光谱分析技术

合集下载

光谱分析技术名词解释

光谱分析技术名词解释

光谱分析技术名词解释
光谱分析技术是一项用于测量物体的光谱分布的技术,具体来说,它可以帮助人们准确测量物体的可见光,紫外线,毫米波,雷达,激光,热成像等各种波段的光谱数据,进而可以对物体的物性和结构进行分析和探究。

光谱分析技术的应用非常广泛,可以应用于体内成分分析,分子检测,生物传感器,光学调谐器,纳米材料,星体研究,环境监测,空间遥感,病毒检测,气体分析等,可以用于支持原子学,物理学,化学,生物学,环境学等诸多学科的研究。

光谱分析技术可以通过光谱仪来实现,常见的光谱仪有分光计、高效液相色谱仪、X射线衍射仪、射线能谱仪等。

分光计可以测量物体的可见光谱分布,高效液相色谱仪可以用来分离和测量物体的混合物,X射线衍射仪可以测量物体的晶体结构,射线能谱仪可以用来分析物质的原子结构。

光谱分析技术也可以使用谱解析技术,谱解析技术是将光谱分析数据转换成文字信息的技术,例如借助贝叶斯谱解析,可以识别物体的成分,借助傅立叶变换谱解析,可以提取光谱相关数据,借助激光谱解析,可以精确测量物体的结构和光谱特性等。

此外,光谱分析技术还可以使用光栅和光滤波器,光栅可以用来分辨物体的颜色和亮度,光滤波器则可以将入射光分离成不同波长的光谱,以便进行细化分析。

光谱分析技术在物质分析和物性研究方面有着重要的作用,对于
对物质和物性有更深入的认识和了解,也可以使用光谱分析技术来支持。

因而,光谱分析技术也被称为“光谱学”,正在发挥着越来越重要的作用。

光谱分析技术

光谱分析技术

光谱分析技术光谱分析技术是一种用于研究物质的性质和组成的方法。

通过测量不同波长的光与物质的相互作用,可以得到物质的光谱信息,从而推断出物质的成分、结构和特性。

光谱分析技术广泛应用于化学、物理、生物学等领域,具有非常重要的科学研究和实际应用价值。

吸收光谱是一种常用的光谱分析技术,它通过测量物质对不同波长光的吸收程度来推断物质的组成和含量。

在吸收光谱实验中,样品会被照射一束连续的宽带光源,在经过样品后,通过光谱仪测量透射光的强度。

然后,根据透射光强度的变化情况,可以得到样品对不同波长光的吸收程度。

通过与标准物质进行对比,可以确定样品中的化合物种类和浓度。

发射光谱是另一种常用的光谱分析技术,它通过将物质激发到高能态后,测量从高能态返回到基态过程中发射的光的强度和波长,来推断物质的成分和结构。

在发射光谱实验中,样品会被激发到高能态,然后通过光谱仪测量从高能态返回到基态过程中发射的光的强度和波长。

通过与标准物质进行对比,可以确定样品中的元素种类和浓度。

拉曼光谱是一种通过测量物质散射光的强度和波长变化,来推断物质的成分和结构的光谱分析技术。

在拉曼光谱实验中,样品会被激发到高能态,然后经过光谱仪测量散射光的强度和波长。

拉曼光谱与样品中化学键的振动有关,可以提供物质的结构和成分信息。

由于拉曼光谱具有非常高的分辨率和灵敏度,因此在化学、材料、生物等领域得到了广泛应用。

光谱分析技术的应用十分广泛。

在化学领域,光谱分析技术可以用于物质的定性和定量分析,例如确定化合物的化学结构、测定化合物的浓度等。

在物理学领域,光谱分析技术可以用于研究物质的电子结构、能级分布等。

在生物学领域,光谱分析技术可以用于生物分子的结构研究、生物体内化学物质的定量测定等。

总之,光谱分析技术是一种十分重要的科学研究和实际应用工具。

吸收光谱、发射光谱和拉曼光谱等几种常见的光谱分析技术在化学、物理、生物学等领域发挥着重要作用。

通过光谱分析技术可以推断出物质的成分、结构和特性,为科学研究和实际应用提供了可靠的数据和信息。

光谱分析技术

光谱分析技术

光谱分析技术光谱分析技术是一种用于研究物质光学性质的方法。

通过测量样品对不同波长的电磁辐射的吸收、发射或散射,可以得到材料的能级结构、成分以及其他相关信息。

光谱分析技术广泛应用于物质科学、化学、物理、生物、医学等领域,为研究人员提供了一个强大的工具。

一、光谱分析的基本原理光谱分析技术的基本原理是根据物质对电磁辐射的相互作用来进行分析。

光谱分析一般涉及两个重要的特征参数:波长和强度。

根据电磁辐射的性质,可以将光谱分为连续光谱和离散光谱。

连续光谱是指光源产生的电磁辐射在波长范围内连续变化的光谱。

例如,太阳光就是一种连续光谱,它包含了所有波长的电磁辐射。

离散光谱是指光源产生的电磁辐射只具有特定波长的光谱。

离散光谱可以进一步分为发射光谱和吸收光谱。

发射光谱是指物质在受激激发后,发射出具有特定波长的辐射。

这种光谱常用于分析样品中的元素或化合物的存在和相对含量。

吸收光谱是指物质对特定波长的电磁辐射吸收的程度。

通过测量吸收光谱,可以确定物质的吸收特性,并进一步推断物质的性质、浓度等信息。

二、光谱分析的应用领域1. 无机化学领域在无机化学领域,光谱分析技术广泛应用于金属离子的检测、金属络合物的研究、催化剂的表征等方面。

例如,紫外-可见光谱能够用于研究金属离子的电子结构、配位数和配位几何等信息。

2. 有机化学领域在有机化学领域,红外光谱和核磁共振光谱是最常用的光谱分析技术。

红外光谱可以用于判定有机物的官能团、化合物结构以及化学键的类型。

核磁共振光谱则可以提供关于有机分子中氢、碳等原子的位置和环境信息。

3. 材料科学领域光谱分析技术在材料科学领域有着广泛的应用。

例如,拉曼光谱能够揭示材料的晶格结构、分子振动模式等信息;X射线光电子能谱能够提供材料的元素分布和化学态信息。

4. 生物医学领域光谱分析技术在生物医学领域也有重要的应用。

近红外光谱被广泛用于非侵入性生物医学检测,如近红外光谱血糖检测、脑血氧测量等。

此外,荧光光谱和质谱分析等技术也在生物医学领域发挥着重要作用。

光谱分析技术

光谱分析技术

光谱分析是一种通过分析从物质中释放出来的各种波长种类的光来确
定物质本质的技术。

它可以用来研究不同种类的物质,并以此来提供
它们的一些核心特征。

最近,学术界和工业领域的科学家都在使用光
谱分析技术来进行研究。

光谱分析的基本原理是利用可见光(波长范围为400-700nm)和近红
外区域的紫外线(波长在700-1000nm的范围内)来测量物质的特性,以及它们之间的差异。

它们主要基于光-物质相互作用的基本特性:穿透、吸收和散射。

当单一连续的光被注入到物质中时,被观察到有一
束光频谱,这些光频谱的特点可以用来确定物质的本质特性。

光谱分析技术最常用于分析多种环境质量的分析,以便获得有关环境
中气体和污染物的信息。

另外,该技术也可以用来获得有关未知物质
特性的信息,以及金属和有机物在不同工业应用中的特性数据。

光谱分析技术也可以用于艺术衍生品和文物鉴定以及文化财富保护,
帮助识别不同文物的组件,并可以估算他们在不同时期曾经所受到的
影响。

光谱分析技术是一种重要的科学工具,用来研究元素和物质的混合物、可见光谱和紫外线的定性和定量的特征,以及感应性的材料。

它的普
及也正在为环境质量的保护、文物质量的识别和文化财富的传承带来
重大影响。

光谱分析技术的原理和应用领域

光谱分析技术的原理和应用领域

光谱分析技术的原理和应用领域光谱分析技术是一种非常重要的分析方法,它以物质发射、吸收、散射和荧光等光谱现象为基础,利用光学和电子技术手段,对物质成分、结构和物理化学特性进行分析和研究。

本文将阐述光谱分析技术的基本原理、常见的光谱技术及其应用领域。

光谱分析技术的原理光谱分析技术主要是基于物质对不同频率(波长)的电磁辐射的不同响应而产生的一系列现象。

当物质受到电磁波的作用后,相应的原子或分子会发生能级转移,其中部分能量被吸收,并在某些情况下被重新辐射出来。

具体来说,当电磁波通过物质时,部分电磁波可以被物质吸收或散射,其它电磁波则会穿过物质而不受影响,这些被吸收或散射的电磁波就构成了光谱。

光谱分析技术的常见技术常见的光谱分析技术主要包括原子吸收光谱、原子荧光光谱、分子吸收光谱(紫外-可见光谱和红外光谱)以及拉曼光谱等。

1. 原子吸收光谱原子吸收光谱是利用原子对特定波长的电磁辐射的能量进行吸收而实现元素分析的一种光谱分析技术。

通过实验手段,可以用一个特定波长的电磁辐射蒸发样品和产生原子,然后以另一个特定波长的电磁辐射的强度测量样品中特定原子的浓度。

2. 原子荧光光谱原子荧光光谱是将样品中的特定原子进行激发而产生荧光,进而分析样品中特定原子浓度的一种光谱分析技术。

它与原子吸收光谱相比,具有高灵敏度、高分辨率等优点。

3. 分子吸收光谱分子吸收光谱分为紫外-可见光谱和红外光谱两类。

紫外-可见光谱是指样品中分子吸收紫外或可见光的一种分析技术,其中,紫外光波长在1-400纳米范围内,可见光波长在400-800纳米范围内。

红外光谱则是在样品被辐射后,不同的分子吸收不同波长的红外辐射而产生不同的谱带,通过分析这些谱带来确定样品中物质的成分。

4. 拉曼光谱拉曼光谱是一种分析物质的结构和化学键种类的非常有效的光谱方法。

它是利用物质的分子振动对入射光的散射响应,用来区分和鉴定物质。

因为拉曼散射的谱线非常明显,可以非常有效地识别和区分不同物质。

光谱分析技术及应用

光谱分析技术及应用

光谱分析技术及应用光谱分析技术是一种通过研究物质的光谱特征来分析、识别和测量物质成分的重要手段。

光谱分析技术广泛应用于物质科学、材料科学、生命科学、环境科学等领域,并在许多实际应用中取得了重要成果。

本文将介绍几种常见的光谱分析技术及其应用。

一、紫外可见吸收光谱技术(UV-Vis)紫外可见光谱技术是一种基于物质对紫外可见光吸收的特征来分析物质的方法。

该技术可用于分析物质的结构、测量物质的浓度,并广泛应用于药物分析、环境监测、食品安全等领域。

例如,在药物分析中,紫外可见光谱可用于分析药物的纯度、活性成分的含量以及药物的降解程度;在环境监测中,通过测量水中有机物的紫外吸收谱,可以快速准确地评估水质的污染程度。

二、红外光谱技术(IR)红外光谱技术是一种通过物质对红外光吸收和散射的特性来识别和分析物质的方法。

红外光谱技术广泛应用于有机物和无机物的结构分析、化学反应机理研究、生物医药等领域。

在有机物的结构分析方面,红外光谱技术可以通过分析有机物中特定基团的红外吸收峰,来确定有机物的结构和化学键类型;在药物研发中,红外光谱技术可用于快速鉴别和定量分析药物成分。

三、拉曼光谱技术(Raman)拉曼光谱技术是一种通过测量物质散射光中弱的拉曼散射来分析物质的方法。

与红外光谱相比,拉曼光谱技术不需要特殊的处理样品,可以直接对样品进行测量。

因此,拉曼光谱技术广泛应用于材料科学、生命科学、环境科学等领域。

例如,在材料科学中,拉曼光谱技术可用于表征材料的晶格结构、物质的化学组成和分子振动模式;在生命科学中,拉曼光谱技术可用于分析和识别生物体内的成分、了解细胞生理和病理变化。

四、质谱技术(MS)质谱技术是一种通过测量和分析物质在质谱仪中产生的离子谱图来确定物质组成和结构的方法。

质谱技术广泛应用于有机质分析、环境科学、食品安全等领域。

在有机质分析中,质谱技术可用于定性鉴别未知有机化合物的结构和成分;在环境科学中,质谱技术可用于分析大气中的有机物、水中的有机污染物等;在食品安全中,质谱技术可用于检测食品中的农药残留、添加剂以及其他有害物质。

光谱分析技术名词解释

光谱分析技术名词解释
光谱分析技术是一种通过对物质样品的光谱进行测量和解析来获取样品物理性质和化学组成信息的方法。

下面是一些常见的光谱分析技术名词的解释:
1. 紫外可见光谱:紫外可见光谱是通过测量物质在紫外和可见光区域的吸收和传播来分析样品的化学组成和浓度的方法。

2. 红外光谱:红外光谱是一种分析物质的振动和旋转能级的技术,通过测量样品吸收和散射红外辐射的能量来获取样品的结构和组成信息。

3. 质谱:质谱是一种通过将样品分解成离子并对其进行质量-荷电比的测量来分析物质的化学组成和结构的技术。

4. 核磁共振(NMR):核磁共振是一种通过测量样品中原子核围绕磁场的旋转行为来分析样品的化学和结构信息的方法。

5. 荧光光谱:荧光光谱是一种通过测量样品在激发光作用下发出的荧光来分析样品的组成和结构的方法。

6. 原子吸收光谱:原子吸收光谱是一种通过测量样品中特定元素吸收特定波长的光来分析样品中该元素的浓度的方法。

7. 拉曼光谱:拉曼光谱是一种通过测量样品散射出的光的频率变化来获取样品的分子结构和组成信息的方法。

8. X射线衍射:X射线衍射是一种通过测量样品中X射线的衍射图案来确定样品的晶体结构和组成的方法。

9. 吸收光谱:吸收光谱是一种通过测量样品对不同波长光的吸收程度来分析物质的浓度和组成的方法。

10. 发射光谱:发射光谱是一种通过测量样品在受到激发后发射的光的能量来分析样品的元素组成和化学性质的方法。

总之,光谱分析技术以其高分辨能力、非破坏性和多功能性等优势在化学、生物、材料等领域得到广泛应用,为科学研究和实际应用提供了强有力的分析手段。

光谱分析技术和相关仪器

光谱分析技术和相关仪器光谱分析技术是一种常见的分析化学方法,可用于分析和确定物质的化学成分和结构。

它是通过测量物质对不同波长的光的吸收、散射或发射来获取信息的。

光谱分析技术有很多种,包括紫外可见吸收光谱、红外光谱、拉曼光谱、质谱等。

紫外可见吸收光谱(UV-Vis)是一种常见的光谱分析方法,通过测量物质在紫外和可见光波段的吸收特性来确定物质的浓度和化学结构。

它在分析有机化合物、无机离子和生物分子等方面广泛应用。

使用紫外可见光谱仪,光从光源通过样品后被检测器接收,根据吸收光的强度可以获得样品的吸光度。

红外光谱(IR)是一种通过测量物质对红外光的吸收来确定化学结构和功能的技术。

红外光谱常用于有机化学、聚合物材料和药物分析等领域。

红外光谱仪可以测量物质对不同波长的红外光的吸收强度,从而分析物质中存在的键和官能团。

拉曼光谱是通过测量物质对拉曼散射光谱的特性来获取信息的一种光谱分析技术。

拉曼光谱具有独特的分析优势,可以无需样品前处理,快速获取高分辨率数据。

拉曼光谱广泛应用于无机材料、生命科学和环境分析等领域,可以用于确定物质的结构和组成。

质谱是一种通过测量物质离子的质量和相对丰度来确定其组成和结构的分析技术。

质谱仪将样品分子离子化并加速,然后根据其运动轨迹的差异进行分离和检测。

质谱广泛应用于有机化学、生物分析和环境监测等领域,可以提供高分辨率和高灵敏度的分析结果。

在光谱分析中,仪器的选择和性能是至关重要的。

常见的光谱仪器包括紫外可见光谱仪、红外光谱仪、拉曼光谱仪、质谱仪等。

这些仪器通常由光源、光学系统、样品室和检测器等组成。

光源是提供光线的部件,常用的光源包括氘灯、氙灯和钨灯等。

不同的光源适用于不同的光谱分析方法。

光学系统包括准直器、光栅和光学器件等,用于准直、分光和调整光路。

准直器负责将光束变为平行光线,光栅则用于将光束分散为不同波长的光。

样品室是载有样品的部分,它通常是一个透明的室,用于放置待测样品。

样品室需要能提供稳定的环境温度和压力,以保证测试结果的准确性。

光谱分析技术及应用

光谱分析技术及应用光谱分析是利用物质对不同波长光的吸收、发射或散射来研究其性质和组成的一种重要分析技术。

它可以广泛应用于物理、化学、生物、地质、环境等领域,对于分析样品的成分、结构和浓度具有很高的灵敏度和选择性。

吸收光谱是最常用的光谱分析技术之一,它基于样品对特定波长的光的吸收程度来推断样品的成分、浓度和结构。

常见的吸收光谱包括红外光谱、紫外可见光谱等。

红外光谱可以用于分析有机物的组成和结构,紫外可见光谱常用于分析有机化合物的化学键和电子能级。

发射光谱是通过样品在受到外界激发的情况下所发出的特定波长光的强度和频率分布来分析样品的成分和性质。

常见的发射光谱包括原子发射光谱和分子发射光谱。

原子发射光谱广泛应用于金属分析和环境监测领域,通过测量样品中金属元素发射的特定光谱线来推断其浓度。

分子发射光谱可以用于分析有机分子的结构和振动能级。

荧光光谱是指样品在受到外界激发后发光的光谱分析技术。

荧光光谱可以用于分析有机分子和生物分子的结构和相互作用。

它广泛应用于生物医学研究、药物开发和环境监测等领域。

拉曼光谱是一种基于样品散射光的频率和强度来分析样品结构和成分的技术。

拉曼光谱不需要样品预处理,可以直接对样品进行快速、无损的分析。

它在材料科学、生物化学、矿物学等领域有广泛应用。

光谱分析技术有着广泛的应用。

在环境监测领域,通过测量水、空气和土壤中的有害物质发射的特定光谱线,可以快速准确地判断其浓度和类型,为环境保护和生态修复提供重要依据。

在食品安全领域,利用光谱分析技术可以检测食品中的农药残留、重金属污染和致病菌等有害物质,确保食品安全。

在药物研发和生物医学研究中,光谱分析技术可以用于分析药物的合成和结构,以及细胞和分子的相互作用。

总之,光谱分析技术在科学研究和工业生产中具有重要地位和广泛应用。

随着技术的不断进步和发展,光谱分析技术在高灵敏度、高分辨率和实时监测等方面将有更多的应用前景。

光谱分析技术的原理与应用

光谱分析技术的原理与应用光谱分析技术是一种用来研究物质结构和性质的重要手段。

它基于物质对不同波长或频率的电磁辐射的特异性吸收、发射或散射现象,通过测量和分析光谱信息,从而获取物质的特征信息。

本文将介绍光谱分析技术的原理和应用。

一、光谱分析技术的原理光谱分析技术的原理基于物质与电磁辐射的相互作用。

当物质受到电磁辐射的作用时,可以发生吸收、发射或散射现象。

这些现象反映了物质在不同波长或频率的电磁辐射下的吸收、发射或散射特性,从而提供了物质的信息。

常见的光谱分析技术包括紫外可见吸收光谱、红外光谱、拉曼光谱、核磁共振光谱等。

其中,紫外可见吸收光谱是通过测量物质在紫外可见光区域的吸收现象,来分析物质的结构和含量。

红外光谱则是通过测量物质在红外波段的吸收现象,来研究物质的键合状态和分子结构。

拉曼光谱是通过测量物质在激光照射下发生光散射的现象,来分析物质的分子振动和晶体结构。

核磁共振光谱则是通过测量核磁共振现象,来研究物质的分子结构和动力学行为。

二、光谱分析技术的应用光谱分析技术在各个领域都有广泛的应用。

以下将分别介绍光谱分析技术在化学、医药、环境和材料科学等领域的应用。

1. 化学领域光谱分析技术在化学领域中起着重要的作用。

它可以用于研究有机和无机物质的结构和性质,分析化学反应的动力学过程,鉴定物质的纯度和成分等。

例如,通过红外光谱可以确定有机化合物中的官能团和键的类型,用于鉴定和鉴定化合物。

核磁共振光谱则可以提供有关物质的分子结构和键的交互信息。

2. 医药领域光谱分析技术在医药领域也有广泛的应用。

它可以被用来研究药物和生物分子的结构、相互作用和分解代谢过程,从而用于药物的设计、研发和质量控制。

例如,核磁共振光谱可以被用来研究药物在人体内的分布和代谢路径,来优化药物的剂量和使用方式。

3. 环境领域光谱分析技术在环境监测和保护中发挥着重要作用。

它可以用于分析和检测水、空气、土壤等环境样品中的污染物,并监测其浓度和分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光的显色原理
若把某两种颜色的光,按一定的强度比例 混合,能够得到白色光,则这两种颜色的 光叫做互补色。图中处于直线关系的两种 光为互补色。如绿光和紫光为互补色, 黄光和蓝光为互补色等等。
各种溶液会呈现出不同的颜色,其原因是 溶液中有色质点(分子或离子)选择性地 吸收某种颜色的光。
实验证明:溶液所呈现的颜色是其主要吸收
制作和应用标准曲线时应注意下面几点:
(1)测定条件发生变化时(如更换标准品和试剂等),应 重新绘制。 (2)标准品应有高的纯度,标准液的配制应准确。 (3)当待测液吸光度超过线性范围时,应将样本稀释后再 测定。 (4)标本测定的条件应和标准曲线制作时的条件完全一致。
2.对比法(标准对照法)
己知浓度的标准品和标本作同样处理,使用相同的空白, 同时测定标准管和标本的吸光度,根据测定的吸光度及标准 品浓度,可直接计算出标本的浓度,计算公式为:
什么是光谱分析技术?
光的波长(λ) 单位用纳米(nm) 各种化学物质都具有一定的光谱特性,表现在能选择性吸收、 发射或散射某种波长的光。利用物质的吸收光谱、发射光谱 或散射光谱特征对物质进行定性、定量分析的技术称为光谱 分析技术。
光谱分析技术原理:
利用各种化学物质都具有发射、吸收或散射光谱谱系的特 征,以此来确定物质性质、结构或含量。
光的互补色。如一束白光通过高 锰酸钾溶液时,绿光大部分被选 择吸收,其它的光透过溶液。从 互补色示意图可以看出, 透过光 中只剩下紫色光,所以高锰酸钾 溶液呈紫色。
(二)光的吸收定律
溶液颜色的深浅与浓度之间的关系可 以用吸收定律来描述。它是由约 翰· 海 因里希· 朗伯和奥古斯特· 比尔相结合 而成的,所以叫朗伯-比尔定律。原 子吸收分光光度计也符合这个定律。
特点:
具有灵敏度高、干扰较少、选择性好、操作简便、快速、结果准确、可靠、 应用范围广、仪器比较简单、价格较低廉等优点,而且可以使整个操作自动 化,因此近年来发展迅速,是应用广泛的一种仪器分析新技术。
方法:
在温度吸收光程,进样方式等实验条件固定时,样品产生的待测元素相基态 原子对作为锐线光源的该元素的空心阴极灯所辐射的单色光产生吸收,其吸 光度(A)与样品中该元素的浓度(C)成正比。即 A=KC 式中,K为常数。 据此,通过测量标准溶液及未知溶液的吸光度,又巳知标准溶液浓度,可作 标准曲线,求得未知液中待测元素浓度。
Lambert-Beer定律适用于可见光、紫外光、红外光和均匀非散射的液体。
分光光度计的基本结构
可见光光度计 721、721-A、722、723型 分光光度计等 紫外分光光度计 751、752、753型分光光度 计等
紫外-可见分光光度计 贝克曼DU500系列紫外/分 光光度计
吸光(消光)系数表达式
学习目标
• 掌握光谱分析中的对比法、摩尔吸收 系数法、比浊法测定的方法原理,在 生化检验中的应用及注意事项;区带 电泳的原理、应用及影响因素;离子 选择性电极法测定的原理和注意事项。 • 熟悉离心技术,其它电泳技术和层析 技术中的HPLC及亲和层析的原理和 应用;免疫分析技术、生物传感技术 的概念和应用原理。 • 了解色谱、层析等常用生化技术的应 用原理和方法,生物芯片技术的概念 和应用原理

一、仪器基本组成
光源
单色器
样品室
检测器
显示
可见分光光度计
722型分光光度计示意图
722型分光光度计使用方法
(1)预热仪器 将选择开关置于“T”,打开电源开关,使仪器预热20分钟。为了防止光 电管疲劳,不要连续光照,预热仪器时和不测定时应将试样室盖打开,使光路切 断。 (2)选定波长 根据实验要求,转动波长手轮,调至所需要的单色波长。 (3)固定灵敏度档 在能使空白溶液很好地调到“100%”的情况下,尽可能采用灵敏度 较低的挡,使用时,首先调到“1”挡,灵敏度不够时再逐渐升高。但换挡改变灵敏 度后,须重新校正“0%”和“100%”。选好的灵敏度,实验过程中不要再变动。 (4)调节T=0% 轻轻旋动“0%”旋钮,使数字显示为“00.0”(此时试样室是打开的)。 (5)调节T=100% 将盛蒸馏水(或空白溶液,或纯溶剂)的比色皿放入比色皿座架中 的第一格内,并对准光路,把试样室盖子轻轻盖上,调节透过率“100%”旋钮,使 数字显示正好为“100.0”。 (6)吸光度的测定 将选择开关置于“A”,盖上试样室盖子,将空白液置于光路中,调 节吸光度调节旋钮,使数字显示为“.000”。将盛有待测溶液的比色皿放入比色皿 座架中的其它格内,盖上试样室盖,轻轻拉动试样架拉手,使待测溶液进入光 路,此时数字显示值即为该待测溶液的吸光度值。读数后,打开试样室盖,切断 光路。重复上述测定操作1~2次,读取相应的吸光度值,取平均值。 (7)浓度的测定 选择开关由“A”旋置“C”,将已标定浓度的样品放入光路,调节浓度旋 钮,使得数字显示为标定值,将被测样品放入光路,此时数字显示值即为该待测 溶液的浓度值。 (8)关机 实验完毕,切断电源,将比色皿取出洗净,并将比色皿座架用软纸擦净。
溶液对光的吸收 当一束强度为I的平 行单色光照到溶液时,一部分光被溶 液吸收,一部分光被界面散射,其余 的光则透过溶液,如图所示
结论:
I0=I a+ I r+ I t
I0--入射光强度 I a--吸收光强度 I r--反射光强度 I t--透射光强度 通常由于I r很小可忽略不计,上式可简化为 I0=I a+ I t 透射光I t与入射光强度I0之比为透光率或透 光度,用T表示: T= I t/ I 0 透光率的负对数称为吸光度或光密度或消光 度,用A表示: A=-lgT=lg1/T=lgI 0/ I t
注意事项
(1)为了防止光电管疲劳,不测定时必须将试样室盖打 开,使光路切断,以延长光电管的使用寿命。 (2)取拿比色皿时,手指只能捏住比色皿的毛玻璃面,而 不能碰比色皿的光学表面。 (3)比色皿不能用碱溶液或氧化性强的洗涤液洗涤,也不 能用毛刷清洗。比色皿外壁附着的水或溶液应用擦镜 纸或细而软的吸水纸吸干,不要擦拭,以免损伤它的 光学表面。
特点:
灵敏度更高 选择性强 使用简便
课后习题
选择: 1.可见光谱区的波长范围( ) A.200~300nm B.300~400nm C.400~600nm D.400~760nm E.700~1000nm 2.分光光度法测定中制作标准曲线广泛采用的曲线图形为( ) A.T-C曲线 B.IgT-C曲线 C.A-C曲线 D.A-λ曲线 E.以上都不对 3.某物质溶液吸收光谱曲线上最大吸收峰所对应的波长,称为该物质的( A.特殊波长 B.最大吸收波长 C.最小吸收波长 D.综合波长 E.以上都不对 名词解释 什么是光谱分析技术? 什么是吸光度? 什么是吸光系数?
应用:
主要适用样品中微量及痕量组分分析。
荧光分析法
定义:
利用某些物质被紫外光照射后所发生的能反映出该物质特性的荧光,可以 进行定性或定量分析的方法。
原理:
物质的分子吸收紫外光或可见光后,由电子基态能级跃迁至激发态能级。 处于激发态的分子不稳定,通过各种方式失去能量,返回基态。若分子首 先通过碰撞和系统内转换等方式失去部分能量,下降至电子第一激发态的 最低振动能级,然后再发射一定波长的光返回电子基态的任一振动能级, 则被发射的光称为荧光。显然,荧光的能量小于激发光能量,波长则长于 激发光。荧光的平均寿命很短,除去激发光源,荧光立即熄灭。
吸光度越大,表示该物质对光的吸收越强。透光度和吸光度都是用来表示 入射光被吸收的程度,它们之间可据式相互换算。
实验证明:单色光经过有色溶液时,透过溶液的光强度不仅与溶液的浓度 有关,而且还与溶液的厚度以及溶液本身对光的吸收性能有关。 其规律可用下式表示为 A=KCL
式中: A——吸光度(或叫做光密度,也可用D表示); K——某溶液的消光(吸收)系数; C——溶液的浓度; L——光程,即溶液的厚度。
是能的一种表现形式,是电 磁波的一种。光在真空中以直 线方式传播,在不同的介质处 发生反射、折射、衍射、色散、 干涉和偏振等现象。可用波长、 频率、传播速度等参量来描述 即光具有“波动性”。光的颜 色 即由光的波长决定,人眼能感 觉到的光称为可见光,其波长 在400~750nm之间。在可见 光之外是 红外光760~1000nm 紫外光200~400nm
吸光系数 A a表示 a = C(g/L).L(cm) 单位 L/g.cm 摩尔消光系数 A ε表示 ε = C(mol/L).L(cm) 单位 L/mol.cm 百分消光系数 A E 表示 E = C(g/dl).L(cm) 单位是dL/(g.cm) 摩尔消光系数与百分消光系数的换算关系: ε = E * M(摩尔质量)
光谱分析技术分类:
发射光谱分析技术:火焰光度法、荧光法 吸收光谱分析技术:紫外、红外、原子、可见光分光光度法 散射光谱分析技术:比浊法
一、分光光度技术的基本原理
许多化学物质具有颜色,有些无颜色的化合物也可以与显色剂作用,生 成有色物质。实践证明,有色溶液的浓度越大,颜色越深;浓度越小, 颜色越浅。因此,可以通过比较溶液颜色深浅的方法来确定有色溶液 的浓度,对溶液中所含的物质进行定量分析。基于比较颜色深浅对溶液 进行定量分析的方法称为比色分析法。 光子的能量与波长的关系为 E=hυ= hc/λ 式中E为光子的能量(J:焦耳),υ为频率,h为普朗克常数(6.63×1034J·S),c为光速,λ为光的波长 因此,不同波长的光,其能量不同,短波能量大,长波能量小。
影响因素:
1.悬浊液的散射光强度主要和颗粒的数量有关 2.注意掌握反应温度 3.溶液的PH值可影响沉淀的形成及颗粒的大小 4.悬浊液的稳定性较差,需及时比浊 5.稀释缓冲液中的电解质与非电解质对免疫复合物的形成和稳定性有影响 6.适当选择滤光片或入射光波长
原子吸收分光光度法
原理:
又称原子吸收分光光度法是基于蒸汽相中待测元素的基态原子对其共振辐射 的吸收强度来测定试样中该元素含量的一种仪器分析方法。它是测定痕量和 超痕量元素的有效方法。
相关文档
最新文档