等腰三角形和直角三角形专项练习题

合集下载

八下期末专题之等腰三角形和直角三角形训练题

八下期末专题之等腰三角形和直角三角形训练题

八下期末专题之等腰三角形和直角三角形训练题(人教版)一.选择题(共6小题)1.如图,在△ABC中,AB=AC,D为BC边的中点,下列结论不一定正确的是()A.AD⊥BC B.∠B=∠C C.AD平分∠BAC D.AB=BC2.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成一个等腰三角形的是()A.4cm,6cm,8cm B.4cm,6cm,6cmC.3cm,6cm,9cm D.3cm,3cm,6cm3.如图,在△ABC中,AB=BC,∠B=36°,∠BAC的平分线交BC于点D,过点D作AC的平行线,交AB于点E.则图中的等腰三角形有()A.3个B.4个C.5个D.6个4.如图,P是等边△ABC的边AC的中点,E为BC边延长线上一点,PE=PB,则∠CPE 的度数为()A.20°B.25°C.30°D.35°5.在△ABC中,若AB=BC,则△ABC是()A.不等边三角形B.等边三角形C.直角三角形D.等腰三角形6.如图,在四边形ABCD中,AB=AD=12,BC=DC,∠A=60°,点E在AD上,连接BD,CE相交于点F,CE∥AB.若CE=9,则CF的长为()A.4B.5C.6D.8二.填空题(共6小题)7.如图,△ABC是等边三角形,点D是BC的中点,连接AD,则∠BAD的大小为.8.如图,在边长为2等边△ABC中,以B为原点建立坐标系,则点A的坐标为.9.一个等腰三角形的两个内角的和为140°,则它的顶角度数为.10.如图,CD是△ABC的高,∠A=2∠B,∠ACB的平分线CG交AB于点G,则的值为.11.如图,在直角三角形ABC中,∠ACB=90°,D为线段AC上一点,连接BD.过点A 作AE∥BD,连接DE,当DB平分∠CDE时,延长DC至点F使得DF=DE,连接BF.若∠BAC=∠BFD且BF=3.6,则CD=.12.如图,线段AB的一个端点B在直线m上,直线m上存在点C,使△ABC为等腰三角形,这样的点C有个.三.解答题(共3小题)13.如图,上午10时,一条船从A处出发以20海里每小时的速度向正北航行,中午12时到达B处,从A、B望灯塔C,测得∠NAC=40°,∠NBC=80°.求从B处到灯塔C 的距离.14.如图,△ABC中,∠B=45°,点D在边AB上,DC=AC,AE⊥DC,垂足为F,AE 交BC于点E.(1)用等式表示∠BAE与∠ACD的数量关系,并证明;(2)求证:AE=DC.15.在△ABC中,AB=BC,D是AC的中点,连接BD.(1)如图1,若∠BAC=60°,AB=4,求CD的长.(2)如图2,过点A作AF∥BC交BD的延长线于点F,求证:△ABF是等腰三角形.。

2020中考数学 限时训练:等腰三角形与直角三角形(含答案)

2020中考数学 限时训练:等腰三角形与直角三角形(含答案)

2020中考数学限时训练:等腰三角形与直角三角形(含答案)命题点1一般等腰三角形的判定与计算1.已知△ABC的周长是l,BC=l-2AB,则下列直线一定为△ABC的对称轴的是()A. △ABC的边AB的垂直平分线B. ∠ACB的角平分线所在的直线C. △ABC的边BC上的中线所在的直线D. △ABC的边AC上的高所在的直线2. 如图,在△ABC中,AB=AC,D、E两点分别在AC、BC上,BD是∠ABC的第2题图平分线,DE∥AB,若BE=5 cm,CE=3 cm,则△CDE的周长是()A. 15 cmB. 13 cmC. 11 cmD.9 cm3. 腰长为10,一条中线长为6的等腰三角形的底边长为()A. 16B. 8C. 8或22D. 16或224. 如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A. 2个B. 3个C. 4个D. 5个第4题图第5题图5.如图,在△ABC中,AB=BC,∠ABC=110°.AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=________度.6.如图,在△ABC中,AB=AC=1,BC=5-12,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC·CD的大小关系;(2)求∠ABD的度数.第6题图命题点2等边三角形的判定与计算7.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A. 1个B. 2个C. 3个D. 3个以上第7题图第8题图8. 如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC =∠E=60°,若BE=6 cm,DE=2 cm,则BC的长为()A. 4 cmB. 6 cmC. 8 cmD. 12 cm9.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.32B.332C.32D. 不能确定10. 如图,△ABC是等边三角形,P是∠ABC的角平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q,若BF=2,则PE的长为________.第10题图第11题图11.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE =4.将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为________.命题点3直角三角形的判定与计算12.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF并延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A. 2B. 3C. 4D. 5第12题图第13题图13.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD=()A. 3B. 4C. 4.8D. 514.如图,在△ABC中,∠ACB=90°,AC=4,BC=2,P是AB边上一动点,PD⊥AC 于点D,点E在P的右侧,且PE=1,连接CE.P从点A出发,沿AB方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A. 一直减小B. 一直不变C. 先减小后增大D. 先增大后减小第14题图第15题图15. 如图,在四边形ABCD中,∠ABC=∠ADC=90°,对角线AC、BD交于点P,且AB=BD,AP=4PC=4,则cos∠ACB的值是________.16.如图,在四边形ABCD中,∠ABC=90°,AC=AD, M、N分别为AC、CD的中点,连接BM, MN, BN.(1)求证:BM=MN;(2)若∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.第16题图命题点4等腰直角三角形的判定与计算17.如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A. 2B. 3C. 2D. 6第17题图第18题图18. △ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:①AE=CF;②△EPF是等腰三角形;③EF=AP;④S四边形AEPF=12S△ABC;当∠EPF在△ABC内绕P旋转时(点E不与A、B重合),则上述结论始终正确的有()A. 1个B. 2个C. 3个D. 4个19.在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为________.20.如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,连接CE.求:(1)线段BE的长;(2)∠ECB的余切值.第20题图1. C 【解析】∵△ABC 的周长是l ,BC =l -2AB ,∴AB =AC ,∴△ABC 是等腰三角形,它的对称轴为底边BC 上的中线所在直线,故选C.2. B 【解析】∵AB =AC ,∴∠ABC =∠C ,∵DE ∥AB ,∴∠DEC =∠ABC =∠C ,∠ABD =∠BDE ,∴DE =DC ,∵BD 是∠ABC 的平分线,∴∠ABD =∠DBE ,∴∠DBE =∠BDE ,∴BE =DE =DC =5 cm ,∴△CDE 的周长为DE +DC +EC =5+5+3=13 cm.3.第3题解图D 【解析】当中线是底边中线时,底边=2×102-62=2×8=16;当中线是腰上的中线时,如解图所示,设AB =AC =10,中线CD =6,过点C 作CE ⊥AB 于点E ,BE =x ,则:DE =5-x ,AE =10-x ,由勾股定理得:AC 2-AE 2=CE 2=CD 2-DE 2,∴102-(10-x )2=62-(5-x )2,解得:x =1110,∴CE 2=CD 2-DE 2=2321100,∴BC =BE 2+CE 2=22.4. D 【解析】本题考查等腰三角形的性质及判定.∵∠A =36°,AB =AC ,∴∠ABC =∠C =12(180°-36°)=72°,△ABC 是等腰三角形.∵BD 是∠ABC 的角平分线,∴∠ABD =∠DBC =12∠ABC =36°,∴∠BDC =180°-∠C -∠DBC =72°,∴∠C =∠BDC =72°,∴△BCD 是等腰三角形.∴BC =BD .∵BE =BC ,∴BE =BD ,∴△BED 是等腰三角形.∵∠EBD =36°,∴∠A =∠ABD =36°,∴△ABD 是等腰三角形.∵∠BED =12(180°-36°)=72°,∴∠AED =180°-∠BED =108°,∵∠A =36°,∴∠ADE =180°-∠A -∠AED =180°-36°-108°=36°,∴△AED 是等腰三角形.∴等腰三角形有△ABC 、△BCD 、△ABD 、△BED 、△AED 共5个.5. 35 【解析】∵AB =BC ,∠ABC =110° ,∴∠A =∠C =35° ,∵DE 垂直平分AB ,∴DA =DB ,∴∠A =∠ABD =35°. 6. 解:(1)∵AD =BC =5-12, ∴AD 2=(5-12)2=3-52, ∵AC =1, ∴CD =1-5-12=3-52, ∴AD 2=AC ·CD ;(2) ∵AD 2=AC ·CD ,∴BC 2=AC ·CD ,即BC AC =CDBC ,又∠C =∠C ,∴△ABC ∽△BDC , ∴AB BD =AC BC, 又AB =AC ,∴BD =BC =AD ,∴∠A =∠ABD ,∠ABC =∠C =∠BDC ,设∠A =∠ABD =x ,则∠BDC =∠A +∠ABD =2x , ∴∠ABC =∠C =∠BDC =2x ,∵∠A +∠ABC +∠C =x +2x +2x =180°, 解得x =36°. ∴∠ABD =36°.第7题解图7. D 【解析】如解图,当OM 1=2,点N 1与点O 重合时,△PM 1N 1是等边三角形;当ON 2=2,点M 2与点O 重合时,△PM 2N 2是等边三角形;当点M 3,N 3分别是OM 1,ON 2的中点时,△PM 3N 3是等边三角形;当取∠M 1PM 4=∠OPN 4时,易证△M 1PM 4≌△OPN 4,∴PM 4=PN 4,又∵∠M 4PN 4=60°,∴△PM 4N 4是等边三角形,∴此时点M ,N 有无数个,综上所述,故选D.8.第8题解图C 【解析】如解图所示,延长ED 交BC 于点M ,延长AD 交BC 于点N ,作DF ∥BC于交BEF ,∵AB =AC ,AD 平分∠BAC ,∴AN ⊥BC ,BN =CN ,∵∠EBC =∠E =60°,∴△BEM 为等边三角形,∴△EFD 为等边三角形,∵BE =6 cm ,DE =2 cm ,∴DM =4 cm ,∵△BEM 为等边三角形,∴∠EMB =60°,∵AN ⊥BC ,∴∠DNM =90°,∴∠NDM =30°,∴NM =2 cm ,∴BN =4 cm ,∴BC =2BN =8 cm.第9题解图9. B 【解析】 如解图,△ABC 是等边三角形,AB =3,点P 是三角形内任意一点,过点P 分别向三边AB ,BC ,CA 作垂线,垂足依次为D ,E ,F ,过点A 作AH ⊥BC 于点H .则BH =32,AH =AB 2-BH 2=332 .连接P A ,PB ,PC ,则S △P AB +S △PBC +S △PCA =S △ABC ,∴12AB ·PD +12BC ·PE +12CA ·PF =12BC ·AH .∵AB =BC =CA ,∴PD +PE +PF =AH =332.10. 3 【解析】∵△ABC 是等边三角形,点P 是∠ABC 的角平分线BD 上一点,∴∠FBQ =∠EBP =30°,∴在Rt △BFQ 中,BQ =BF ·cos ∠FBQ =2×32=3,又∵QF 是BP 的垂直平分线,∴BP =2BQ =2 3.∵在Rt △BPE 中,∠EBP =30°,∴PE =12BP = 3.第11题解图11. 27 【解析】如解图,过点B ′作B ′O ⊥AD 交AD 于点O . 将等边△BDE 沿DE 折叠后得等边△B ′DE ,那么四边形BDB ′E 是菱形;在Rt △ODB ′中,由折叠知∠BDE =∠B ′DE =∠ODB ′=60°,B ′D =4,可求得OD =2,OB ′=23;在Rt △AOB ′中,AO =AB -OD -BD =10-2-4=4,AB ′=AO 2+OB ′2=42+(23)2=27 .12. B 【解析】∵AF ⊥BF ,点D 是AB 边上的中点,∴DF =BD =12AB =5,∴∠DBF=∠DFB ,∵BF 平分∠ABC ,∴∠DBF =∠CBF =∠BFD ,∴DE ∥BC ,故DE 是△ABC 的中位线,∴DE =12BC =8,∴EF =DE -DF =8-5=3.13. D 【解析】∵AB =10,BC =6,AC =8,∴AB 2=AC 2+BC 2,∴∠ACB =90°,∵DE 垂直平分AC ,∴∠AED =90°,AE =CE =4,∴DE ∥BC ,∴DE 是△ABC 的中位线,∴DE =12BC =3.在Rt △CED 中,CD =CE 2+DE 2=5 .第14题解图14. C 【解析】如解图,过点D 作DN ⊥AB 于点N ,过点C 作CM ⊥AB 于点M .在△ABC 中,∠ACB =90°,AC =4,BC =2,根据勾股定理,得AB =AC 2+BC 2=42+22=2 5 ,利用等面积法,即S △ABC =12AC ·CB =12AB ·CM ,可求CM =AC ·BC AB =45 5.设AP =x ,易证△ADP ∽△ACB ,∴S 1S △ACB=(AP AB )2 ,∴S 1=(x 25)2×12×4×2=15x x 2 ,S 2=12×(AB -AP -PE )·CM =12×(25-x -1)×455=-255x +4-255,∴S 1+S 2=15x 2-255x +4-255,此函数为二次函数,a =15>0,∵对称轴为x =-b2a =5,AB =25>5,∴图象开口向上,故先减小,后变大,故选C.15.第15题解图33【解析】如解图所示,作BE ⊥AD 于E ,则BE ∥CD ,由AB =BD 得E 是AD 的中点,因此OE 是△ACD 的一条中位线,从而O 是AC 的中点,以O 为圆心,OA 为半径作圆.则由∠ABC =∠ADC =90°可知该圆经过A 、B 、C 、D 四点,易知AP =4,PC =1,AC =AP +PC =5,因此,OA =OC =52,OP =OC -PC =32,由BE ∥CD 得,BP ∶PD =OP ∶PC=32,因此BP =32DP ,从而AB =BD =BP +PD =52PD ,由相交弦定理得BP ·PD =AP ·PC =4,即32PD 2=4,因此PD 2=83,从而AB 2=(52PD )2=254PD 2=503,由勾股定理得BC 2=AC 2-AB 2=52-503=253,因此BC =533,∴cos ∠ACB =BC ∶AC =33.16. 解:(1)证明:在△CAD 中,∵M 、N 分别是AC 、CD 的中点, ∴MN ∥AD 且MN =12AD ,在Rt △ABC 中,∵点M 是AC 的中点, ∴BM =12AC ,又∵AC =AD ,∴BM =12AC =12AD =MN ,∴MN =BM ;(2)∵∠BAD =60°,且AC 平分∠BAD , ∴∠BAC =∠DAC =12∠BAD =30°,由(1)知,BM =12AC =AM =MC ,∴∠BMC =60° ∵MN ∥AD ,∴∠NMC =∠DAC =30°,∴∠BMN =∠BMC +∠NMC =90°, ∴BN 2=BM 2+MN 2,而由(1)知,MN =BM =12AC =12×2=1,∴BN = 2.第17题解图17. B 【解析】如解图,连接OC ,证明△AOD ≌△COE ,得AD =CE ,进而得CD +CE =AC ,∵△ABC 是等腰直角三角形,∴AC 2+BC 2=AB 2=2AC 2=6,∴AC =3,∴CD +CE =3,故选B.18. C 【解析】∵∠APE 、∠CPF 都是∠APF 的余角,∴∠APE =∠CPF ,∵AB =AC ,∠BAC =90°,点P 是BC 中点,∴AP =CP ,∴∠P AF =∠FCP ,又由题意知∠EAP =∠P AF ,∴∠EAP =∠FCP ,在△APE 与△CPF 中,⎩⎪⎨⎪⎧∠EP A =∠FPC ∠EAP =∠FCP AP =CP ,∴△APE ≌△CPF (ASA),∴AE =CF 同理可证△APF ≌△BPE ,PE =PF ,△EPF 是等腰直角三角形,∴S △AEP =S △CFP ,∴S 四边形AEPF =S △APC =12S △ABC ,①②④正确;∵AP =12BC ,若EF =AP =12BC ,则EF 是△ABC的中位线,不能保证结论始终正确,故③错误.故选C.19. 13或10 【解析】由题知,点P 为直角边BC 的三等分点,显然分两种情况讨论:(ⅰ)如解图①,当点P 靠近点B 时,∵AC =BC =3,∴CP =2,在Rt △ACP 中,由勾股定理得AP =AC 2+CP 2=13;(ⅱ)如解图②,当点P 靠近点C 时,∵AC =BC =3,∴CP =1,在Rt △ACP 中,由勾股定理得AP =AC 2+CP 2=10. 综上可得:AP =13或10.第19题解图知识像烛光,能照亮一个人,也能照亮无数的人。

等腰三角形与直角三角形(共50题)【原卷版】--中考数学必考考点总结+题型专训

等腰三角形与直角三角形(共50题)【原卷版】--中考数学必考考点总结+题型专训

等腰三角形与直角三角形(共50题)--中考数学必考考点总结+题型专训一.选择题(共24小题)1.(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm 2.(2022•泰安)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°3.(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数是()A.30°B.40°C.50°D.60°4.(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)5.(2022•台湾)如图,△ABC中,D点在AB上,E点在BC上,DE为AB的中垂线.若∠B=∠C,且∠EAC>90°,则根据图中标示的角,判断下列叙述何者正确?()A.∠1=∠2,∠1<∠3B.∠1=∠2,∠1>∠3C.∠1≠∠2,∠1<∠3D.∠1≠∠2,∠1>∠36.(2022•广元)如图,在△ABC中,BC=6,AC=8,∠C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,大于AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于点E、F,则AE的长度为()A.B.3C.2D.7.(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校8.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=+,则CH的长为()A.B.C.2D.9.(2022•安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.10.(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=911.(2022•宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25B.22C.19D.1812.(2022•河北)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=,则正确的是()A.只有甲答的对B.甲、丙答案合在一起才完整CD.三人答案合在一起才完整13.(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④14.(2022•眉山)在△ABC中,AB=4,BC=6,AC=8,点D,E,F分别为边AB,AC,BC的中点,则△DEF的周长为()A.9B.12C.14D.1615.(2022•湘潭)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tanα=()A.2B.C.D.16.(2022•苏州)如图,点A的坐标为(0,2),点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(m,3),则m的值为()A.B.C.D.17.(2022•扬州)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC 18.(2022•湖州)如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是()A.12B.9C.6D.319.(2022•宁波)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为()A.2B.3C.2D.420.(2022•云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F 与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE 21.(2022•达州)如图,AB∥CD,直线EF分别交AB,CD于点M,N,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=80°,则∠PNM等于()A.15°B.25°C.35°D.45°22.(2022•金华)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.23.(2022•舟山)如图,在Rt△ABC和Rt△BDE中,∠ABC=∠BDE=90°,点A在边DE的中点上,若AB=BC,DB=DE=2,连结CE,则CE的长为()A.B.C.4D.24.(2022•遂宁)如图,D、E、F分别是△ABC三边上的点,其中BC=8,BC边上的高为6,且DE∥BC,则△DEF面积的最大值为()A.6B.8C.10D.12二.填空题(共15小题)25.(2022•岳阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=.26.(2022•苏州)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为.27.(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是.28.(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为.29.(2022•丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(﹣,3),则A点的坐标是.1cm,得到△A'B'C',连结CC',则四边形AB'C'C的周长为cm.31.(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=.现有周长为18的三角形的三边满足a:b:c=4:3:2,则用以上给出的公式求得这个三角形的面积为.32.(2022•十堰)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN =50(﹣1)m,若在M,N之间修一条直路,则路线M→N的长比路线M→A→N的长少m(结果取整数,参考数据:≈1.7).33.(2022•山西)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为.34.(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是.35.(2022•孝感)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m (m≥3,m为正整数),则其弦是(结果用含m的式子表示).36.(2022•台州)如图,在△ABC中,∠ACB=90°,D,E,F分别为AB,BC,CA的中点.若EF的长为10,则CD的长为.37.(2022•嘉兴)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件.38.(2022•株洲)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON ⊥BC于点N,若OM=ON,则∠ABO=度.39.(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为.三.解答题(共11小题)40.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB.(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.41.(2022•金华)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当a=3时,该小正方形的面积是多少?42.(2022•山西)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N.猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.43.(2022•武汉)问题提出如图(1),在△ABC中,AB=,D是AC的中点,延长BC至点E,使DE=DB,延长ED交AB于点F,探究的值.问题探究(1)先将问题特殊化.如图(2),当∠BAC=60°时,直接写出的值;(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC中,AB=AC,D是AC的中点,G是边BC上一点,=(n<2),延长BC至点E,点DE=DG,延长ED交AB于点F.直接写出的值(用含n的式子表示).44.(2022•怀化)如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).45.(2022•杭州)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.46.(2022•陕西)问题提出(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为.问题探究(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.问题解决(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.47.(2022•绍兴)如图,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于点E.P是边BC上的动点(不与B,C重合),连结AP,将△APC沿AP翻折得△APD,连结DC,记∠BCD=α.(1)如图,当P与Eα的度数.(2)当P与E不重合时,记∠BAD=β,探究α与β的数量关系.48.(2022•扬州)如图1,在△ABC中,∠BAC=90°,∠C=60°,点D在BC边上由点C向点B运动(不与点B、C重合),过点D作DE⊥AD,交射线AB于点E.(1)分别探索以下两种特殊情形时线段AE与BE的数量关系,并说明理由;①点E在线段AB的延长线上且BE=BD;②点E在线段AB上且EB=ED.(2)若AB=6.①当=时,求AE的长;②直接写出运动过程中线段AE长度的最小值.49.(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.50.(2022•湘潭)在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE的长;(2)规律探究:(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;.(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC。

八年级数学《等腰三角形与直角三角形》专题演练练习题

八年级数学《等腰三角形与直角三角形》专题演练练习题

中考数学专题复习演练:等腰三角形与直角三角形一、选择题1.如果等腰三角形两边长是6cm和3cm,那么它的周长是()A. 9cmB. 12cmC. 15cmD. 12cm或15cm2.已知是等边三角形的一个内角,是顶角为的等腰三角形的一个底角,是等腰直角三角形的一个底角,则().A. B.C. D.3.如图点A的坐标为(2,2),若点P在坐标轴上,且△APO为等腰三角形,则满足条件的点P个数是()A. 4个 B. 6个 C. 7个 D. 8个4.已知:如图,在△ABC中,AB=AC,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A. 2α+∠A=180°B. α+∠A=90° C. 2α+∠A=90° D. α+∠A=180°5.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A. 30°B. 40°C. 36°D. 45°6.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是()A. 2B. 4C.D.7.在下列四个角的度数中,一个不等边三角形的最小角度数可以是()A. 80°B. 65°C. 60°D. 59°8.如图, 在△ABC中,∠C=90°,∠A=30°,AB=12,则BC等于( )A. 6B. 6C. 6D. 129.如图⊙O过点B,C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为( )A. B. 2C.D. 310.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论:①BD=CD;②AD+CF=BD;③CE= BF;④AE=BG.其中正确的是()A. B. C. D.二、填空题11.一个等腰三角形的一个内角是,则等腰三角形的底角为________。

中考数学 专题练习:等腰三角形与直角三角形(含答案)

中考数学 专题练习:等腰三角形与直角三角形(含答案)

2020中考数学专题练习:等腰三角形与直角三角形(含答案)1.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为( )A.40° B.100°C.40°或100° D.70°或50°2.已知实数x,y满足|x-4|+y-8=0,则以x,y的值为两边长的等腰三角形的周长是( )A.20或16 B.20C.16 D.以上答案均不对3.如图14所示,△ABC中,AC=AD=BD,∠DAC=80°,则∠B的度数是( ) A.40° B.35° C.25° D.20°图14 图154.如图15,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( )A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间5.如图16,在△ABC中,∠C=90°,EF∥AB,∠1=50°,则∠B的度数为( ) A.50° B.60° C.30° D.40°图16 图176.如图17,在△ABC中,∠C=90°,BC=6,D,E分别在AB,AC上,将△ABC沿DE折叠,使点A落在点A′处,若A′为CE的中点,则折痕DE的长为( )A.12 B.2 C.3 D.47.如图18,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=________.图18 图198.如图19,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB,BC,CA的中点,若CD=5 cm,则EF=_________cm.9.把命题“如果直角三角形的两条直角边边长分别为a,b,斜边边长为c,那么a2+b2=c2”的逆命题改写成“如果……,那么……”的形式:________________________________________________________________________ ________________________________________________________________________.10.如图20,△ABC中,∠C=90°,点D在AC上,已知∠BDC=45°,BD=10 2,AB=20.求∠A的度数.图2011.如图21,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证:DC=AB.图2112.如图22,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使点B 与点C重合,得到△DCE,连接BD,交AC于点F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.图2213.如图23,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC 的长为半径作弧交数轴的正半轴于点M,则点M的坐标为( )A.(2,0) B.(5-1,0)C.(10-1,0) D.(5,0)图23 图2414.如图24,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC =2,CE=4,则四边形ACEB的周长为______.15.如图25,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:图25(1)画线段AD∥BC且使AD=BC,连接CD;(2)线段AC的长为________,CD的长为________,AD的长为________;(3)△ACD为________三角形,四边形ABCD的面积为________;(4)若E为BC的中点,则tan∠CAE的值是______.C级 拔尖题16.如图26,将一副三角尺叠放在一起,若AB=14 cm,则阴影部分的面积是______cm2.图2617.小明和同桌小聪在课后复习时,对课本“目标与评定”中的一道思考题,进行了认真的探索.【思考题】如图27,一架2.5米长的梯子AB斜靠在竖直墙壁AC上,这时B到墙脚C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯脚将从点B往外移动多少米?图27(1)请你将小明对“思考题”的解答补充完整:解:设梯脚将从点B往外移动x米到达点B1,即BB1=x,则B1C=x+0.7,A1C=AC-AA1= 2.52-0.72-0.4=2.而A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B21,得方程____________________,解方程,得x1=________,x2=________,∴点B将向外移动________米.(2)解完“思考题”后,小聪提出了如下两个问题:【问题一】在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?【问题二】在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.参考答案1.C 解析:分顶角为40°或底角为40°两种情况.2.B 3.C 4.A5.D 解析:∠B =∠EFC =90°-∠CEF =40°. 6.B 7.2 8.59.如果三角形三条边的边长a ,b ,c ,满足a 2+b 2=c 2,那么这个三角形是直角三角形 10.解:∵在Rt △BDC 中,∠BDC =45°,BD =10 2, ∴BC =CD =10.∵∠C =90°,AB =20,∴∠A =30°.11.(1)解:∵AB =AC ,∴∠B =∠C =30°. ∵∠C +∠BAC +∠B =180°, ∴∠BAC =180°-30°-30°=120°. ∵∠DAB =45°,∴∠DAC =∠BAC -∠DAB =120°-45°=75°. (2)证明:∵∠DAB =45°,∴∠ADC =∠B +∠DAB =75°.∴∠DAC =∠ADC . ∴DC =AC .∴DC =AB . 12.解:(1)AC ⊥BD .∵△DCE 由△ABC 平移而成,∴BE =2BC =6,DE =AC =3,∠E =∠ACB =60°.∴DE =12BE .∴BD ⊥DE .∵∠E =∠ACB =60°,∴AC ∥DE .∴BD ⊥AC . (2)在Rt △BED 中,∵BE =6,DE =3,∴BD 2=BE 2-DE 2=62-32,解得BD =3 3. 13.C 14.10+2 13 15.解:(1)如图D50:图D50(2)2 5 5 5 (3)直角 10 (4)1216.49217.解:(1)(x +0.7)2+22=2.52, 0.8,-2.2(舍去),0.8. (2)①不会是0.9米,若AA 1=BB 1=0.9,则A 1C =2.4-0.9=1.5, B 1C =0.7+0.9=1.6,1.52+1.62=4.81,2.52=6.25, ∵A 1C 2+B 1C 2≠A 1B 1 2 , ∴该题的答案不会是0.9米. ②有可能.设梯子顶端从A 处下滑x 米,点B 向外也移动x 米, 则有(x +0.7)2+(2.4-x )2=2.52, 解得:x =1.7或x =0(舍去).∴当梯子顶端从A 处下滑1.7米时,点B 向外也移动1.7米,即梯子顶端从A 处沿墙AC 下滑的距离与点B 向外移动的距离有可能相等。

等腰三角形专项练习30题(有答案)OK

等腰三角形专项练习30题(有答案)OK

等腰三角形专项练习30题1.已知,如图,△ABC中,AB=AC,DE是AB的中垂线,点D在AB上,点E在AC上,若△ABC的周长为25cm,△EBC的周长为16cm,则AC的长度为()A.16cm B.9cm C.8cm D.7cm2.在△ABC中,∠ABC=120°,若DE、FG分别垂直平分AB、BC,那么∠EBF为()A.75°B.60°C.45°D.30°3.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2 B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°4.如图,已知∠AOB=40°,点P关于OA、OB的对称点分别为C、D,CD交OA、OB于M、N两点,则∠MPN的度数是()A.70°B.80°C.90°D.100°5.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与线段AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是()A.45°B.50°C.55°D.60°6.如图所示,△ABC为正三角形,P是BC上的一点,PM⊥AB,PN⊥AC,设四边形AMPN,△ABC的周长分别为m、n,则有()A.B.C.D.7.如图所示,AB=AD,∠ABC=∠ADC=90°,则①AC平分∠BAD;②CA平分∠BCD;③AC垂直平分BD;④BD平分∠ABC,其中正确的结论有()A.①②B.①②③C.①②③④D.②③8.下列说法正确的是()A.两个能重合的图形一定关于某条直线对称B.若两个图形关于某直线对称,则它们的对应点一定位于对称轴的两侧C.到角两边距离相等的点在这个角的平分线上D.如果三角形一边的垂直平分线经过它的一个顶点,那么这个三角形一定是等腰三角形9.用一根长为a米的线围成一个等边三角形,测知这个等边三角形的面积为b平方米.现在这个等边三角形内任取一点P,则点P到等边三角形三边距离之和为()米.A.B.C.D.10.在等腰直角△ABC(AB=AC≠BC)所在的三角形边上有一点P,使得△PAB,△PAC都是等腰三角形,则满足此条件的点有()A.1个B.3个C.6个D.7个11.如图所示,在△ABC中,AB=AC,腰AB的垂直平分线交另一腰AC于点D,BD+CD=10cm,则AB的长为_________.12.如图,若等腰△ABC的腰长AB=10cm,AB的垂直平分线交另一腰AC于D,△BCD的周长为16cm,则底边BC是_________cm.13.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是_________.14.如图所示,将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上,则图中等腰三角形有_________个.15.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=8,BC=5,则BD的长为_________.16.等腰△ABC的底边上高AD与底角平分线CE交于点P,EF⊥AD,F为垂足,则线段EB与线段EF的数量关系为_________.17.如图,在等腰在△ABC中,AB=27,AB的垂直平分线交AB于点D,交AC于点E,若在△BCE的周长为50,则底边BC的长为_________.18.等腰△ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分成15和6两部分,则这个三角形的腰长为_________.19.如图,已知D为等边三角形纸片ABC的边AB上的点,过点D作DG∥BC交AC于点G,DE⊥BC于点E,过点G作GF⊥BC于点F.把三角形纸片ABC分别沿DG,DE,GF按图示方式折叠,则图中阴影部分是_________三角形.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形):_________.21.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.22.如图所示,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过点D作DE∥BC交AB于点E,过点D作DF⊥AB于点F,说明:BC=DE+EF成立的理由.23.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.24.已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.25.如图,∠1=∠2,AB=AD,∠B=∠D=90°,请判断△AEC的形状,并说明理由.26.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,①求证:△BCE≌△ACD;②求证:CF=CH;③判断△CFH的形状并说明理由.27.如图:△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1,求AD的长.28.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF.29.如图,在△ABC中,已知AB=BC=CA,AE=CD,AD与BE交于点P,BQ⊥AD于点Q,求证:BP=2PQ.30.如图,△ABE和△BCD都是等边三角形,且每个角是60°,那么线段AD与EC有何数量关系?请说明理由.参考答案:1.解:∵DE是AB的垂直平分线,∴AE=BE,∵△ABC的周长为25cm,△EBC的周长为16cm,AC=AB,∴2AC+BC=25cm,BE+CE+BC=AE+EC+BC=AC+BC=16cm,即,解得:AC=9cm,故选B2.解:∵DE、FG分别垂直平分AB、BC,∴AE=BE,BF=CF,∴∠A=∠ABE,∠C=∠CBF,∵∠A+∠C+∠ABC=180°,∠ABC=120°,∴∠A+∠C=60°,∴∠ABE+∠CBF=60°,∴∠EBF=120°﹣60°=60°,故选B3.解:∵AB=BC,∴∠1=∠BCA,∵AB=AD,∴∠B=∠2,∵∠1+∠B+∠ACB=180°,∴2∠1+∠2=180°.故选B4.解:∵P关于OA、OB的对称∴OA垂直平分PC,OB垂直平分PD∴CM=PM,PN=DN∴∠PMN=2∠C,∠PNM=2∠D,∵∠PRM=∠PTN=90°,∴在四边形OTPR中,∴∠CPD+∠O=180°,∴∠CPD=180°﹣40°=140°∴∠C+∠D=40°∴∠MPN=180°﹣40°×2=100°故选D.5.解:如图,延长AO交BC于点M,连接BO,∵等腰△ABC中,AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°﹣50°)÷2=65°,∵AO是∠BAC的平分线,∴∠BAO=25°,又∵OD是AB的中垂线,∴∠OBA=∠OAB=25°,∴∠OBM=∠OCM=60°﹣25°=40°,∴∠BOM=∠COM=90°﹣40°=50°,由折叠性可知,∠OCM=∠COE,∴∠MOE=∠COM﹣∠COE=50°﹣40°=10°,∴∠OEM=90°﹣10°=80°,∵由折叠性可知,∠OEF=∠CEF,∴∠CEF=(180°﹣80°)÷2=50°.故选:B6.解:设BM=x,CN=y则BP=2x,PC=2y,PM=x,PN=yAM+AN=2BC﹣(BM+CN)=3(x+y),故==≈0.7887.故选D7.解:在Rt△ABC和Rt△ADC中,AB=AD,AC=AC,所以Rt△ABC≌Rt△ADC(HL).所以∠ACB=∠ACD,∠BAC=∠DAC,即AC平分∠BAD,CA平分∠BCD.故①②正确;在△ABD中,AB=AD,∠BAO=∠DAO,所以BO=DO,AO⊥BD,即AC垂直平分BD.故③正确;不能推出∠ABO=∠CBO,故④不正确.故选B8.解:A、两个能重合的图形不一定关于某条直线对称,故错误;B、两个图形关于某条直线对称,它们的对应点有可能位于对称轴上,故错误;C、同一平面内,到角的两边距离相等的点在角的平分线上,故错误;D,正确,故选D9.解:等边三角形周长为a,则边长为,设P到等边三角形的三边分别为x、y、z,则等边三角形的面积为b=××(x+y+z)解得x+y+z=,故选C10.解:∵△ABC是等腰直角三角形,(AB=AC≠BC)所在的三角形边上有一点P,使得△PAB,△PAC都是等腰三角形,∴有一个满足条件的点﹣斜边中点,∴符合条件的点有1个.故选A.11.解:∵ED是边AB边上的中垂线,∴AD=BD;又∵BD+CD=10cm,AB=AC,∴BD+CD=AD+DC=AC=AB=10cm,即AB=10cm.故答案是:10cm12.解:∵DE是线段AB的垂直平分线,∴AD=BD,∴BD+CD=AC,∵AB=AC=10cm,BD+CD+BC=AB+BC=16cm,∴BC=16﹣AB=16﹣10=6cm.故答案为:6cm13.解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:2014.解:∵将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上.∴EF∥DG,∠E=∠D=60°,∴∠ENM=∠D=60°,∠MGD=∠E=60°,∴EM=NM=EN,DM=GM=DG,∴△MEN,△MDG是等边三角形.∵∠A=∠B=30°,∴MA=MB,∴△ABM是等腰三角形.∴图中等腰三角形有3个15.解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=8,BC=5,∴CE=5,∴AE=AC﹣EC=8﹣5=3,∴BE=3,∴BD=1.5.故选A.16.解:延长EF交AC于点Q,∵EF⊥AD,AD⊥BC∴EQ∥BC∴∠QEC=∠ECB∵CE平分∠ACB∴∠ECB=QCE∴∠QEC=∠QCE∴QE=QC∵QE∥BC,且△ABC为等腰三角形∴△AQE为等腰三角形∴AQ=AE,QE=2EF∴BE=CQ=2EF.故答案为:BE=2EF.17.解:∵DE垂直且平分AB,∴BE=AE.由BE+CE=AC=AB=27,∴BC=50﹣27=2318.解:设AB=AC=2X,BC=Y,则AD=CD=X,∵AC上的中线BD将这个三角形的周长分成15和6两部分,∴有两种情况:1、当3X=15,且X+Y=6,解得,X=5,Y=1,∴三边长分别为10,10,1;2、当X+Y=15且3X=6时,解得,X=2,Y=13,此时腰为4,根据三角形三边关系,任意两边之和大于第三边,而4+4=8<13,故这种情况不存在.∴腰长只能是10.故答案为1019.解:∵三角形ABC为等边三角形,∴∠A=∠B=∠C=60°,∵根据题意知道点B和点C经过折叠后分别落在了点I和点H处,∴∠DIH=∠B=60°,∠GHI=∠C=60°,∴∠HJI=60°,∴∠DIH=∠GHI=∠HJI=60°,∴阴影部分是等边三角形,故答案为:等边.20.答:由①③条件可判定△ABC是等腰三角形.证明:∵∠EBO=∠DCO,∠EOB=∠DOC,(对顶角相等)BE=CD,∴△EBO≌△DCO,∴OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形21.解:延长AC到E,使CE=BM,连接DE,(如图)∵BD=DC,∠BDC=120°,∴∠CBD=∠BCD=30°,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACD=∠DCE=90°,∴△BMD≌△CDE,∴∠BDM=∠CDE,DM=DE,又∵∠MDN=60°,∴∠BDM+∠NDC=60°,∴∠EDC+∠NDC=∠NDE=60°=∠NDM,又∵DN=DN,∴△MDN≌△EDN(SAS),∴MN=NE=NC+CE=NC+BM,所以△AMN周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=2.22.解:∵BD平分∠ABC,DF⊥AB,∠C是直角,∴CD=DF,∠DBC=∠DBE,∠DFB=∠C,∴△BCD≌△BFD,∴BC=BF,∵DE∥BC,∴∠DBC=∠EDB,即∠DBC=∠DBE,∴△BDE是等腰三角形,∴BE=DE,∴BF=BC=DE+EF23.(1)证明:在等腰直角三角形ABC中,∵∠ACB=90°,∴∠CBA=∠CAB=45°.又∵DE⊥AB,∴∠DEB=90°.∴∠BDE=45°.又∵BF∥AC,∴∠CBF=90°.∴∠BFD=45°=∠BDE.∴BF=DB.又∵D为BC的中点,∴CD=DB.即BF=CD.在△CBF和△ACD中,,∴△CBF≌△ACD(SAS).∴∠BCF=∠CAD.又∵∠BCF+∠GCA=90°,∴∠CAD+∠GCA=90°.即AD⊥CF.(2)△ACF是等腰三角形,理由为:连接AF,如图所示,由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是∠DBF的平分线,∴BE垂直平分DF,∴AF=AD,∵CF=AD,∴CF=AF,∴△ACF是等腰三角形.24.解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠BAP=∠CAQ=30°.∴∠BAC=120°.故∠BAC的度数是120°25.解:△AEC是等腰三角形.理由如下:∵∠1=∠2,∴∠1+∠3=∠2+∠3,即∠BAC=∠DAE,又∵AB=AD,∠B=∠D,∴△ABC≌△ADE(ASA),∴AC=AE.即△AEC是等腰三角形26.①证明:∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS);②∵△BCE≌△ACD,∴∠CBF=∠CAH.∵∠ACB=∠DCE=60°,∴∠ACH=60°.∴∠BCF=∠ACH,在△BCF和△ACH中,,∴△BCF≌△ACH(ASA),∴CF=CH;③∵CF=CH,∠ACH=60°,∴△CFH是等边三角形27.解:∵△ABC为等边三角形,∴AB=CA,∠BAE=∠ACD=60°;又∵AE=CD,在△ABE和△CAD中,∴△ABE≌△CAD;∴BE=AD,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,则∠PBQ=90°﹣60°=30°;∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6;又∵PE=1,∴AD=BE=BP+PE=728.(1)证明:在等腰△ABC中,∵CH是底边上的高线,∴∠ACH=∠BCH,在△ACP和△BCP中,,∴△ACP≌△BCP(SAS),∴∠CAE=∠CBF(全等三角形对应角相等);(2)在△AEC和△BFC中,∴△AEC≌△BFC(ASA),∴AE=BF(全等三角形对应边相等).29.证明:∵AB=BC=CA,∴△ABC为等边三角形,∴∠BAC=∠C=60°,在△ABE和△CAD中∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,∵∠BPQ=∠ABE+∠BAP,∴∠BPQ=∠CAD+∠BAP=∠CAB=60°,∵BQ⊥AD∴∠BQP=90°,∴∠PBQ=30°,∴BP=2PQ.30.解:AD=EC.证明如下:∵△ABC和△BCD都是等边三角形,每个角是60°∴AB=EB,DB=BC,∠ABE=∠DBC=60°,∴∠ABE+∠EBC=∠DBC+∠EBC即∠ABD=∠EBC在△ABD和△EBC中∴△ABD≌△EBC(SAS)∴AD=EC。

专题训练7 直角三角形及等腰三角形中的角度计算

专题训练7    直角三角形及等腰三角形中的角度计算

专题训练7 直角三角形及等腰三角形中的角度计算专题训练7: 直角三角形及等腰三角形中的角度计算本文档将介绍如何计算直角三角形中角度的方法,以及等腰三角形中角度的特点和计算方式。

直角三角形中的角度计算直角三角形是一种特殊的三角形,其中一个角度为90度(直角)。

在直角三角形中,我们可以通过已知两个角度或两个边长来计算第三个角度。

1. 已知两个角度:- 如果已知一个角度为90度,另一个角度为30度,我们可以使用直角三角形的性质,将两个已知角度相加,再用90度减去相加后的结果,即可得到第三个角度。

- 示例计算:已知两个角度为90度和30度,第三个角度 = 90度 - 30度 = 60度2. 已知两个边长:- 如果已知两条边分别为3和4,我们可以使用三角形中的三角函数(如正弦、余弦、正切),推算出夹角的值。

- 示例计算:已知两条边长分别为3和4,我们可以通过计算正切值来求得夹角的大小。

夹角的正切值 = 对边长度 ÷临边长度 = 3 ÷ 4 = 0.75。

我们可以使用反正切函数(arctan)来求得夹角的大小。

夹角= arctan(0.75) ≈ 36.87度等腰三角形中的角度计算等腰三角形是指两个边相等的三角形。

在等腰三角形中,角度的特点是底角(两边所夹的角)相等,而顶角(底角的对角)可以通过底角的计算得到。

1. 底角的计算:- 在等腰三角形中,底角等于180度减去顶角的两倍。

- 示例计算:已知顶角为30度,底角 = 180度 - 30度 × 2 = 180度 - 60度 = 120度2. 顶角的计算:- 顶角可以通过底角的计算得到,即顶角 = 180度减去底角的一半。

- 示例计算:已知底角为90度,顶角 = 180度 - 90度 ÷ 2 = 180度 - 45度 = 135度注意:等腰三角形中的角度计算只适用于等腰三角形,其他类型的三角形需要使用其他方法进行计算。

中考数学同步练习第4单元 课时4等腰三角形与直角三角形

中考数学同步练习第4单元 课时4等腰三角形与直角三角形

课时4 等腰三角形与直角三角形一、基础巩固1.(2019·山西)如图,在△ABC 中,AB =AC ,∠A =30°,直线a ∥b ,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若∠1=145°,则∠2的度数是(C)A .30°B .35°C .40°D .45°第1题图 第2题图 2.在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 平分∠ACD 交AB 于E ,则下列结论一定成立的是(C)A .BC =ECB .EC =BE C .BC =BED .AE =EC3.若等腰△ABC 的周长是50 cm ,一腰长为x cm ,底边长为y cm ,则y 与x 的函数关系式及自变量x 的取值范围是(C)A .y =50-2x (0<x <50)B .y =12(50-2x )(0<x <50)C .y =50-2x ⎝ ⎛⎭⎪⎫252<x <25 D .y =12(50-2x )⎝ ⎛⎭⎪⎫252<x <254.(2019·成都)如图,在△ABC中,AB=AC,点D,E都在边BC 上,∠BAD=∠CAE,若BD=9,则CE的长为__9__.第4题图第5题图5.(2019·攀枝花)如图,在△ABC中,CD是AB边上的高,BE 是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.解:(1)连接DE,∵CD是AB边上的高,∴∠ADC=∠BDC=90°,∵BE是AC边上的中线,∴AE=CE,∴DE=CE,∵BD=CE,∴BD=DE,∴点D在BE的垂直平分线上;(2)∵DE=AE,∴∠A=∠ADE,∵∠ADE=∠DBE+∠DEB,∵BD=DE,∴∠DBE=∠DEB,∴∠A=∠ADE=2∠ABE,∵∠BEC=∠A+∠ABE,∴∠BEC=3∠ABE.二、能力提升6.若(a -1)2+|b -2|=0,则以a 、b 为边长的等腰三角形的周长为(A)A .5B .4C .3D .4或57.(2019·台湾)如图,△ABC 中,AC =BC <AB .若∠1、∠2分别为∠ABC 、∠ACB 的外角,则下列角度关系正确的是(C)A .∠1<∠2B .∠1=∠2C .∠A +∠2<180°D .∠A +∠1>180°第7题图 第8题图 8.(2019·大连)如图,△ABC 是等边三角形,延长BC 到点D ,使CD =AC ,连接AD .若AB =2,则AD 的长为 23 .【笔记】∵△ABC 是等边三角形,∴∠B =∠BAC =∠ACB =60°, ∵CD =AC ,∴∠CAD =∠D ,∵∠ACB =∠CAD +∠D =60°,∴∠CAD =∠D =30°,∴∠BAD =90°,∴AD =AB tan 30°=233=2 3. 9.如图,在△ABC 中,点D 在AB 上,且CD =CB ,点E 为BD 的中点,点F 为AC 的中点,连结EF 交CD 于点M ,连接AM .(1)求证:EF =12AC ;(2)若∠BAC =45°,求线段AM 、DM 、BC 之间的数量关系. 解:(1)∵CD =CB ,E 为BD 的中点;∴CE ⊥BD ,∴∠AEC =90°.又∵F 为AC 的中点,∴EF =12AC .(2)∵∠BAC =45°,∠AEC =90°,∴∠ACE =∠BAC =45°,∴AE =CE .又∵F 为AC 的中点,∴EF ⊥AC ,∴EF 为AC 的垂直平分线,∴AM =CM ,∴AM +DM =CM +DM =CD .又∵CD =CB ,∴AM +DM =BC .三、应用拓展10.(2019·甘孜州)直线上依次有A ,B ,C ,D 四个点,AD =7,AB =2,若AB ,BC ,CD 可构成以BC 为腰的等腰三角形,则BC 的长为__2或2.5__.【笔记】如图∵AB =2,AD =7,∴BD =BC +CD =5,∵BC 作为腰的等腰三角形,∴BC =AB 或BC =CD ,∴BC =2或2.5.11.(2019·武汉模拟)如图,△ABC 中,AB =AC ,D 为BC 上一点,AD =BD ,BE ⊥AD 于点E ,则AE BC 的值为12.解图解:过A 作AN ⊥BC 于N ,则BN =CN ,∵AD =BD ,∴∠DAB =∠DBA ,∵BE ⊥AD ,∴∠E =∠ANB =90°,在△ABN 与△BAE 中,⎩⎪⎨⎪⎧ ∠E=∠ANB ∠BAE =∠ABNAB =BA ,∴△ABN ≌△BAE (AAS),∴AE =BN ,∴AE =BN =12BC ,∴AE BC =12.12.如图,点O 是等边△ABC 内一点,∠AOB =100°,∠BOC =α,D 是△ABC 外一点,且△BOC ≌△ADC ,连接OD .(1)△COD 是什么三角形?说明理由;(2)当α为多少度时,△AOD 是直角三角形?(3)当α为多少度时,△AOD 是等腰三角形?解:(1)△COD是等边三角形,理由如下:∵△BOC≌△ADC,∴CO =CD,∠BCO=∠ACD,∵△ABC是等边三角形,∴∠ACB=60°,∴∠OCD=∠ACB=60°;∴△COD是等边三角形;(2)∵△COD是等边三角形,∴∠COD=60°,∵△AOD是直角三角形,∴∠AOD=90°,∴∠α=360°-110°-90°-60°=100°;(3)①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°-∠AOB-∠COD-α=360°-100°-60°-α=200°-α,∠ADO=α-60°,∴200°-α=α-60°,∴α=130°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=200°-α,∠ADO=α-60°,∴∠OAD=180°-(∠AOD+∠ADO)=40°,∴α-60°=40°,∴α=100°;③要使OD=AD,需∠OAD=∠AOD.∵200°-α=40°,∴α=160°,当α=150°时,△AOD也是直角三角形.综上所述:当α的度数为130°,100°,150°或160°时,△AOD是等腰三角形.四、权威预测13.(2019·邢台二模)我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形,(1)如图,在△ABC中,∠A=25°,∠ABC=105°,过B作一直线交AC于D,若BD把△ABC分割成两个等腰三角形,则∠BDA的度数是__130°__.(2)已知在△ABC中,AB=AC,过顶点和顶点对边上一点的直线,把△ABC分割成两个等腰三角形,则∠A的最小度数为180°7.【笔记】(1)根据题意得DA=DB,∴∠ABD=∠A=25°,∴∠BDA=180°-25°×2=130°.故答案为130°;(2)如图所示:AB=AC,AD=BD,BC=CD,∵AD=BD,∴∠ABD=∠A,∵BC=CD,∴∠CBD=∠CDB=2∠A,∴∠ABC=∠ABD+∠CBD=3∠A,∵AB=AC,∴∠C=∠ABC=3∠A,∵∠A+∠ABC+∠C=180°,∴7∠A=180°,∴∠A=180°7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形和直角三角形专项练习题
一、选择题
1.等腰三角形一底角为30°,底边上的高为9cm,则腰长为( )cm .
D.39
2.已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为( )
3.如图,△ABC 中,AC=BC ,∠ACB=90°,AE 平分∠BAC 交BC 于E ,BD ⊥AE 于D ,DM ⊥AC 于M ,连接CD .下列结论:①AC+CE=AB ;②CD =21AE ;③∠CDA=45°;④AM AB AC =定值.其中正确的有( )
个 个 个 个
4.等腰三角形的一个角等于20°,则它的另外两个角等于:( )
°、140°°、140°或80°、80°°、80°°、80°
5.如图,BE 和AD 是△ABC 的高,F 是AB 的中点,则图中的三角形一定是等腰三角形的有( )
A .2个
B .3个
C .4个
D .5个
6.下列命题正确的是( )
A.等腰三角形只有一条对称轴
B.直线不是轴对称图形
C.直角三角形都不是轴对称图形
D.任何一角都是轴对称图形
7.等腰三角形两边分别为35厘米和22厘米,则它的第三边长为( )
或22cm
8.下列条件不可以判定两个直角三角形全等的是()
A.两条直角边对应相等
B.有两条边对应相等
C.一条边和一锐角对应相等
D.一条边和一个角对应相等
9.等腰三角形中,AB 长是BC 长2倍,三角形的周长是40,则AB 的长为( )
或16
10.如图已知:AB =AC =BD,那么∠1与∠2之间的关系满足( )
A.∠1=2∠2∠1+∠2=180°
C.∠1+3∠2=180° ∠1-∠2=180°
二、填空题
1. 等腰三角形的腰长是底边的4
3,底边等于12cm ,则三角形的周长为______cm. 2. 等腰三角形的底角是65°,顶角为________.
3. 等腰三角形的一个内角为100°,则它的其余各角的度数分别为_______.
4. 等腰三角形的顶角等于一个底角的4倍时,则顶角为_________度.
5. 已知如图,A 、D 、C 在一条直线上AB =BD =CD,∠C =40°,则∠ABD =_______
6. 如图,∠P =25°,又PA =AB =BC =CD,则∠DCM =_______度.
第7题
第5题第6题
7. 如图已知∠ACB=90°,BD=BC,AE=AC,则∠DCE=__________度
8. △ABC中,∠C=90°,AB=10,∠A=30°,则BC=______,AC=_________
9. 已知Rt△ABC中,斜边AB=10cm,则斜边上的中线的长为______
10.如图,在△ABC和△ABD中,∠C=∠D=90°,若利用“AAS”证明△ABC≌△ABD,则需要加条件____________或_______________;若利用“HL”证明△ABC≌△ABD,则需要加条件___________或_______________.
三、几何题
1.如图,在△ABC中,已知AB=10,BD=6,AD=8,AC=17.
(1)求DC的长.
(2)判断△ABC是否是直角三角形
2.如图,△ABC是等边三角形,BD是AC边上的高,延长BC至E,使得CE=CD.连接DE (1)∠E等于多少度
(2)△DBE是什么三角形
3.如图,早上10点小东测得某树的影长为2m,到了下午5时又测得该树的影长为8m,若两次日照的光线互相垂直,求树的高度
4.如图,在等腰三角形ABC中,已知AB=AC=13cm,BC=10cm,AD⊥BC于点D.
(1)求BC边上的高AD的长
(2)求AC边上的高的长
5.如图,△ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F.求证:DF=EF.
6.如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.
900900
7. 如图,已知△ABC 为等边三角形,点D 、E 分别在BC 、AC 边上,且AE=CD ,AD 与BE 相交于点F.
(1)线段AD 与BE 有什么关系试证明你的结论
(2)求∠BFD 的度数
8. 如图,在△ABC 中,AB=BC ,∠ABC= ,OA=OB,在△EOF 中,∠EOF=
,OE=OF,连接AE 、BF.问线段AE 与BF 之间的关系请说明理由
9.如图,在△ABC 中,AB=AC,E 为CA 延长线上一点,ED ⊥BC 于D 交AB 于F.求证:△AEF 为等腰三角形.
10.如图,一艘渔船以30海里/h 的速度由西向东追赶鱼群.在A 处测得小岛C 在船的北偏东60°方向;40min 后,渔船行至B 处,此时测得小岛C 在船的北偏东30°方向.已知以小岛C 为中心,周围10海里以内有暗礁,问这艘渔船继续向东追赶鱼群是否有触礁的危险。

相关文档
最新文档