直角三角形练习试题
解直角三角形测试题

αCBA解直角三角形测试题一、选择题(每小题4分,共48分)1.在Rt ΔABC 中,∠C=900,则下列等式中不正确的是( ) (A )a=csinA ;(B )a=bcotB ;(C )b=csinB ;(D )c=cos bB .2.为测楼房BC 的高,在距楼房30米的A 处,测得楼顶B 的仰角为α,则楼房BC 的高为( ) (A )30tan α米;(B )30tan α米; (C )30sin α米; (D )30sin α米3.在ABC ∆中,︒=∠90C ,23cos =A ,则B ∠为( ) A .︒30 B .︒45C .︒60D .︒904.在ABC ∆中,︒=∠90C ,如果它的三边的长度都扩大3倍,则A∠的四个三角函数值( )A .都扩大3倍B .都缩小3倍C .都不变D .有些扩大,有些缩小5、下列结论中正确的是( )A 、 若α+β=900,则sin α= sin β;B 、 sin (α+β)=sin α+sin βC 、cot 470- cot 430 >0D 、Rt △ABC 中 ,∠C=900,则sinA+cosA >1,sin 2A+sin 2 B=1 6、已知:0°<x<90°,且sinX=cos30°,则cot =( ) A、B、C、60° D、30°7、当X是锐角时,下面的命题中,正确的是( ) A、sinX>tanX B、sinX=tanX C、sinX<tanX D、大小关系不确定 8、已知cos α=15,则锐角α满足( )A 、00<α<300; B 、300<α<450;C 、450<α<600;D 、600<α<9009.已知:αsin 135=(α为锐角),则αtan 的值是( ) A .512 B .512 C .1312 D .1213 10、当锐角A>45°时,sin A的值( ) A小于 B 大于 C 小于D大于11、在Rt △ABC中,C=90°,则( )A、sinA=sin(90°-A) B、cos(90°-A)=sin(90°-B)C、cosA=sinA D、cosA=cos(90°-A) 12.已知楼房AB 高50m ,如图,铁塔塔基距楼房房基间水平距离B 为50m ,塔高DC 为3350150+m ,下列结论中,正确的是( )A 、 楼顶望塔顶仰角为︒60B .由楼顶望塔基俯角为︒60C 、由楼顶望塔顶仰角为︒30D .由楼顶望塔基俯角为︒30 二、填空题(每小题3分,共21分)、1、在△ABC中,∠C=90°,a=3,b=4,则cosA=______。
解直角三角形 试题及答案

向东航行 30 分钟后到达 C处,发现灯塔 B在它的南偏东 15°方向,则此时货轮与灯塔 B的距离为
km.
图 K23-8
10、 如图 K23-9,在一笔直的沿湖道路上有 A,B两个游船码头,观光岛屿 C在码头 A北偏东 60°的方向,在码头 B北偏 西
45°的方向,AC=4 km.游客小张准备从观光岛屿 C乘船沿 CA回到码头 A或沿 CB回到码头 B,设开往码头 A,B的游船
∵∠CNP=46°,∴∠PNA=44°,
∴PA=PN·sin∠PNA=60×0.6947≈41.68(海里).
6【答案】25
如图,过点 B作 BE⊥AE于点 E,
∵坡度 i=1∶ 3,
∴tanA=1∶ 3= 3,∴3∠A=30°,
∵AB=50 m,∴BE=1AB=25(m)
.
2
∴他升高了 25 m.
∴BD=CD·tan37°≈27.2×0.75=20.4(海里).
�� 3
答:还需航行的距离 BD的长为 20.4 海里.
12【答案】解:如图,过点 C作 CD⊥AB于点 D,
设 BD为 x海里,
在 Rt△ACD中,∠DAC=45°,
∴AD=DC=(x+5)海里,
4
在 Rt△BCD中,由 tan53°=����
126
米.
5【答案】B
如图,过点 P作 PA⊥MN于点 A,
MN=30×2=60(海里),
∵∠MNC=90°,∠CNP=46°,
∴∠MNP=∠MNC+∠CNP=136°,
∵∠BMP=68°,
∴∠PMN=90°-∠BMP=22°,
∴∠MPN=180°-∠PMN-∠PNM=22°,
解直角三角形测试题

解直角三角形测试题一、选择题(每题 5 分,共 30 分)1、在直角三角形中,已知一个锐角为 30°,斜边为 2,则斜边上的高为()A 1B √3C √3 /2D √3 / 32、已知在 Rt△ABC 中,∠C = 90°,AC = 3,BC = 4,则 sinA 的值是()A 3/5B 4/5C 3/4D 4/33、在△ABC 中,∠C = 90°,tanA = 1/2 ,AC = 4,则 BC 的长度为()A 2B 8C 4√5D 2√54、一个直角三角形的两条直角边分别为 6 和 8,则它的斜边与斜边上的高的比为()A 25 : 12B 5 : 4C 25 : 6D 25 : 245、如图,在 Rt△ABC 中,∠C = 90°,D 为 AC 上一点,∠DBC = 60°,AB = 5,则 CD 的长为()A 5√3B 5√3 / 3C 5 / 2D 5 / 36、在 Rt△ABC 中,∠C = 90°,若 sinA = 12/13 ,则 tanB 的值为()A 5/12B 12/5C 13/5D 5/13二、填空题(每题 5 分,共 30 分)7、在 Rt△ABC 中,∠C = 90°,若∠A = 30°,a = 2,则 c =____。
8、已知在 Rt△ABC 中,∠C = 90°,sinB = 4/5 ,则 cosA =____。
9、若一个直角三角形的两条直角边分别为 3 和 4,则斜边上的中线长为____。
10、如图,在 Rt△ABC 中,∠C = 90°,AB = 10,sinA = 4/5 ,则 BC 的长为____。
11、在△ABC 中,∠C = 90°,tanA = 3/4 ,且△ABC 的周长为36,则 AC 的长为____。
12、已知在 Rt△ABC 中,∠C = 90°,AC = 2,BC = 6,则 cosB =____。
解直角三角形测试题及答案

《解直角三角形》整章测试【1】一、选择题(每小题3分,共24分)1.在Rt △ABC 中, ∠C=90︒,AB=4,AC=1,则cos A 的值是( )(A )154(B)14(C)15 (D)42.计算:2)130(tan -︒=( )(A)331-(B)13- (C)133-(D )1-3 3.在ABC ∆中,,A B ∠∠都是锐角,且sinA =21, cosB =23,则ABC ∆的形状( ) (A )直角三角形(B )钝角三角形 (C )锐角三角形 (D )不能确定4.如图,在Rt ABC △中,3tan 2B =,23BC =,则AC 等于( )(A )3(B )4(C )43(D )65.如图,小颖利用有一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE 为5m ,AB 为1.5m (即小颖的 眼睛距地面的距离),那么这棵树高是( ) (A)(53332+)m (B)(3532+)m (C)533m (D)4m 6.因为1sin 302=,1sin 2102=-, 所以sin 210sin(18030)sin 30=+=-;因为2sin 452=,2sin 2252=-,所以sin 225sin(18045)sin 45=+=-,由此猜想,推理知:一般地当α为锐角时有sin(180)sin αα+=-,由此可知:sin 240=( )(A )12-(B)22-(C)32- (D)3-7.如图,客轮在海上以30km/h 的速度由B 向C 航行,在B 处测得 灯塔A 的方位角为北偏东80,测得C 处的方位角为南偏东25,航 行1小时后到达C 处,在C 处测得A 的方位角为北偏东20,则C 到A 的距离是( )(A)156km(B)152km (C)15(62)+km(D)5(632)+km北东ABC8.如图,在Rt ABC △中,906cm A AC ∠==,,8cm AB =,把AB 边翻折,使AB 边落在BC 边上,点A 落在点E 处,折痕为BD ,则sin DBE ∠的值为()(A)13(B)310(C)37373(D)1010二、填空题(每小题3分,共24分) 9.计算sin 60tan 45cos30-的值是.10. 用“>”或“<”号填空:1sin 50cos 402-0.(可用计算器计算) 11.在Rt ABC △中,90C ∠=,:3:4BC AC =,则cos A =. 12.如图,一架梯子斜靠在墙上,若梯子到墙的距离AC =3米,3cos 4BAC ∠=,则梯子AB 的长度为米.13.如图,一轮船由南向北航行到O 处时,发现与轮船相距40海里的A 岛在北偏东33方向.已知A 岛周围20海里水域有暗礁, 如果不改变航向,轮船(填“有”或“没有”)触暗礁 的危险.(可使用科学计算器)14. 如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE=6cm ,3sin 5A =,则菱形ABCD 的面积是__________2cm . 15.根据指令[s,A](s ≥0,0°≤A <360°)机器人在平面上能完成如下动作:先在原地逆时针旋转角度A ,再朝其面对的方向沿直线行走距离s .现在机器人在平面直角坐标系的原点,且面对y 轴的负方向,为使其移动到点(-3,3),应下的指令是.16. 有古诗“葭生池中”今有方池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问: 水深、葭长各几何?(1丈=10尺)回答:水深,葭长. 17.(本题8分)计算:242(2cos 45sin 60)4︒-︒+. 18.(本题10分)某校数学兴趣小组在测量一座池塘边上A B ,两点间的距离时用了以下三种测量方法,如下图所示.图中a b c ,,表示长度,β表示角度.请你分别求出AB 的长度(用含有a b c β,,,字母的式子表示).(1)______AB = (2)______AB = (3)______AB =19.(本题10分)小强家有一块三角形菜地,量得两边长分别为40m ,50m ,第三边上的高为30m ,请你帮小强计算这块菜地的面积(结果保留根号). 20.(本题12分)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由. (1A C B a b(2AC B a β (3AC B aD Ec b A BCD EA BC21.(本题12分)如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求B,D之间的距离;(2)求C,D之间的距离.四、附加题(本题20分)22.现代家居设计的“推拉式”钢窗,运用了轨道滑行技术,纱窗装卸时利用了平行四边形的不稳定性,操作步骤如下:(1)将矩形纱窗转化成平行四边形纱窗后,纱窗上边框嵌入窗框的上轨道槽(如图1).(2)将平行四边形纱窗的下边框对准窗框的下轨道槽(如图2).(3)将平行四边形纱窗还原成矩形纱窗,同时下边框嵌入窗框的下轨道槽(如图3).在装卸纱窗的过程中,如图所示α∠的值不得小于81,否则纱窗受损.现将高96cm的矩形纱窗恰好安装在上、下槽深分别为0.9cm,高96cm(上、下槽底间的距离)的窗框上.试求合理安装纱窗时α∠的sin810.987=0.990=sin830.993=0.995=cos90.987=0.990=0.993=0.995=章《解直角三角形》整章测试答案:~8 BABA ACDD三、17.解:2=原式2=-2=18.解:(1)AB=(2)tanAB aβ=(3)acABb=.19.解:分两种情况:(1)当ACB∠为钝角时,BD是高,90ADB∴∠=.在Rt BCD△中,40BC=,30BD=∴CD==.在Rt ABD△中,50AB=,ABC中山路文化路D和平路45°15°30°环城路EF 图1 2 图3∴40AD ==.40AC AD CD ∴=-=-,新课标第一网∴211(4030(600)22ABC S AC BD ==-⨯=-△. (2)当ACB ∠为锐角时, BD 是高,90ADB BDC ∴∠=∠=,在Rt ABD △中,5030AB BD ==,,40AD ∴==.同理CD ==∴(40AC AD CD =+=+,∴211(4030(600)22ABC S AC BD ==+⨯=+△.综上所述:2(600)ABC S =±△.20.解:有触礁危险.理由: 过点P 作PD ⊥AC 于D .设PD 为x ,在Rt △PBD 中,∠PBD=90°-45°=45°. ∴BD =PD =x .在Rt △PAD 中,∵∠PAD =90°-60°=30°,∴x .xAD 330tan =︒=∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险.21. 解:(1)由题意得,∠EA D =45°,∠FBD=30°. ∴∠EAC=∠EA D +∠DA C =45°+15°=60°. ∵ AE∥BF∥CD,∴ ∠FBC=∠EAC =60°. ∴ ∠DBC=30°.又∵ ∠DBC=∠DAB+∠ADB, ∴ ∠ADB=15°.∴∠DAB=∠ADB.∴ BD=AB=2. 即B ,D 之间的距离为2km .(2)过B 作BO⊥DC,交其延长线于点O , 在Rt△DBO 中,BD=2,∠DBO=60°. ∴ DO=2×sin60°=2×323=,BO=2×cos60°=1. 在Rt△CBO 中,∠CBO=30°,CO=BOtan30°=33, ∴ CD=DO-CO=332333=-(km ). 即C ,D 之间的距离为332km . 22. 解:能够合理装上平行四边形纱窗时的最大高度:960.995.1-=(cm ) 能够合理装上平行四边形纱窗时的高:96sin α∠或96cos(90)α-∠·°当81α∠=°时,纱窗高:96sin81960.98794.75295.1=⨯=<° ∴此时纱窗能装进去,当82α∠=°时,纱窗高:96sin82960.99095.0495.1=⨯=<° ∴此时纱窗能装进去.当83α∠=°时,纱窗高:96sin83960.99395.32895.1=⨯=>° ∴此时纱窗装不进去.因此能合理装上纱窗时α∠的最大值是82°.。
解直角三角形练习试题1(含答案解析)

解直角三角形练习题1一. 选择题:(每小题2分,共20分)1. 在△EFG 中,∠G=90°,EG=6,EF=10,则cotE=( ) A.43 B.34 C.53 D. 35 2. 在△ABC 中,∠A=105°,∠B=45°,tanC 的值是( )A.21B.33 C.1 D. 33. 在△ABC 中,若22cos =A ,3tan =B,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形4. 如图18,在△EFG 中,∠EFG=90°,FH ⊥EG ,下面等式中,错误的是( )A.EGEF G =sin B.EFEH G =sinC.FGGH G =sinD.FGFH G =sin 5. sin65°与cos26°之间的关系为( )A. sin65°<cos26°B. sin65°>cos26°C. sin65°=cos26°D. sin65°+cos26°=1 6. 已知30°<α<60°,下列各式正确的是( )A.B.C.D.7. 在△ABC 中,∠C=90°,52sin =A ,则sinB 的值是( )A.32 B.52 C.54D. 5218. 若平行四边形相邻两边的长分别为10和15,它们的夹角为60°,则平行四边形的面积是( )米2A. 150B.375C. 9D. 79. 如图19,铁路路基横断面为一个等腰梯形,若腰的坡度为i= 2∶3,顶宽是3米,路基高是4米,则路基的下底宽是( )A. 7米B. 9米C. 12米D. 15米10. 如图20,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为α,则它们重叠部分(图中阻影部分)的面积为( )A.αsin 1 B. αcos 1C.αsin D. 1二. 填空题:(每小题2分,共10分)11. 已知0°<α<90°,当α=__________时,21sin =α,当α=__________时,Cota=3. 12. 若,则锐角α=__________。
解直角三角形基础题专题试题精选三附答案

解直角三角形基础题试题精选三附答案一.选择题(共15小题)1.(2015•庆阳)在△ABC中,若角A,B满足|cosA﹣|+(1﹣tanB)2=0,则∠C的大小是()A.45°B.60°C.75°D.105°2.(2015•温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是()A.B.C.D.3.(2015•济宁)如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A.5米B.6米C.8米D.(3+)米4.(2014•呼伦贝尔)如图,在水平地面上,由点A测得旗杆BC顶点C的仰角为60°,点A到旗杆的距离AB=12米,则旗杆的高度为()A.米B.6米C.米D.12米5.(2015•玉林)计算:cos245°+sin245°=()A.B.1 C.D.6.(2012•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C. D.7.(2012•福州)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.100()米8.(2015•绵阳)如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11﹣2)米B.(11﹣2)米C.(11﹣2)米D.(11﹣4)米9.(2015•海宁市模拟)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于()A.B.C.D.10.(2014•历下区二模)如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBC=,则AD的长为()A.2 B.4 C.D.11.(2014•嘉定区一模)在Rt△ABC中,∠C=90°,AC=12,BC=5,那么tanA等于()A.B.C.D.12.(2015•泰安)如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A 位于北偏东10°方向上,则C处与灯塔A的距离是()A.20海里B.40海里C.海里D.海里13.(2014•渝北区自主招生)已知一直角三角形的两直角边的比为3:7,则最小角的正弦值是()A.B.C.D.14.(2014•厦门)sin30°的值是()A.B.C.D.115.(2013•乐山)如图,在直角坐标系中,P是第一象限内的点,其坐标是(3,m),且OP与x轴正半轴的夹角α的正切值是,则sinα的值为()A.B.C.D.二.填空题(共7小题)16.(2015•揭西县一模)在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是.17.(2014•怀化)如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他离地面高度为h=2米,则这个土坡的坡角为.18.(2014•高港区二模)若α为锐角,且,则m的取值范围是.19.(2014•上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为米.20.(2014•本溪)在△ABC中,∠B=45°,cosA=,则∠C的度数是.21.(2014•滨州二模)如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=.22.(2015•桂林)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是.三.解答题(共8小题)23.(2014•南京校级二模)计算:﹣2cos30°+()﹣2﹣|1﹣|.24.(2014•淮安)为了对一棵倾斜的古杉树AB进行保护,需测量其长度.如图,在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,求这棵古杉树AB的长度.(结果取整数)参考数据:≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.25.(2014•赤峰)位于赤峰市宁城的“大明塔”是我国辽代的佛塔,距今已有1千多年的历史.如图,王强同学为测量大明塔的高度,在地面的点E处测得塔基BC上端C的仰角为30°,他又沿BE方向走了26米,到达点F处,测得塔顶端A的仰角为52°,已知塔基是以OB为半径的圆内接正八边形,B点在正八边形的一个顶点上,塔基半径OB=18米,塔基高BC=11米,求大明塔的高OA(结果保留到整数,≈1.73,tan52°≈1.28).26.(2015•南宁模拟)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PO的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)27.(2014•乌鲁木齐)如图,在电线杆上的E处引拉线EC和EB固定电线杆,在离电线杆6米的A处安置测角仪(点A,C,F在一直线上),在D处测得电线杆上E处的仰角为37°,已知测角仪的高AD为1.5米,AC为3米,求拉线EC的长.(精确到0.1米)28.(2015•东台市一模)如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).29.(2013•枣庄)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D 的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.30.(2011•兰州)已知a是锐角,且sin(a+15°)=,计算﹣4cosα﹣(π﹣3.14)0+tanα+的值.解直角三角形基础题试题精选三附答案参考答案与试题解析一.选择题(共15小题)1.(2015•庆阳)在△ABC中,若角A,B满足|cosA﹣|+(1﹣tanB)2=0,则∠C的大小是()A.45°B.60°C.75°D.105°考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.分析:根据非负数的性质得出cosA=,tanB=1,求出∠A和∠B的度数,继而可求得∠C 的度数.解答:解:由题意得,cosA=,tanB=1,则∠A=30°,∠B=45°,则∠C=180°﹣30°﹣45°=105°.故选D.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.2.(2015•温州)如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是()A.B.C.D.考点:锐角三角函数的定义.分析:根据锐角的余弦等于邻边比斜边求解即可.解答:解:∵AB=5,BC=3,∴AC=4,∴cosA==.故选D.点评:本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边3.(2015•济宁)如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()A.5米B.6米C.8米D.(3+)米考点:解直角三角形的应用-坡度坡角问题.分析:设CD=x,则AD=2x,根据勾股定理求出AC的长,从而求出CD、AC的长,然后根据勾股定理求出BD的长,即可求出BC的长.解答:解:设CD=x,则AD=2x,由勾股定理可得,AC==x,∵AC=3米,∴x=3,∴x=3米,∴CD=3米,∴AD=2×3=6米,在Rt△ABD中,BD==8米,∴BC=8﹣3=5米.故选A.点评:本题考查了解直角三角形的应用﹣﹣坡度坡角问题,找到合适的直角三角形,熟练运用勾股定理是解题的关键.4.(2014•呼伦贝尔)如图,在水平地面上,由点A测得旗杆BC顶点C的仰角为60°,点A到旗杆的距离AB=12米,则旗杆的高度为()A.米B.6米C.米D.12米考点:解直角三角形的应用-仰角俯角问题.分析:此题可由仰角的正切值求得旗杆的高度.解答:解:由于AB=12(米),仰角α=60°,则BC=AB•tan60°=12(米),故选C.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.5.(2015•玉林)计算:cos245°+sin245°=()A.B.1 C.D.考点:特殊角的三角函数值.分析:首先根据cos45°=sin45°=,分别求出cos245°、sin245°的值是多少;然后把它们求和,求出cos245°+sin245°的值是多少即可.解答:解:∵cos45°=sin45°=,∴cos245°+sin245°===1.故选:B.点评:此题主要考查了特殊角的三角函数值,要熟练掌握,解答此类问题的关键是要明确:(1)30°、45°、60°角的各种三角函数值;(2)一个角正弦的平方加余弦的平方等于1.6.(2012•内江)如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A.B.C. D.考点:锐角三角函数的定义;勾股定理.专题:网格型.分析:利用网格构造直角三角形,根据锐角三角函数的定义解答.解答:解:如图:在B点正上方找一点D,使BD=BC,连接CD交AB于O,根据网格的特点,CD⊥AB,在Rt△AOC中,CO==;AC==;则sinA===.故选:B.点评:本题考查了锐角三角函数的定义和勾股定理,作出辅助线CD并利用网格构造直角三角形是解题的关键.7.(2012•福州)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.200米C.220米D.100()米考点:解直角三角形的应用-仰角俯角问题.专题:压轴题.分析:图中两个直角三角形中,都是知道已知角和对边,根据正切函数求出邻边后,相加求和即可.解答:解:由已知,得∠A=30°,∠B=45°,CD=100,∵CD⊥AB于点D.∴在Rt△ACD中,∠CDA=90°,tanA=,∴AD===100在Rt△BCD中,∠CDB=90°,∠B=45°∴DB=CD=100米,∴AB=AD+DB=100+100=100(+1)米.故选D.点评:本题考查了解直角三角形的应用,解决本题的关键是利用CD为直角△ABC斜边上的高,将三角形分成两个三角形,然后求解.分别在两三角形中求出AD与BD的长.8.(2015•绵阳)如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直,当灯罩的轴线DO通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC高度应该设计为()A.(11﹣2)米B.(11﹣2)米C.(11﹣2)米D.(11﹣4)米考点:解直角三角形的应用.分析:出现有直角的四边形时,应构造相应的直角三角形,利用相似求得PB、PC,再相减即可求得BC长.解答:解:如图,延长OD,BC交于点P.∵∠ODC=∠B=90°,∠P=30°,OB=11米,CD=2米,∴在直角△CPD中,DP=DC•cot30°=2m,PC=CD÷(sin30°)=4米,∵∠P=∠P,∠PDC=∠B=90°,∴△PDC∽△PBO,∴=,∴PB===11米,∴BC=PB﹣PC=(11﹣4)米.故选:D.点评:本题通过构造相似三角形,综合考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念.9.(2015•海宁市模拟)如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于()A.B.C.D.考点:特殊角的三角函数值;等边三角形的判定与性质;作图—复杂作图.专题:探究型.分析:连接AB,先根据题意判断出△AOB的形状,再得出∠AOB的度数,由特殊角的三角函数值即可得出结论.解答:解:连接AB,∵以O为圆心,任意长为半径画弧,与射线OM交于点A,∴OA=OB,∵以A为圆心,AO长为半径画弧,两弧交于点B,∴△AOB是等边三角形,∴∠AOB=60°,∴sin∠AOB=sin60°=.故选C.点评:本题考查的是特殊角的三角函数值及等边三角形的判定与性质,熟记各特殊角的三角函数值是解答此题的关键.10.(2014•历下区二模)如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBC=,则AD的长为()A.2 B.4 C.D.考点:解直角三角形.分析:先由等腰直角三角形的性质得出BC=AC=6,再解Rt△DBC,求出DC的长,然后根据AD=AC﹣DC即可求解.解答:解:在等腰Rt△ABC中,∵∠C=90°,AC=6,∴BC=AC=6.在Rt△DBC中,∵∠C=90°,∴tan∠DBC==,∴DC=BC=4,∴AD=AC﹣DC=6﹣4=2.故选A.点评:本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰直角三角形的性质.11.(2014•嘉定区一模)在Rt△ABC中,∠C=90°,AC=12,BC=5,那么tanA等于()A.B.C.D.考点:锐角三角函数的定义.分析:本题可以利用锐角三角函数的定义求解,正切=对边÷邻边,即tanA=.解答:解:∵在Rt△ABC中,∠C=90°,AC=12,BC=5,∴tanA==.故选C.点评:本题考查了锐角三角函数的定义,用到的知识点有正切=对边÷邻边.12.(2015•泰安)如图,轮船从B处以每小时60海里的速度沿南偏东20°方向匀速航行,在B处观测灯塔A位于南偏东50°方向上,轮船航行40分钟到达C处,在C处观测灯塔A 位于北偏东10°方向上,则C处与灯塔A的距离是()A.20海里B.40海里C.海里D.海里考点:解直角三角形的应用-方向角问题.分析:作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=40海里,∠NCA=10°,则∠ABC=∠ABD﹣∠CBD=30°.由BD∥CN,得出∠BCN=∠DBC=20°,那么∠ACB=∠ACN+∠BCN=30°=∠ABC,根据等角对等边得出AB=AC,由等腰三角形三线合一的性质得到CM=BC=20海里.然后在直角△ACM中,利用余弦函数的定义得出AC=,代入数据计算即可.解答:解:如图,作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=40海里,∠NCA=10°,则∠ABC=∠ABD﹣∠CBD=50°﹣20°=30°.∵BD∥CN,∴∠BCN=∠DBC=20°,∴∠ACB=∠ACN+∠BCN=10°+20°=30°,∴∠ACB=∠ABC=30°,∴AB=AC,∵AM⊥BC于M,∴CM=BC=20海里.在直角△ACM中,∵∠AMC=90°,∠ACM=30°,∴AC===(海里).故选D.点评:本题考查了解直角三角形的应用﹣方向角问题,平行线的性质,等腰三角形的判定与性质,余弦函数的定义,难度适中.求出CM=BC=20海里是解题的关键.13.(2014•渝北区自主招生)已知一直角三角形的两直角边的比为3:7,则最小角的正弦值是()A.B.C.D.考点:锐角三角函数的定义;勾股定理.专题:计算题.分析:设BC=3x,则AC=7x,再利用勾股定理计算出AB,然后根据正弦的定义求解.解答:解:如图,BC:AC=3:7,设BC=3x,则AC=7x,所以AB==x,所以sinA===.故选B.点评:本题考查了锐角三角函数的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.14.(2014•厦门)sin30°的值是()A.B.C.D.1考点:特殊角的三角函数值.分析:直接根据特殊角的三角函数值进行计算即可.解答:解:sin30°=.故选:A.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.15.(2013•乐山)如图,在直角坐标系中,P是第一象限内的点,其坐标是(3,m),且OP与x轴正半轴的夹角α的正切值是,则sinα的值为()A.B.C.D.考点:同角三角函数的关系;坐标与图形性质.分析:过点P作PE⊥x轴于点E,则可得OE=3,PE=m,在Rt△POE中求出OP,继而可得sinα的值.解答:解:过点P作PE⊥x轴于点E,则可得OE=3,PE=m,在Rt△POE中,tanα==,解得:m=4,则OP==5,故sinα=.故选A.点评:本题考查了勾股定理及同角的三角函数关系,解答本题的关键是求出OP的长度.二.填空题(共7小题)16.(2015•揭西县一模)在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是2.考点:解直角三角形;菱形的性质.专题:应用题.分析:在直角三角形ADE中,cosA=,求得AD,AE.再求得DE,即可得到tan∠DBE=.解答:解:设菱形ABCD边长为t,∵BE=2,∴AE=t﹣2,∵cosA=,∴,∴=,∴t=5,∴AE=5﹣2=3,∴DE==4,∴tan∠DBE===2.故答案为:2.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.17.(2014•怀化)如图,小明爬一土坡,他从A处爬到B处所走的直线距离AB=4米,此时,他离地面高度为h=2米,则这个土坡的坡角为30°.考点:解直角三角形的应用-坡度坡角问题.分析:直接利用正弦函数的定义求解即可.解答:解:由题意得:AB=4米,BC=2米,在Rt△ABC中,sinA===,故∠A=30°,故答案为:30°.点评:本题考查了解直角三角形的应用,牢记正弦函数的定义是解答本题的关键.18.(2014•高港区二模)若α为锐角,且,则m的取值范围是.考点:锐角三角函数的增减性.分析:根据余弦值的取值范围,列不等式求解.解答:解:∵0<cosα<1,∴0<<1,解得,故答案为:.点评:本题考查了锐角三角函数的增减性.明确锐角三角函数的取值范围:正余弦的锐角三角函数值都是大于0而小于1,正余切的锐角三角函数值都是大于0.19.(2014•上海)已知传送带与水平面所成斜坡的坡度i=1:2.4,如果它把物体送到离地面10米高的地方,那么物体所经过的路程为26米.考点:解直角三角形的应用-坡度坡角问题.专题:应用题.分析:首先根据题意画出图形,根据坡度的定义,由勾股定理即可求得答案.解答:解:如图,由题意得:斜坡AB的坡度:i=1:2.4,AE=10米,AE⊥BD,∵i==,∴BE=24米,∴在Rt△ABE中,AB==26(米).故答案为:26.点评:此题考查了坡度坡角问题.此题比较简单,注意掌握数形结合思想的应用,注意理解坡度的定义.20.(2014•本溪)在△ABC中,∠B=45°,cosA=,则∠C的度数是75°.考点:特殊角的三角函数值;三角形内角和定理.专题:计算题.分析:由条件根据∠A的余弦值求得∠A的值,再根据三角形的内角和定理求∠C即可.解答:解:∵在△ABC中,cosA=,∴∠A=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.点评:本题主要考查特殊角的余弦值以及三角形的内角和定理,属基础题.21.(2014•滨州二模)如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA= 2.考点:锐角三角函数的定义;坐标与图形性质.分析:首先根据三角形内角和可得∠BAO=∠ACO,再根据正切定义计算出tan∠OCA.解答:解:∵∠1=∠2,∴∠BAO=∠ACO,∵A(2,0),B(0,4),∴tan∠OCA=tan∠BAO==2.故答案为:2.点评:此题主要考查了锐角三角函数定义,关键是掌握正切定义:锐角A的对边a与邻边b 的比叫做∠A的正切.22.(2015•桂林)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是.考点:解直角三角形.分析:先求得∠A=∠BCD,然后根据锐角三角函数的概念求解即可.解答:解:在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tan∠A===.故答案为.点评:本题考查了解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.三.解答题(共8小题)23.(2014•南京校级二模)计算:﹣2cos30°+()﹣2﹣|1﹣|.考点:特殊角的三角函数值;绝对值;负整数指数幂;二次根式的性质与化简.专题:计算题.分析:本题涉及实数运算、二次根式化简等多个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3﹣2×+4﹣(﹣1),=3﹣+4﹣+1,=+5.点评:本题考查实数的运算能力,解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.注意:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简是根号下不能含有分母和能开方的数.24.(2014•淮安)为了对一棵倾斜的古杉树AB进行保护,需测量其长度.如图,在地面上选取一点C,测得∠ACB=45°,AC=24m,∠BAC=66.5°,求这棵古杉树AB的长度.(结果取整数)参考数据:≈1.41,sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30.考点:解直角三角形的应用.专题:几何图形问题.分析:过B点作BD⊥AC于D.分别在Rt△ADB和Rt△CDB中,用BD表示出AD和CD,再根据AC=AD+CD=24m,列出方程求解即可.解答:解:过B点作BD⊥AC于D.∵∠ACB=45°,∠BAC=66.5°,∴在Rt△ADB中,AD=,在Rt△CDB中,CD=BD,∵AC=AD+CD=24m,∴+BD=24,解得BD≈17m.AB=≈18m.故这棵古杉树AB的长度大约为18m.点评:本题考查解三角形的实际应用,解题的关键是作出辅助线构造直角三角形,利用三角函数求三角形的边.25.(2014•赤峰)位于赤峰市宁城的“大明塔”是我国辽代的佛塔,距今已有1千多年的历史.如图,王强同学为测量大明塔的高度,在地面的点E处测得塔基BC上端C的仰角为30°,他又沿BE方向走了26米,到达点F处,测得塔顶端A的仰角为52°,已知塔基是以OB为半径的圆内接正八边形,B点在正八边形的一个顶点上,塔基半径OB=18米,塔基高BC=11米,求大明塔的高OA(结果保留到整数,≈1.73,tan52°≈1.28).考点:解直角三角形的应用-仰角俯角问题.专题:几何图形问题.分析:在直角△CBE中利用三角函数首先求得EC的长,则OF即可求解,然后在直角△AOF 中,利用三角函数即可求解.解答:解:∵在直角△CBE中,∠CEB=30°,BC=11,∴EC=22,则EB==11≈19,∵在直角△AOF中,∠AFO=52°,OF=18+19+26=63,∴OA=OF•tan∠AFO≈63×1.28=81(米).答:大明塔高约81米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.26.(2015•南宁模拟)已知,如图,在坡顶A处的同一水平面上有一座古塔BC,数学兴趣小组的同学在斜坡底P处测得该塔的塔顶B的仰角为45°,然后他们沿着坡度为1:2.4的斜坡AP攀行了26米,在坡顶A处又测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PO的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)考点:解直角三角形的应用-仰角俯角问题.分析:(1)先过点A作AH⊥PO,根据斜坡AP的坡度为1:2.4,得出=,设AH=5k,则PH=12k,AP=13k,求出k的值即可.(2)先延长BC交PO于点D,根据BC⊥AC,AC∥PO,得出BD⊥PO,四边形AHDC 是矩形,再根据∠BPD=45°,得出PD=BD,然后设BC=x,得出AC=DH=x﹣14,最后根据在Rt△ABC中,tan76°=,列出方程,求出x的值即可.解答:解:(1)过点A作AH⊥PO,垂足为点H,∵斜坡AP的坡度为1:2.4,∴=,设AH=5k,则PH=12k,由勾股定理,得AP=13k,∴13k=26,解得k=2,∴AH=10,答:坡顶A到地面PO的距离为10米.(2)延长BC交PO于点D,∵BC⊥AC,AC∥PO,∴BD⊥PO,∴四边形AHDC是矩形,CD=AH=10,AC=DH,∵∠BPD=45°,∴PD=BD,设BC=x,则x+10=24+DH,∴AC=DH=x﹣14,在Rt△ABC中,tan76°=,即≈4.01.解得x≈19.答:古塔BC的高度约为19米.点评:此题考查了解直角三角形,用到的知识点是勾股定理、锐角三角函数、坡角与坡角等,关键是做出辅助线,构造直角三角形.27.(2014•乌鲁木齐)如图,在电线杆上的E处引拉线EC和EB固定电线杆,在离电线杆6米的A处安置测角仪(点A,C,F在一直线上),在D处测得电线杆上E处的仰角为37°,已知测角仪的高AD为1.5米,AC为3米,求拉线EC的长.(精确到0.1米)考点:解直角三角形的应用-仰角俯角问题.分析:由题意可先过点D作DM⊥EF,垂足为M,在Rt△EMD中,可求出EM,进而EF=EM+MF,再在Rt△CEF中,求出CE的长.解答:解:过点D作DM⊥EF,垂足为M,由题意可知四边形ADMF为矩形,∴DM=AF=6,MF=DA=1.5,在Rt△EMD中,EM=DM•tan∠EDM=6tan37°,∴EF=EM+MF,DM=AF=6tan37°,∴EF=EM+MF=6tan37°+1.5.∵AC=3,∴CF=AF﹣AC=3,在Rt△CEF中,CE=≈6.7.答:拉线CE的长为6.7米.点评:此题主要考查解直角三角形的应用.要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.28.(2015•东台市一模)如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:设EC=x,则在RT△BCE中,可表示出BE,在Rt△ACE中,可表示出AE,继而根据AB+BE=AE,可得出方程,解出即可得出答案.解答:解:设EC=x,在Rt△BCE中,tan∠EBC=,则BE==x,在Rt△ACE中,tan∠EAC=,则AE==x,∵AB+BE=AE,∴300+x=x,解得:x=1800,这座山的高度CD=DE﹣EC=3700﹣1800=1900(米).答:这座山的高度是1900米.点评:此题考查了解直角三角形的应用,解答本题的关键是两次利用三角函数的知识,求出BE及AE的表达式,属于基础题,要能将实际问题转化为数学计算.29.(2013•枣庄)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D 的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD==≈36.33(米),…2分在Rt△BDC中,BD=≈12.11(米),…4分则AB=AD﹣BD=36.33﹣12.11=24.22≈24.2(米)…6分(2)超速.理由:∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1×3600=43560(米/时),∴该车速度为43.56千米/小时,…9分∵大于40千米/小时,∴此校车在AB路段超速.…10分点评:此题考查了解直角三角形的应用问题.此题难度适中,解题的关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.30.(2011•兰州)已知a是锐角,且sin(a+15°)=,计算﹣4cosα﹣(π﹣3.14)0+tanα+的值.考点:特殊角的三角函数值;零指数幂;负整数指数幂.专题:计算题.分析:根据特殊角的三角函数值得出α,然后利用二次根式、特殊角的三角函数值、零指数幂、负指数幂的性质进行化简,根据实数运算法则即可计算出结果.解答:解:∵sin60°=,∴α+15°=60°,∴α=45°,∴原式=2﹣4×﹣1+1+3=3.点评:本题主要考查了二次根式、特殊角的三角函数值、零指数幂、负指数幂的性质及实数运算法则,难度适中.。
初中数学精品试题:直角三角形1

BCAD2.6直角三角形(1)A 组1.如果三角形的三个内角的比是1∶2∶3,那么这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形 2.Rt △ABC 中,如果两条直角边分别为3,4,斜边为5,则斜边上的高线是( ) A .1.2 B .2.4 C .5 D .不能确定 3.将一副直角三角板,按如图叠放,则图中∠α的度数是( ) A . 55o B .65o C .75o D .无法确定4.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D .下列结论不一定成立的是( ) A .∠1与∠B 互余 B .∠2与∠A 互余 C .∠2=∠A D .∠1=∠A5.已知Rt △ABC 中,斜边AB =10cm ,则斜边上的中线的长为_____.6.如图,在△ABC 中,AB =AC =20,BC =16,AD 平分∠BAC 交BC 于点D ,E 为AC 的中点,连接DE ,则△CDE 的周长为 .7.Rt △ABC 中,CD 是斜边AB 上的中线,∠CDA =70°.求∠A 和∠B .8.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AE 平分∠CAB ,AE 交CD 于点F ,求证:△CEF 是等腰三角形.8.如图,在在Rt △ABC 中,∠BAC=90°,AD 是BC 边上的中线,ED ⊥BC 于D ,交BA 延长线于E ,若∠E=35,求∠BDA 的度数45°30°a第3题第6题第4题 BCEACBADEF ★9.如图,△ABC 中,AD ,BE 分别为边BC ,AC 上的高线,D ,E 为垂足,M 为AB 的中点,N 为DE 的中点.求证:(1)△MDE 是等腰三角形;(2)MN ⊥DEB 组★10.已知:如图,∠BAC =90°,∠C =30°, AD ⊥BC 于D , DE ⊥AB 于E ,BE =1,AB =_________,BC =______ ___.11.如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,E 是BC 的中点,∠A=55°,求∠DEC 的度数。
直角三角形性质测试(三)(人教版)(含答案)

直角三角形性质测试(三)(人教版)一、单选题(共10道,每道10分)1.如图,△ABC和△DCE都是边长为4的等边三角形,点B,C,E在同一条直线上,连接BD,则BD的长为( )A. B.C. D.8答案:C解题思路:试题难度:三颗星知识点:含30°角的直角三角形2.如图,在Rt△ABC中,∠ACB=30°,AB=4,BD平分∠ABC,交AC于点D,则点D到BC的距离是( )A.1B.2C. D.答案:C解题思路:试题难度:三颗星知识点:含30°角的直角三角形3.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,E是AC的中点.若DE=5,则AB的长为( )A.6B.8C.10D.12答案:C解题思路:试题难度:三颗星知识点:直角三角形斜边上的中线等于斜边的一半4.如图,在△ABC中,D为AB的中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为( )A.10B.11C.12D.13答案:C解题思路:试题难度:三颗星知识点:直角三角形斜边上的中线等于斜边的一半5.如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN等于( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:等积公式6.如图,将一个含45°角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,则三角板的最大边长为( )A.3cmB.6cmC. D.答案:D解题思路:试题难度:三颗星知识点:含45°角的直角三角形7.如图,在△ABC中,∠B=45°,,,则边AC的长为( )A. B.C.2D.答案:C解题思路:试题难度:三颗星知识点:含45°角的直角三角形8.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于点F.若∠F=30°,DE=1,则EF的长是( )A.3B.2C. D.1答案:B解题思路:试题难度:三颗星知识点:含30°角的直角三角形9.如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为( )A.2B.C. D.3答案:C解题思路:试题难度:三颗星知识点:含30°角的直角三角形10.如图,等边三角形ABC外一点P到三边距离分别为,,,且,其中,,,则( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:等面积法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2.2 直角三角形全等的判定
一、填空题 1.如下图,Rt△ABC和Rt△DEF,∠C=∠F=90°
(1)若∠A=∠D,BC=EF,则Rt△ABC≌Rt△DEF的依据是__________.
(2)若∠A=∠D,AC=DF,则Rt△ABC≌Rt△DEF的依据是__________.
(3)若∠A=∠D,AB=DE,则Rt△ABC≌Rt△DEF的依据是__________.
(4)若AC=DF,AB=DE,则Rt△ABC≌Rt△DEF的依据是__________.
(5)若AC=DF,CB=F E,则Rt△ABC≌Rt△DEF的依据是__________.
2.如右图,在Rt△ABC和Rt△DCB中,AB=DC,∠A=∠D=90°,AC与
BD交于点O,则有△_____≌△_____,其判定依据是___ __,还有△
__________≌△__________,其判定依据是__________.
3.已知:如图(1),AE⊥BC,DF⊥BC,垂足分别为E,F,AE=DF,AB=DC,则△__________≌△__________(HL).
(1)(2)(3)
4.已知:如图(2),BE,CF为△ABC的高,且BE=CF,BE,CF交于点H,若BC=10,FC=8,则EC=__________.
5.已知:如图(3),AB=CD,DE⊥AC于E,BF⊥AC于F,且DE=BF,∠D=60°,则∠A=(___)°.
6.如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则
需要加条件_______或;若利用“HL”证明△ABC≌△ABD,则需要加条件或.
第6题第7题第8题
7.如图,有一个直角△ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P.Q两点分别在AC和过点A 且垂直于AC的射线AX上运动,当AP= 时,才能使ΔABC≌ΔPQA.
8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB,交BC于 D,DE⊥AB于E,且AB=6 cm,则△DEB的周长为___________cm.
二、选择题
1.如下图,O是∠BAC内一点,且点O到AB,AC的距离OE=OF,则△AEO≌△AFO的依据是()
A.HL
B.AAS
C.SSS
D.ASA
2.在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,如下图,那么下列各条件中,不能使Rt△ABC ≌Rt△A′B′C′的是()
A.AB=A′B′=5,BC=B′C′=3
B.AB=B′C′=5,∠A=∠B′=40°
C.AC=A′C′=5,BC=B′C′=3
D.AC=A′C′=5,∠A=∠A′=40°
3.下列条件不可以判定两个直角三角形全等的是()
A.两条直角边对应相等
B.有两条边对应相等
C.一条边和一锐角对应相等
D.一条边和一个角对应相等
4.△ABC中,∠C=90°,AD为角平分线,BC=32,BD∶DC=9∶ 7, 则点D到AB的距离为( )
A.18cm
B.16cm
C.14cm
D.12cm
5.在△ABC内部取一点P使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线交点.()
(A)高(B)角平分线(C)中线(D)边的垂直平分线
的有几个()
(1)AD平分∠EDF;(2)△EBD≌△FCD;
(3)BD=CD;(4)AD⊥BC.
(A)1个(B)2个
(C)3个(D)4个
7.以下各组数为边的三角形中,不是直角三角形的是()
A.3+1,3-1,22
B.4,7.5,8.5
C.7,24,25
D.3.5,4.5,5.5
8.在Rt△ABC中,∠ACB=90°,AC=CB,CD是斜边AB的中线,若AB=22,则点D到BC的距
离为()
A.1
B.2
C.2
D.
2
2 9.等边三角形的高为2,则它的面积是( )
A.2
B.4
C.
33
4
D.43
三、证明题
2.已知:如下图,CD 、C ′D ′分别是Rt △ABC ,Rt △A ′B ′C ′斜边上的高,且CB = C ′B ′,CD =C ′D ′.求证:△ABC ≌△A ′B ′C ′
.
3.如下图,已知∠ABC =∠AD C=90°,E 是AC 上一点,AB =AD ,求证:EB=ED
.
4.已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,∠A=30°.
求证:BD=
14
AB
5.如图(19),在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.
(1)若BC在DE的同侧(如图①)且AD=CE,说明:BA⊥A C.
(2)若BC在DE的两侧(如图②)其他条件不变,问AB与AC仍垂直吗?若是请予证明,若不是请说明理由.
6.如图1,在△ABC中,AB=AC,BD⊥AC,CE⊥AB,O是BD与CE的交点,求证:BO=CO.
图1
7.折叠矩形纸片ABCD,先折出折痕(对角线)BD,再折叠AD边与对角线BD重合,得折痕DG,如图3所示,若AB=2,BC=1,求AG的长.
图3
8.如图2,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?
图2
3.如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB,DF⊥AC,垂足分别
为E、F,添加一个条件,使DE= DF,并说明理由.
解:需添加条件是.
理由是:。