初中数学几何图形初步知识点

合集下载

初中数学几何空间与图形知识点

初中数学几何空间与图形知识点

初中数学《几何空间与图形》知识点初中数学《几何空间与图形》知识点A、图形的认识1、点,线,面点,线,面:图形是由点,线,面构成的。

面与面相交得线,线与线相交得点。

点动成线,线动成面,面动成体。

展开与折叠:在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

圆可以分割成若干个扇形。

2、角线:线段有两个端点。

将线段向一个方向无限延长就形成了射线。

射线只有一个端点。

将线段的两端无限延长就形成了直线。

直线没有端点。

经过两点有且只有一条直线。

比较长短:两点之间的所有连线中,线段最短。

两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

一度的1/60是一分,一分的1/60是一秒。

角的比较:角也可以看成是由一条射线绕着他的端点旋转而成的。

一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。

始边继续旋转,当他又和始边重合时,所成的角叫做周角。

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:同一平面内,不相交的两条直线叫做平行线。

经过直线外一点,有且只有一条直线与这条直线平行。

如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

互相垂直的两条直线的交点叫做垂足。

平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

图形与几何初中知识点总结

图形与几何初中知识点总结

图形与几何初中知识点总结图形与几何是初中数学的一个重要部分,其中包括平面图形、空间图形、几何相似、三角形、圆等知识点。

本文将对这些知识点进行总结。

一、平面图形1.矩形:四边都是直角的四边形,对边平行且相等。

周长为2a+2b,面积为ab。

2.正方形:四边均相等,对边是平行且相等的。

周长为4a,面积为a²。

3.平行四边形:对边平行,且相等。

周长为2a+2b,面积为ah。

4.梯形:两个底分别是a和b,两腰分别是c和d,高为h。

周长为a+b+c+d,面积为(h/2)×(a+b)。

5.菱形:四边均相等,对角线相等且平分角。

周长为4a,面积为(d1×d2)/2。

二、空间图形1.立方体:六个面都是正方形,每个角都是直角。

体积为a³,表面积为6a²。

2.正方体:六个面都是正方形,每个角都是直角。

体积为a³,表面积为6a²。

3.长方体:六个面都是矩形,每个角都是直角。

体积为ab×h,表面积为2ab+2ah+2bh。

4.棱锥:一个底是正方形,其他部分都是四个三角形。

体积为(a²h)/3,表面积为a√(a²+4h²)+2a²。

5.棱柱:底面为正方形,侧面是矩形。

体积为a²h,表面积为2a²+4ah。

6.圆锥:底面是圆形,侧面为三角形。

体积为(πr²h)/3,表面积为πr(r+√(r²+h²))。

7.圆柱:底面是圆形,侧面为矩形。

体积为πr²h,表面积为2πr²+2πrh。

三、几何相似几何相似是指两个图形的形状相似,但是大小不同。

当两个图形相似时,它们的对应边长成比例,对应角度相等。

1.相似三角形:两个三角形如果它们的对应角度相等,并且对应边长成比例,那么它们是相似的。

如果两个三角形相似,那么它们的面积也成比例。

2.黄金分割:在一个等边三角形中,将一条边分成两个线段,他们的比为黄金分割比1:1.618。

初中数学几何的总结知识点

初中数学几何的总结知识点

初中数学几何的总结知识点一、几何基本概念1. 点、线、面的基本概念2. 线段、射线、角的基本概念3. 有向线段,边界二、角的性质1. 同位角、余角、邻补角、对顶角2. 锐角、直角、钝角、平角3. 角的度量、角的度分秒制三、相交线和平行线1. 同位角相等2. 对顶角相等3. 垂直线、垂直平行线的判定4. 平行线的性质:平行线性质的等价命题、平行线的性质四、三角形1. 三角形的分类2. 三角形内角和定理3. 三角形的边对角和定理4. 三角形的外角和定理5. 三角形的相似性质6. 相似三角形的判定、相似三角形的性质7. 角平分线定理、中位线定理五、全等三角形1. 全等三角形的对应角、对应边性质2. 全等三角形的判定六、直角三角形1. 勾股定理2. 直角三角形的性质和判定七、平行四边形1. 平行四边形的性质2. 矩形、正方形、菱形、长方形的性质3. 平行四边形的判定八、多边形1. 多边形的命名和分类2. 多边形内角和定理3. 多边形外角和定理4. 等边多边形的性质5. 正多边形的性质九、圆1. 圆的基本概念2. 圆的性质3. 圆周角和圆心角4. 弧长和面积5. 切线和切点6. 相交弦定理7. 立体几何体的基本概念8. 空间直角坐标系与距离十、空间图形1. 空间的基本概念2. 空间图形的基本元素3. 空间图形的分类4. 体积的计算5. 柱、锥、台、球的表面积和体积以上是初中数学几何的基本知识点,同学们要在平时多加强练习,掌握这些知识点,从而提高数学水平。

初中数学几何图形初步知识点总复习

初中数学几何图形初步知识点总复习

初中数学几何图形初步知识点总复习一、选择题1.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC 上一点,则DE+BE的最小值为()A.2B.31C.3D.23【答案】C【解析】【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离3故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.2.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°【答案】C【解析】【分析】由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,再由平行线的性质可得到∠2的度数.【详解】解:由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,又∵a∥b,所以∠2=∠3=35°.故选C.【点睛】本题主要考查了平行线的性质.3.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【答案】B【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.4.某包装盒如下图所示,则在下列四种款式的纸片中,可以是该包装盒的展开图的是()A.B.C.D.【答案】A【解析】【分析】将展开图折叠还原成包装盒,即可判断正确选项.解:A、展开图折叠后如下图,与本题中包装盒相同,故本选项正确;B、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;C、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;D、展开图折叠后如下图,与本题中包装盒不同,故本选项错误;故选:A.本题主要考查了含图案的正方体的展开图,学生要经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.5.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是()A.B.C.D.【答案】C【解析】【分析】分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.【详解】解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:将直角三角形绕斜边所在直线旋转一周后形成的几何体为:故选C.【点睛】本题考查了面动成体,点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.6.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D.若线段AP=BP,则P一定是AB中点【答案】B【解析】【分析】A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立【详解】A中,小数点最后一位是千分位,故精确到千分位,错误;B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;C中,若两个角都是直角,也互补,错误;D中,若点P不在AB这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的7.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()A.黑B.除C.恶D.☆【答案】B【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】解:将其折成正方体后,则“扫”的对面是除.故选B.【点睛】本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.8.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱【答案】A【解析】【分析】 侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选A .【点睛】本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..9.一副直角三角板如图放置,其中∠C =∠DFE =90°,∠A =45°,∠E =60°,点F 在CB 的延长线上.若DE ∥CF ,则∠BDF 等于( )A .30°B .25°C .18°D .15° 【答案】D【解析】【分析】根据三角形内角和定理可得45ABC ∠=︒和30EDF ∠=︒,再根据平行线的性质可得45EDB ABC ==︒∠∠,再根据BDF EDB EDF =-∠∠∠,即可求出BDF ∠的度数.【详解】∵∠C =90°,∠A =45°∴18045ABC A C =︒--=︒∠∠∠∵//DE CF∴45EDB ABC ==︒∠∠∵∠DFE =90°,∠E =60°∴18030EDF E DFE =︒--=︒∠∠∠∴15BDF EDB EDF =-=︒∠∠∠故答案为:D .【点睛】本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键.10.如图,已知直线AB 和CD 相交于G 点,CG EG ⊥,GF 平分AGE ∠,34CGF ∠=︒,则BGD ∠大小为( )A .22︒B .34︒C .56︒D .90︒【答案】A【解析】【分析】 先根据垂直的定义求出∠EGF 的度数,然后根据GF 平分∠ABE 可得出∠AGF 的度数,再由∠AGC=∠AGF-∠CGF 求出∠AGC 的度数,最后根据对顶角相等可得出∠BGD 的度数.【详解】解:∵CG ⊥EG ,∴∠EGF=90°-∠CGF=90°-34°=56°,又GF 平分∠AGE ,∴∠AGF=∠EGF=56°,∴∠AGC=∠AGF-∠CGF=56°-34°=22°,∴∠BGD=∠AGC=22°.故选:A .【点睛】本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题的关键.11.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是( )A .态B .度C .决D .切 【答案】A【解析】【分析】 正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.【详解】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.故选A .【点睛】注意正方体的空间图形,从相对面入手,分析及解答问题.12.如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC 于D ,且4OD =,则ABC ∆的面积是( )A .25米B .84米C .42米D .21米【答案】C【解析】【分析】 根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可.【详解】连接OA∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC 于D ,且4OD =∴点O 到AB 、AC 、BC 的距离为4∴ABC AOC OBC ABO S S S S =++△△△△ ()142AB BC AC =⨯⨯++1421=⨯⨯2=(米)42故答案为:C.【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.13.如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A.64°B.68°C.58°D.60°【答案】A【解析】【分析】首先根据平行线性质得出∠1=∠AEG,再进一步利用角平分线性质可得∠AEF的度数,最后再利用平行线性质进一步求解即可.【详解】∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°,∵AB∥CD,∴∠2=64°.故选:A.【点睛】本题主要考查了角平分线性质以及平行线的性质,熟练掌握相关概念是解题关键.14.下列图形中,不是三棱柱的表面展开图的是()A .B .C .D .【答案】D【解析】利用棱柱及其表面展开图的特点解题.解:A 、B 、C 中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D 不能围成三棱柱.故选D .15.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A .75°B .90°C .105°D .120°【答案】C【解析】【分析】 延长CE 交AB 于点F ,根据两直线平行,内错角相等可得∠AFE =∠C ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE 交AB 于点F ,∵AB ∥CD ,∴∠AFE =∠C =60°,在△AEF 中,由三角形的外角性质得,∠AEC =∠A +∠AFE =45°+60°=105°.故选:C .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.16.如图,AB CD ∥,BF 平分ABE ∠,且BF DE ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD ,D G ∴∠=∠,//BF DE ,G ABF ∴∠=∠,D ABF ∴∠=∠, BF 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.17.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是( )A.B.C.D.【答案】A【解析】【分析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.18.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A.B.C.D.【答案】A【解析】【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】A、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项正确;B、图中∠α=∠β,不一定互余,故本选项错误;C、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D、图中∠α+∠β=180°,互为补角,故本选项错误.故选:A.【点睛】此题考查余角和补角,熟记概念与性质是解题的关键.19.如图,在平行四边形ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若60B ∠=,AB=3,则ADE ∆的周长为()A .12B .15C .18D .2【答案】C【解析】【分析】 依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE 是等边三角形,即可得到△ADE 的周长为6×3=18.【详解】由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选:C .【点睛】此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.20.下列图形中1∠与2∠不相等的是( )A .B .C.D.【答案】B【解析】【分析】根据对顶角,平行线,等角的余角相等等知识一一判断即可.【详解】解:A、根据对顶角相等可知,∠1=∠2,本选项不符合题意.B、∵∠1+∠2=90°,∠1与∠2不一定相等,本选项符合题意.C.根据平行线的性质可知:∠1=∠2,本选项不符合题意.D、根据等角的余角相等,可知∠1=∠2,本选项不符合题意.故选:B.【点睛】本题考查平行线的性质对顶角的性质,等角的余角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。

部编版数学七年级上册23-第四章点、线、面、体

部编版数学七年级上册23-第四章点、线、面、体

解析 (1)题图②有7个面、15条棱、10个顶点,题图③有7个面、14条棱、9个顶 点,题图④有7个面、13条棱、8个顶点,题图⑤有7个面、12条棱、7个顶点. (2)例如:三棱锥被切去一块,如图所示,所得到的几何体有5个面、9条棱、6个顶点.
(3)f+v-e=2.
10.(2019甘肃兰州三校联考,2,★☆☆)如图4-1-2-9,将直角三角形绕一条边所在直 线旋转一周后形成的几何体不可能是 ( )
图4-1-2-9 答案 C 将直角三角形绕较长直角边所在直线旋转一周后形成的几何体如图1.
将直角三角形绕较短直角边所在直线旋转一周后形成的几何体如图2.
将直角三角形绕斜边所在直线旋转一周后形成的几何体如图3.故选C.
形成一条线段;②一条线段在平面内运动的过程中,能形成一个平行四边形;③一个
三角形在空间内运动的过程中,能形成一个三棱柱;④一个圆形在空间内平移的过
程中,能形成一个球体.其中正确的是 ( )
A.①②③④ B.①②③
C.②③④
D.①③④
答案 B ①一点在平面内运动的过程中,能形成一条线段是正确的;
②一条线段在平面内运动的过程中,能形成一个平行四边形是正确的;
,面与面相交都是曲线的是
.
解析 利用构成立体图形的面的特点解题,在纸上作出几何体的示意图,观察组成 每个几何体的各个平的面或曲的之间的关系,得出面与面的交线的情况.
答案 (1)①②⑤;⑥;③④ (2)⑥;④;③;⑤;①② (3)①②⑤;③④
经典例题全解
题型 平面图形旋转成几何体 例 图4-1-2-2中的几何体分别是由图4-1-2-1中哪个平面图形绕虚线旋转后得到的?
柱,请回答下列问题:
(1)这个七棱柱共有多少个面,它们分别是什么形状?哪些面的形状、面积完全相

初中几何图形知识点整理

初中几何图形知识点整理

初中几何图形知识点整理几何学是数学的一个重要分支,主要研究平面和立体图形的形状、大小、位置等性质。

初中几何图形是初中数学的一个重要组成部分,包括平面图形和立体图形,学习初中几何图形是建立数学思维能力并掌握数学基础知识的必要环节。

本文将从初中几何图形知识点的整理入手,着重讲解平面图形和立体图形的相关知识,以帮助学生加深对初中几何图形的理解和掌握。

一、平面图形1、点、线、面、角的基本概念(1)点:指的是没有长度、面积和体积的基本图形,是几何图形的最基本单位。

(2)线:是由无数个点在同一直线上连接而成的图形,具有长度但没有宽度和厚度。

(3)面:指的是由多个线段连接起来形成的平面图形,具有长度和宽度但没有厚度。

(4)角:是由两条射线在同一平面内公共端点所形成的图形,通常用角度来衡量,度数为0°-360°。

2、几何中心的基本概念(1)重心:是平面图形的重心,表示平面图形所有点的质量中心或物理中心,在任一方向上都可看作是平衡点。

(2)外心:是平面图形的外接圆心,指的是可以包含几何图形任意一点的圆心。

(3)内心:是平面图形的内切圆心,指的是几何图形内部可以切割几何图形的圆心。

(4)垂心:是平面图形上某一点到直线的垂线的交点,称为垂足。

3、平面图形的性质:(1)正方形的性质:正方形的各个边长相等,对角线相等,四个角为直角,对角线互相平分。

(2)三角形的性质:三角形的内角和为180°,等边三角形的三边相等,等腰三角形的两边相等,直角三角形的两直角边的平方和等于斜边的平方。

(3)矩形的性质:矩形的对边相等,对角线相等,四个角均为直角。

(4)菱形的性质:菱形的对角线互相垂直,对角线相等,对边平行且相等,具有轴对称性。

(5)梯形的性质:梯形的上下底的长度不同,但平行。

对角线互相垂直,斜边中点连线与上下底中点连线相等。

二、立体图形1、长方体的性质(1)长方体是由六个矩形构成的立体图形,其面积为底面积×高。

初中数学几何知识点归纳

初中数学几何知识点归纳

初中数学几何知识点归纳一、几何基础知识1. 点、线、面- 点:没有大小,只有位置。

- 线:由无数个点组成,有长度,没有宽度。

- 面:由无数条线组成,有长度和宽度。

2. 直线、射线、线段- 直线:无限延伸,没有端点。

- 射线:有一个端点,向一个方向无限延伸。

- 线段:有两个端点,长度有限。

3. 角- 邻角:有共同顶点和边的两个角。

- 对顶角:两条射线共享一个公共点,形成的两个角。

- 平行线:在同一平面内,永不相交的两条直线。

二、平面图形1. 三角形- 等边三角形:三条边长度相等。

- 等腰三角形:至少有两条边长度相等。

- 直角三角形:有一个90度的角。

- 钝角三角形:有一个大于90度的角。

- 锐角三角形:所有角都小于90度。

2. 四边形- 正方形:四条边长度相等,四个角都是直角。

- 长方形:对边平行且相等,四个角都是直角。

- 平行四边形:对边平行。

- 梯形:至少有一组对边平行。

3. 圆- 圆心:圆的中心点。

- 半径:圆心到圆上任意一点的距离。

- 直径:通过圆心的最长线段,等于半径的两倍。

三、几何图形的性质1. 三角形的性质- 内角和:三角形内角和为180度。

- 海伦公式:已知三边长度,可以计算三角形的面积。

2. 四边形的性质- 正方形的性质:对角线相等且互相平分。

- 长方形的性质:对角线相等且互相平分。

- 平行四边形的性质:对角线互相平分。

3. 圆的性质- 圆周率:圆的周长与直径的比值,用π表示。

- 圆的面积:π乘以半径的平方。

四、几何图形的计算1. 面积计算- 三角形面积:底乘高除以2。

- 四边形面积:长乘宽(正方形和长方形);梯形的上下底之和乘高除以2。

- 圆的面积:π乘以半径的平方。

2. 周长计算- 三角形周长:三边之和。

- 四边形周长:四边之和(正方形和长方形);梯形的上下底之和加上两腰之和。

- 圆的周长:2π乘以半径。

3. 体积计算- 圆柱体积:底面积乘以高。

- 圆锥体积:1/3乘以底面积乘以高。

七年级上册几何初步知识点

七年级上册几何初步知识点

七年级上册几何初步知识点几何是数学的一个分支,是研究空间形状、大小、位置、变形等问题的数学学科。

在初中阶段,几何学习是数学教育中的重要部分,也是学生数学素养的基础。

本文旨在介绍七年级上册几何初步知识点,供学生参考。

一、平面图形的认识1.1 点、线、面的基本概念点是几何中最简单的基本概念,用“A”、“B”、“C”等字母表示。

线是由无数个点组成的,在几何中用一条直线表示,如“AB”表示以点A、B为端点的直线。

面是由无数个线组成的,通常表示为一个不闭合的图形,如三角形、矩形等。

1.2 三角形、四边形、多边形三角形是由三个顶点和三条边组成的平面图形,可以分为等腰三角形、等边三角形、直角三角形等。

四边形是由四个顶点和四条边组成的平面图形,可以分为矩形、正方形、菱形等。

多边形是由多个顶点和边组成的平面图形,根据边数可以分为五边形、六边形等。

多边形可以分为凸多边形和凹多边形,凸多边形的内角和总和为180度以下,而凹多边形的内角和总和为180度以上。

二、平面图形的性质2.1 角的概念角是由两条射线共同起点按一定方向转动形成的图形。

一个角包含两个部分,即顶点和两条边。

角可以分为锐角、直角、钝角等。

2.2 直线、线段和射线的定义及其性质直线是不断延伸而不断接近的线,没有两个端点。

线段是由两个端点和这两个端点之间的线段组成的线。

射线是由一个端点和一个方向组成的线段。

直线图形具有平移不变性、旋转不变性、翻转不变性等特点。

线段与射线也具有相似的性质。

2.3 物体的转动物体的转动分为旋转和翻折。

旋转是指物体绕一个固定点旋转,可以分为顺时针旋转和逆时针旋转。

翻折是指物体沿一个平面反转,可以分为对称轴翻折和不对称轴翻折。

三、坐标系和图形的位置关系3.1 直角坐标系直角坐标系是由x轴和y轴两条互相垂直的直线组成的平面,用来表示平面内的点的位置关系。

坐标系原点是两条直线的交点。

3.2 图形的位置关系在直角坐标系中,通过比较两个平面图形各点的坐标,可以判断它们的位置关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故选B.
【点睛】
本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.
7.把正方体的表面沿某些棱剪开展成一个平面图形(如图),请根据各面上的图案判断这个正方体是( )
A. B. C. D.
【答案】C
【解析】
【分析】
通过立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.
故答案选C.
【点睛】
本题考查了平行线的判定与性质,解题的关键是熟练的掌握平行线的判定与性质.
20.如图,已知直线 和 相交于 点, , 平分 , ,则 大小为()
A. B. C. D.
【答案】A
【解析】
【分析】
先根据垂直的定义求出∠EGF的度数,然后根据GF平分∠ABE可得出∠AGF的度数,再由∠AGC=∠AGF-∠CGF求出∠AGC的度数,最后根据对顶角相等可得出∠BGD的度数.
A. B. C. D.
【答案】B
【解析】
分析:根据面动成体,所得图形是两个圆锥体的复合体确定答案即可.
详解:由图可知,只有B选项图形绕直线l旋转一周得到如图所示立体图形.
故选:B.
点睛:本题考查了点、线、面、体,熟悉常见图形的旋转得到立体图形是解题的关键.
12.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是( )
13.如图,在 中, ,以顶点 为圆心,适当长为半径画弧,分别交 、 于点 、 ,再分别以点 、 为圆心,大于 的长为半径画弧,两弧交于点 ,作射线 交边 于点 ,若 , ,则 的面积是()
A.15B.30C.45D.60
【答案】B
【解析】
【分析】
作 于E,根据角平分线的性质得 ,再根据三角形的面积公式求解即可.
2.下列图形经过折叠不能围成棱柱的是().
A. B. C. D.
【答案】B
【解析】
试题分析:三棱柱的展开图为3个矩形和2个三角形,故B不能围成.
考点:棱柱的侧面展开图.
3.如图,有 , , 三个地点,且 ,从 地测得 地在 地的北偏东 的方向上,那么从 地测得 地在 地的()
A.北偏西 B.北偏西 C.北偏东 D.北偏西
A. B. C. D.
【答案】C
【解析】
【分析】
分三种情况讨论,即可得到直角三角形绕一条边所在直线旋转一周后形成的几何体.
【详解】
解:将直角三角形绕较长直角边所在直线旋转一周后形成的几何体为:
将直角三角形绕较短直角边所在直线旋转一周后形成的几何体为:
将直角三角形绕斜边所在直线旋转一周后形成的几何体为:
A.距 点 处B.距 点 处C.距 点 处D. 的中点处
【答案】B
【解析】
【分析】
作出点 关于江边的对称点 ,连接 交 于 ,则
,根据两点之间线段最短,可知当供水站在点 处时,供水管路最短.再利用三角形相似即可解决问题.
【详解】
作出点 关于江边的对称点 ,连接 交 于 ,则 .根据两点之间线段最短,可知当供水站在点 处时,供水管路最短.
点 从点 运动到点 时, 是 的二次函数,并且有最小值,
∴选项B符合题意,选项A不合题意.
故选B.
【点睛】
本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.
16.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是()
根据 ,设 ,则 ,
根据相似三角形的性质,得
,即 ,
解得 .
故供水站应建在距 点2千米处.
故选:B.
【点睛】
本题为最短路径问题,作对称找出点P,利用三角形相似是解题关键.
19.如图,小强从A处出发沿北偏东70°方向行走,走至B处,又沿着北偏西30°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是( )
C. D.
【答案】B
【解析】
【分析】
根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.
【详解】
根据题意得,点 从点 运动到点 时以及从点 运动到点 时是一条线段,故选项C与选项D不合题意;
A.4B.3C.3.5D.2
【答案】B
【解析】
【分析】
根据平行四边形的性质可得 ,再根据角平分线的性质可推出 ,根据等角对等边可得 ,即可求出 的长.
【详解】
∵四边形ABCD是平行四边形


∵ 是 的平分线




故答案为:B.
【点睛】
本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.
【详解】
解:∵CG⊥EG,∴∠EGF=90°-∠CGF=90°-34°=56°,
又GF平分∠AGE,∴∠AGF=∠EGF=56°,
∴∠AGC=∠AGF-∠CGF=56°-34°=22°,
∴∠BGD=∠AGC=22°.
故选:A.
【点睛】
本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题的关键.
A. B. C. D.
【答案】A
【解析】
【分析】
对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.
【详解】
解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.
【点睛】
本题考查了三视图的概念.
17.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()
∵根据题意可知:AF∥BH,AB∥CE,
∴∠A+∠ABH=180°,∠ECB=∠ABC,
∵根据题意可知:∠FAB=70°,∠HBC=30°,
∴∠ABH=180°−70°=110°,∠ABC=110°−30°=80°,
∴∠ECB=80°,
∴∠DCE=180°−80°=100°,
即方向的调整应是右转100°.
∴AE= AB,
∵ 为 边上的中线,
∴AD= AB,
∴ ,
故选:D.
【点睛】
本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE:BE=AC:BC是解决本题的关键.
15.如图, 为等边三角形,点 从A出发,沿 作匀速运动,则线段 的长度y与运动时间x之间的函数关系大致是()
A. B.
先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.
【详解】
∵DE∥AF,∠CED=50°,
∴∠CAF=∠CED=50°,
∵∠BAC=60°,
∴∠BAF=60°﹣50°=10°,
故选:A.
【点睛】
此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.
【详解】
解:∵ 平分 ,
∴点E到 的两边距离相等,
设点E到 的两边距离位h,
则S△ACE= AC·h,S△BCE= BC·h,
∴S△ACE:S△BCE= AC·h: BC·h=AC:BC,
又∵S△ACE:S△BCE=AE:BE,
∴AE:BE=AC:BC,
∵在 中, , ,
∴AC:BC=3:4,
∴AE:BE=3:4
A.30°B.25°
C.20°D.15°
【答案】B
【解析】
根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,
18.如图,某河的同侧有 , 两个工厂,它们垂直于河边的小路的长度分别为 , ,这两条小路相距 .现要在河边建立一个抽水站,把水送到 , 两个工厂去,若使供水管最短,抽水站应建立的位置为( )
【答案】D
【解析】
【分析】
根据方向角的概念和平行线的性质求解.
【详解】
如图,过点B作BF∥AE,则∠DBF=∠DAE= ,
∴∠CBF=∠DBC-∠DBF=90°-43°=47°,
∴从B地测得C地在B地的北偏西47°方向上,
故选:D.
【点睛】
此题考查方位角,平行线的性质,正确理解角度间的关系求出能表示点位置的方位角是解题的关键.
【详解】
解:过点 作 于 ,
∵ , 是 的平分线,
∴ ,
∴ , .
∵ ,
∴ ,
设 .因为 ,
∴由勾股定理可得 ,
即 ,
解得 ,
即 .
故选:A.
【点睛】
本题主要考查圆的相关知识.掌握角平分线的性质以及熟练应用勾股定理是解此题的关键.
11.将下面平面图形绕直线l旋转一周,可得到如图所示立体图形的是( )
4.下列图形中,是正方体表面展开图的是()
A. B. C. D.
【答案】C
【解析】
【分析】
利用正方体及其表面展开图的特点解题.
【详解】
解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.
故选C.
【点睛】
本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.
5.如下图,将直角三角形绕一条边所在直线旋转一周后形成的几何体不可能是
A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补
C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等
【答案】D
【解析】
【分析】
【详解】
解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;
相关文档
最新文档