1 ; ; ; .α∠β∠ABC ∠3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 (1)度量法 (2)叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角.(2)借助量角器能画出给定度数的角.(3)用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线.图形: 符号:9、互余、互补(1)若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.(2)若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.(3)余(补)角的性质:同(等)角的余角相等. 同(等)角的补角相等.10、方向角(1)正方向;(2)北(南)偏东(西)方向;(3)东(西)北(南)方向.。
人教版七年级上册数学《图形认识初步》知识点汇总

图形认识初步知识点汇总1、几何图形:我们把实物中抽象出来的各种图形叫做几何图形。
几何图形分为平面图形和立体图形。
(1)平面图形:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。
(2)立体图形:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
2、常见的立体图形(1)柱体:A棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。
B圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。
(2)椎体:A棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
B圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。
(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。
(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。
3、常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
(2)圆:一条线段绕它的端点旋转一周而形成的图形。
(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
4、从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。
5、立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。
(1)圆柱和圆锥的侧面展开图(2)棱柱和棱锥的展开图(3)根据展开图判断立体图形的规律:A展开图全是长方形或正方形时------正方体或长方体;B展开图中含有三角形时-----棱锥或棱柱;若展开图中含有2个三角形3个长方形-----三棱柱;若展开图中全是三角形(4个)-----三棱锥。
初中数学几何知识点总结

初中数学几何知识点总结一、几何基础知识1. 点、线、面- 点:没有大小,只有位置。
- 线:由无数个点组成,有长度,没有宽度。
- 面:由无数个线组成,有长度和宽度,没有厚度。
2. 直线、射线、线段- 直线:无限延伸的线,没有端点。
- 射线:有一个端点,另一端无限延伸。
- 线段:有两个端点,长度有限。
3. 角- 邻角:有共同顶点和边的两个角。
- 对顶角:由两条相交线形成的相对的两个角。
- 平角:两条射线的夹角为180度。
- 周角:两条射线重合,夹角为360度。
二、几何图形的性质1. 三角形- 内角和:三角形的内角和为180度。
- 三边关系:任意两边之和大于第三边。
- 海伦公式:计算三角形面积的公式,需要知道三边长度。
2. 四边形- 矩形:对边平行且相等,四个角都是直角。
- 平行四边形:对边平行。
- 菱形:四边相等,对角线互相垂直且平分。
- 梯形:有一组对边平行。
3. 圆- 圆心:圆的中心点。
- 半径:圆心到圆上任意一点的距离。
- 直径:通过圆心的最长线段,等于半径的两倍。
- 圆周率π:圆的周长与直径的比值。
三、几何图形的计算1. 面积- 三角形面积:基础公式、海伦公式。
- 四边形面积:长乘宽(矩形)、平行四边形的面积公式。
- 圆的面积:π乘以半径的平方。
2. 体积- 长方体:长乘宽乘高。
- 立方体:边长的三次方。
- 圆柱体:底面积乘以高。
- 圆锥体:底面积乘以高再乘以1/3。
3. 周长- 三角形周长:三边之和。
- 四边形周长:四边之和。
- 圆的周长:2π乘以半径。
四、几何图形的变换1. 平移- 描述:图形在平面上沿着某一方向移动一定距离。
- 影响:位置变化,形状和大小不变。
2. 旋转- 描述:图形绕一点或一轴旋转一定角度。
- 影响:位置变化,形状和大小不变。
3. 轴对称- 描述:图形关于某一直线(对称轴)对称。
- 影响:图形的一半可以通过折叠与另一半完全重合。
五、几何证明1. 证明方法- 直接证明:通过已知条件直接得出结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学几何图形初步
知识点汇总
Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】
方向教育《几何图形初步》1
一、知识结构框图
二、具体知识点梳理
(一)几何图形(是多姿多彩的)
平面图形:三角形、四边形、圆等.
1、几何图形立体图形:棱柱、棱锥、圆柱、圆锥、球等.
主(正)视图---------从正面看;
2、几何体的三视图侧(左、右)视图-----从左(右)边看;
俯视图---------------从上面看.
(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图.
(2)能根据三视图描述基本几何体或实物原型.
3、立体图形的平面展开图
(1)同一个立体图形按不同的方式展开,得到的平面图形不一样的.
(2)了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.
4、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形最基本的图形.
线:面和面相交的地方是线,分为直线和曲线.
面:包围着体的是面,分为平面和曲面.
体:几何体也简称体.
(2)点动成线,线动成面,面动成体.
(二)直线、射线、线段
1、基本概念
2、直线的性质
经过两点有一条直线,并且只有一条直线.简称:两点确定一条直线.
3、画一条线段等于已知线段(1)度量法(2)用尺规作图法
4、线段的大小比较方法(1)度量法(2)叠合法
5、线段的中点(二等分点)、三等分点、四等分点等
定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形:
符号:若点M是线段AB的中点,则AM=1/2BM=AB,AB=2AM=2BM.
5、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.
6、两点的距离:连接两点的线段长度叫做这两点的距离.
8、点与直线的位置关系(1)点在直线上;(2)点在直线外.
(三)角
1、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。
或:角也可以看成是一条射线绕着它的端点旋转而成的。
2、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。
终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
角的表示:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
3、用一副三角板,可以画出15°,30°,45°,60°,75°,90°,105°,120°,135°,150°,165°
4、角的度量
(1)、角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
1°=60’,1’=60”把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。
(2)、角的性质
① 角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
② 角的大小可以度量,可以比较
③ 角可以参与运算。
5、角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
OB 平分∠AOC
∠AOB=∠BOC=21∠AOC (或者∠AOC=2∠AOB=2∠BOC )
6、余角和补角
① 如果两个角的和是一个直角,这两个角叫做互为余角,简称互余,其中一个角是另一个角的余角。
用数学语言表示为如果∠α+∠β=90°,那么∠α与∠β互余;反过来,如果∠α与∠β互余,那么∠α+∠β=90°
② 如果两个角的和是一个平角,这两个角叫做互为补角,简称互补,其中一个角是另一个角的补角。
用数学语言表示为如果∠α+∠β=180°,那么∠α与∠β互补;反过来如果∠α与∠β互补,那么∠α+∠β=180°
③ 同角(或等角)的余角相等;同角(或等角)的补角相等。
7、对顶角
① 一对角,如果它们的顶点重合,两条边互为反向延长线,我们把这样的两个角叫做互为对顶角,其中一个角叫做另一个角的对顶角。
注意:对顶角是成对出现的,它们有公共的顶点;只有两条直线相交时才能形成对顶角。
② 对顶角的性质:对顶角相
等 如图,∠1和∠4是对顶角,∠2和∠3是
对顶角
∠1=∠4,∠2=∠3 1 2
3 4。