高考试卷-2015年安徽省高考数学试卷理科

合集下载

2015年安徽省高考数学试卷(理科)解析79858

2015年安徽省高考数学试卷(理科)解析79858

2015年安徽省高考数学试卷(理科)一 选择题(每小题 分,共 分,在每小题给出的四个选项中,只有一个是正确的).( 分)( 安徽)设 是虚数单位,则复数在复平面内对应的点位于().第一象限 .第二象限 .第三象限 .第四象限.( 分)( 安徽)下列函数中,既是偶函数又存在零点的是(). . .y=lnx D .y=x2+13.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=15.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D .若m,n不平行,则m与n不可能垂直于同一平面6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x 1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8B.15 C.16 D.7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1D.(4+)⊥9.(5分)(2015•安徽)函数f (x )=的图象如图所示,则下列结论成立的是( )A . a >0,b >0,c <0B . a <0,b >0,c >0C . a <0,b >0,c <0D . a <0,b <0,c <0 10.(5分)(2015•安徽)已知函数f (x )=Asin (ωx+φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f (x )取得最小值,则下列结论正确的是( ) A . f (2)<f (﹣2)<f (0) B . f (0)<f (2)<f (﹣2) C . f (﹣2)<f (0)<f (2) D . f (2)<f (0)<f (﹣2) 二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x 3+)7的展开式中的x 5的系数是 (用数字填写答案) 12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sin θ上的点到直线θ=(ρ∈R )距离的最大值是 . 13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n 为14.(5分)(2015•安徽)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于 .15.(5分)(2015•安徽)设x 3+ax+b=0,其中a ,b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 (写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b >2.④a=0,b=2.⑤a=1,b=2. 三.解答题(共6小题,75分) 16.(12分)(2015•安徽)在△ABC 中,∠A=,AB=6,AC=3,点D 在BC边上,AD=BD ,求AD 的长. 17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率; (Ⅱ)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x 轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)(2015•安徽)如图所示,在多面体A 1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N 关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.2015年安徽省高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的) 1.(5分)(2015•安徽)设i 是虚数单位,则复数在复平面内对应的点位于( ) A . 第一象限 B . 第二象限 C . 第三象限D . 第四象限考点: 复数的代数表示法及其几何意义.专题: 计算题;数系的扩充和复数.分析: 先化简复数,再得出点的坐标,即可得出结论.解答:解:=i(1+i )=﹣1+i ,对应复平面上的点为(﹣1,1),在第二象限,故选:B . 点评:本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是( ) A . y =cosx B . y =sinx C . y =lnx D . y=x 2+1考点: 函数的零点;函数奇偶性的判断.专题: 函数的性质及应用.分析:利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择. 解答:解:对于A ,定义域为R ,并且cos (﹣x )=cosx ,是偶函数并且有无数个零点; 对于B ,sin (﹣x )=﹣sinx ,是奇函数,由无数个零点;对于C ,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D ,定义域为R ,为偶函数,都是没有零点; 故选A . 点评:本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f (﹣x )与f (x )的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x 轴的交点以及与对应方程的解的个数是一致的.3.(5分)(2015•安徽)设p:1<x <2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:运用指数函数的单调性,结合充分必要条件的定义,即可判断.解答:解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选A.点评:本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=1考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.解答:解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选C.点评:本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面考点:空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.解答:解:对于A,若α,β垂直于同一平面,则α与β不一定平行,如果墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选D.点评:本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8B.15 C.16 D.考点:极差、方差与标准差.专题:概率与统计.分析:根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.解答:解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16, 故选:C . 点评:本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是( )A . 1+B . 2+C . 1+2D . 2考点: 由三视图求面积、体积. 专题: 计算题;空间位置关系与距离. 分析:根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.解答:解:根据几何体的三视图,得; 该几何体是底面为等腰直角三角形的三棱锥,如图所示; ∴该几何体的表面积为 S 表面积=S △PAC +2S △PA B +S △ABC =×2×1+2××+×2×1 =2+.故选:B .点评:本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)(2015•安徽)△ABC 是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是( ) A . ||=1 B .⊥C .•=1D .考点: 平面向量数量积的运算. 专题: 平面向量及应用.分析:由题意,知道,,根据已知三角形为等边三角形解之.解答:解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.点评:本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9.(5分)(2015•安徽)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.考点:函数的图象.专题:函数的性质及应用.分析:分别根据函数的定义域,函数零点以及f(0)的取值进行判断即可.解答:解:函数在P处无意义,即﹣c>0,则c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0, ∴a <0,综上a <0,b >0,c <0, 故选:C点评:本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f (0)的符号是解决本题的关键.10.(5分)(2015•安徽)已知函数f (x )=Asin (ωx+φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f (x )取得最小值,则下列结论正确的是( ) A . f (2)<f (﹣2)<f (0) B . f (0)<f (2)<f (﹣2) C . f (﹣2)<f (0)<f (2) D . f (2)<f (0)<f (﹣2)考点: 三角函数的周期性及其求法.专题: 三角函数的图像与性质.分析: 依题意可求ω=2,又当x=时,函数f (x )取得最小值,可解得φ,从而可求解析式f (x )=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小. 解答:解:依题意得,函数f (x )的周期为π, ∵ω>0, ∴ω==2.(3分) 又∵当x=时,函数f (x )取得最小值, ∴2×+φ=2k π+,k ∈Z ,可解得:φ=2k π+,k ∈Z ,(5分)∴f (x )=Asin (2x+2k π+)=Asin (2x+).(6分)∴f (﹣2)=Asin (﹣4+)=Asin (﹣4+2π)>0.f (2)=Asin(4+)<0f (0)=Asin =Asin>0又∵>﹣4+2π>>,而f(x)=Asin(2x+)在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0)故选:A.点评:本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是35(用数字填写答案)考点:二项式定理的应用.专题:二项式定理.分析:根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.解答:解:根据所给的二项式写出展开式的通项,T r+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.点评:本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R )距离的最大值=d+r.解答:解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.点评:本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为4考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.解答:解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n的值是解题的关键,属于基础题.14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于2n﹣1.考点:等比数列的性质;等比数列的前n项和.专题:等差数列与等比数列.分析:利用等比数列的性质,求出数列的首项以及公比,即可求解数列{a n}的前n项和.解答:解:数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{a n}的前n项和为:=2n﹣1.故答案为:2n﹣1.点评:本题考查等比数列的性质,数列{a n}的前n项和求法,基本知识的考查.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.解答:解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f (1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.点评:本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三.解答题(共6小题,75分)16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.考点:正弦定理;三角形中的几何计算.专题:解三角形.分析:由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.解答:解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3 (4)分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD=== (1)2分点评:本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.解答:解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P (X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:XPEX=200×+300×+400×=350.点评:本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x 轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.考点:利用导数研究曲线上某点切线方程;数列的求和.专题:导数的概念及应用;点列、递归数列与数学归纳法.分析:(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.解答:解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:T n=x 12x32…x 2n﹣12=,当n=1时,,当n≥2时,因为=所以T n综上所述,可得对任意的n∈N+,均有点评:本题主要考查切线方程的求法和放缩法的应用,属基础题型.19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E 的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.考点:二面角的平面角及求法;直线与平面平行的性质.专题:空间位置关系与距离;空间角.分析:(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD的一个法向量的夹角的余弦值的绝对值,计算即可.解答:(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面EF,∴EF ∥B1C;(Ⅱ)解:以A 为坐标原点,以AB、AD、AA1所在直线分别为x、y 、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵A1D⊥平面A1B1CD,∴=(0,1,1)为平面A1B1CD的一个法向量,设平面A1EFD 的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos(,)==,∴二面角E﹣AD﹣B1的余弦值为.点评:本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.考点:直线与圆锥曲线的综合问题;椭圆的简单性质.专题:圆锥曲线中的最值与范围问题.分析:(I)由于点M在线段AB 上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.解答:解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B (0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.点评:本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.考点:二次函数的性质.专题:函数的性质及应用;导数的综合应用.分析:(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)设t=sinx,t∈[﹣1,1],求得|f(t)﹣f0(t)|,设g(t)=|﹣t(a﹣a0)+(b﹣b0)|,讨论g(1),g(﹣1)取得最大值;(Ⅲ)由(Ⅱ)讨论ab≥0时,ab≤0时,D的取值,求得点(a,b)所在区域,求得s=b﹣的最大值.解答:解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f (sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)设t=sinx,t∈[﹣1,1],|f (t)﹣f0(t)|=|﹣t(a﹣a0)+(b﹣b0)|,易知t=±1时,取得最大值,设g(t)=|﹣t(a ﹣a0)+(b﹣b0)|,而g(1)=|﹣(a ﹣a0)+(b﹣b0)|,g(﹣1)=|(a﹣a0)+(b ﹣b0)|,则当(a﹣a0)(b ﹣b0)≥0时,D=g(t)max=g (﹣1)=|(a﹣a0)+(b﹣b0)|;当(a﹣a0)(b ﹣b0)≤0时,D=g(t)max=g (1)=|﹣(a﹣a0)+(b﹣b0)|.(Ⅲ)由(Ⅱ)得ab≥0时,D=|a+b|,当ab≤0时,D=|a﹣b|.即有或,点(a,b)在如图所示的区域内,则有s=b﹣,当b取最大值1时,取最小值0时,s max=1.点评:本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.年北京市高考数学试卷(文科)参与本试卷答题和审题的老师有:刘长柏;changq;双曲线;maths;742048;w3239003;qiss;孙佑中;雪狼王;cst(排名不分先后)菁优网2015年6月13日21。

2015年普通高等学校招生全国统一考试数学理试题精品解析(安徽卷)

2015年普通高等学校招生全国统一考试数学理试题精品解析(安徽卷)

2015年高考安徽卷理数试题解析(精编版)(解析版)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1.答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2.答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第II 卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效.............,.在答题卷....、.草稿纸上答题无效.........4.考试结束,务必将试卷和答题卡一并上交.参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+.标准差s =121()n x x x x n =+++ .第Ⅰ卷(选择题共50分)一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.(1)设i 是虚数单位,则复数21ii-在复平面内所对应的点位于()(A)第一象限(B)第二象限(C)第三象限(D)第四象限【答案】B【名师点睛】复数的四则运算问题主要是要熟记各种运算法则,尤其是除法运算,要将复数分母实数化(分母乘以自己的共轭复数),这也历年考查的重点;另外,复数z a bi =+在复平面内一一对应的点为(,)Z a b .(2)下列函数中,既是偶函数又存在零点的是()(A)y cos x=(B)y sin x =(C)y ln x =(D)21y x =+(3)设:12,:21xp x q <<>,则p 是q 成立的()(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件(4)下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是()(A)2214y x -=(B)2214x y -=(C)2214y x -=(D)2214x y -=(5)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是()(A)若α,β垂直于同一平面,则α与β平行(B)若m ,n 平行于同一平面,则m 与n 平行(C)若α,β不平行,则在α内不存在与β平行的直线(D)若m ,n 不平行,则m 与n 不可能垂直于同一平面(6)若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为()(A)8(B)15(C)16(D)32(7)一个四面体的三视图如图所示,则该四面体的表面积是()(A)13+(B)23+(C)122+(D)22(8)C ∆AB 是边长为2的等边三角形,已知向量a ,b满足2a AB = ,C 2a b A =+ ,则下列结论正确的是()(A)1b = (B)a b ⊥ (C)1a b ⋅= (D)()4Ca b +⊥B(9)函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是()(A)0a >,0b >,0c <(B)0a <,0b >,0c >(C)0a <,0b >,0c <(D)0a <,0b <,0c <(10)已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是()(A)()()()220f f f <-<(B)()()()022f f f <<-(C)()()()202f f f -<<(D)()()()202f f f <<-第Ⅱ卷(非选择题共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)371()x x+的展开式中5x 的系数是.(用数字填写答案)(12)在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是.【答案】6【解析】由题意2sin ρρθ=,转化为普通方程为228x y y +=,即22(4)16x y +-=;直线()3R πθρ=∈(13)执行如图所示的程序框图(算法流程图),输出的n 为.(14)已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于.(15)设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是.(写出所有正确条件的编号)13,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==.与最值;函数零点问题考查时,要经常性使用零点存在性定理.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.(16)(本小题满分12分)在ABC ∆中,3,6,4A AB AC π===,点D 在BC 边上,AD BD =,求AD 的长.用数形结合的思想,找准需要研究的三角形,利用正弦、余弦定理进行解题.(17)(本小题满分12分)已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).(18)(本小题满分12分)设*n N ∈,n x 是曲线221n y x +=+在点(12),处的切线与x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -= ,证明14n T n≥.(19)(本小题满分13分)如图所示,在多面体111A B D DCBA ,四边形11AA B B ,11,ADD A ABCD 均为正方形,E 为11B D 的中点,过1,,A D E 的平面交1CD 于F.(Ⅰ)证明:1//EF B C ;(Ⅱ)求二面角11E A D B --余弦值.【答案】(Ⅰ)1//EF B C ;(Ⅱ)63.【解析】(20)(本小题满分13分)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线O M 的斜率为510.(I)求E 的离心率e;(II)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.【答案】(I)55;(II)221459x y +=.【解析】试题分析:(I)由题设条件,可得点M 的坐标为21(,)33a b ,利用10OM k =,从而210b a =,进而得,2a c b ==,算出255c e a ==.(II)由题设条件和(I)的计算结果知,直线AB 的方程1y b+=,得出点N 的坐标为51,)22b b -,设点N 关于直线AB 的对称点S 的坐标为17(,2x ,则(21)(本小题满分13分)设函数2()f x x ax b =-+.(Ⅰ)讨论函数(sin )f x 在(,)22ππ-内的单调性并判断有无极值,有极值时求出极值;(Ⅱ)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值D;(Ⅲ)在(Ⅱ)中,取000a b ==,求24a z b =-满足D 1≤时的最大值.。

2015年安徽省高考数学试卷(理科)解析79858

2015年安徽省高考数学试卷(理科)解析79858

2015年安徽省高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A .y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)(2015•安徽)设p:1<x<2,q :2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=15.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n 不可能垂直于同一平面6.(5分)(2015•安徽)若样本数据x1,x 2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x 10﹣1的标准差为()A .8B.15 C.16 D.7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A . ||=1 B. ⊥ C. •=1 D . (4+)⊥9.(5分)(2015•安徽)函数f (x )=的图象如图所示,则下列结论成立的是( )A . a >0,b >0,c <0B . a <0,b >0,c >0C . a <0,b >0,c <0D . a <0,b <0,c <0 10.(5分)(2015•安徽)已知函数f (x )=Asin (ωx+φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f (x )取得最小值,则下列结论正确的是( ) A . f (2)<f (﹣2)<f (0) B . f (0)<f (2)<f (﹣2) C . f (﹣2)<f (0)<f (2) D . f (2)<f (0)<f (﹣2) 二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x 3+)7的展开式中的x 5的系数是 (用数字填写答案) 12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sin θ上的点到直线θ=(ρ∈R )距离的最大值是 . 13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n 为14.(5分)(2015•安徽)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于 .15.(5分)(2015•安徽)设x 3+ax+b=0,其中a ,b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 (写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b >2.④a=0,b=2.⑤a=1,b=2. 三.解答题(共6小题,75分) 16.(12分)(2015•安徽)在△ABC 中,∠A=,AB=6,AC=3,点D 在BC边上,AD=BD ,求AD 的长. 17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x 轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:Tn≥.19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D ,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N 为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.2015年安徽省高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的) 1.(5分)(2015•安徽)设i 是虚数单位,则复数在复平面内对应的点位于( ) A . 第一象限 B . 第二象限 C . 第三象限D . 第四象限考点: 复数的代数表示法及其几何意义.专题: 计算题;数系的扩充和复数.分析: 先化简复数,再得出点的坐标,即可得出结论.解答:解:=i(1+i )=﹣1+i ,对应复平面上的点为(﹣1,1),在第二象限,故选:B . 点评:本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是( ) A . y =cosx B . y =sinx C . y =lnx D . y=x 2+1考点: 函数的零点;函数奇偶性的判断.专题: 函数的性质及应用.分析:利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择. 解答:解:对于A ,定义域为R ,并且cos (﹣x )=cosx ,是偶函数并且有无数个零点; 对于B ,sin (﹣x )=﹣sinx ,是奇函数,由无数个零点;对于C ,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D ,定义域为R ,为偶函数,都是没有零点; 故选A . 点评:本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f (﹣x )与f (x )的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x 轴的交点以及与对应方程的解的个数是一致的.3.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:运用指数函数的单调性,结合充分必要条件的定义,即可判断.解答:解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选A.点评:本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=1考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.解答:解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选C.点评:本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面考点:空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.解答:解:对于A,若α,β垂直于同一平面,则α与β不一定平行,如果墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选D.点评:本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8B.15 C.16 D.考点:极差、方差与标准差.专题:概率与统计.分析:根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.解答:解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16, 故选:C . 点评:本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是( )A . 1+B . 2+C . 1+2D . 2考点: 由三视图求面积、体积. 专题: 计算题;空间位置关系与距离. 分析:根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.解答:解:根据几何体的三视图,得; 该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为 S 表面积=S △PAC +2S △PA B +S △ABC =×2×1+2××+×2×1=2+.故选:B .点评:本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)(2015•安徽)△ABC 是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是( ) A . ||=1 B .⊥C .•=1D .考点: 平面向量数量积的运算. 专题: 平面向量及应用.分析:由题意,知道,,根据已知三角形为等边三角形解之.解答:解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.点评:本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9.(5分)(2015•安徽)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.考点:函数的图象.专题:函数的性质及应用.分析:分别根据函数的定义域,函数零点以及f(0)的取值进行判断即可.解答:解:函数在P处无意义,即﹣c>0,则c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a <0,b >0,c <0, 故选:C点评:本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f (0)的符号是解决本题的关键.10.(5分)(2015•安徽)已知函数f (x )=Asin (ωx+φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f (x )取得最小值,则下列结论正确的是( ) A . f (2)<f (﹣2)<f (0) B . f (0)<f (2)<f (﹣2) C . f (﹣2)<f (0)<f (2) D . f (2)<f (0)<f (﹣2)考点: 三角函数的周期性及其求法.专题: 三角函数的图像与性质.分析: 依题意可求ω=2,又当x=时,函数f (x )取得最小值,可解得φ,从而可求解析式f (x )=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.解答:解:依题意得,函数f (x )的周期为π, ∵ω>0,∴ω==2.(3分)又∵当x=时,函数f (x )取得最小值, ∴2×+φ=2k π+,k ∈Z ,可解得:φ=2k π+,k ∈Z ,(5分)∴f (x )=Asin(2x+2k π+)=Asin (2x+).(6分)∴f (﹣2)=Asin (﹣4+)=Asin (﹣4+2π)>0.f (2)=Asin(4+)<0f (0)=Asin =Asin>0又∵>﹣4+2π>>,而f (x )=Asin (2x+)在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0)故选:A.点评:本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是35(用数字填写答案)考点:二项式定理的应用.专题:二项式定理.分析:根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.解答:解:根据所给的二项式写出展开式的通项,T r+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.点评:本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.解答:解:圆ρ=8sin θ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C (0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.点评:本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为4考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.解答:解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n的值是解题的关键,属于基础题.14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于2n﹣1.考点:等比数列的性质;等比数列的前n项和.专题:等差数列与等比数列.分析:利用等比数列的性质,求出数列的首项以及公比,即可求解数列{a n}的前n项和.解答:解:数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{a n}的前n项和为:=2n﹣1.故答案为:2n﹣1.点评:本题考查等比数列的性质,数列{a n}的前n项和求法,基本知识的考查.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.解答:解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f (1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.点评:本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三.解答题(共6小题,75分)16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.考点:正弦定理;三角形中的几何计算.专题:解三角形.分析:由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD 得:cos∠DAE=cos B,即可求得AD 的长.解答:解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB •ACcos∠BAC=90.∴BC=3 (4)分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD=== (1)2分点评:本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.解答:解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:XPEX=200×+300×+400×=350.点评:本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x 轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.考点:利用导数研究曲线上某点切线方程;数列的求和.专题:导数的概念及应用;点列、递归数列与数学归纳法.分析:(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.解答:解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x 2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:T n=x12x32…x2n ﹣12=,当n=1时,,当n≥2时,因为=所以T n综上所述,可得对任意的n∈N+,均有点评:本题主要考查切线方程的求法和放缩法的应用,属基础题型.19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.考点:二面角的平面角及求法;直线与平面平行的性质.专题:空间位置关系与距离;空间角.分析:(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD的一个法向量的夹角的余弦值的绝对值,计算即可.解答:(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面EF,∴EF∥B1C;(Ⅱ)解:以A 为坐标原点,以AB、AD 、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵A1D⊥平面A1B1CD,∴=(0,1,1)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos(,)==,∴二面角E﹣AD﹣B1的余弦值为.点评:本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.考点:直线与圆锥曲线的综合问题;椭圆的简单性质.专题:圆锥曲线中的最值与范围问题.分析:(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.解答:解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.点评:本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f 0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.考点:二次函数的性质.专题:函数的性质及应用;导数的综合应用.分析:(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)设t=sinx,t∈[﹣1,1],求得|f(t)﹣f0(t)|,设g(t)=|﹣t(a﹣a0)+(b﹣b0)|,讨论g(1),g(﹣1)取得最大值;(Ⅲ)由(Ⅱ)讨论ab≥0时,ab≤0时,D的取值,求得点(a,b)所在区域,求得s=b﹣的最大值.解答:解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a <2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)设t=sinx,t∈[﹣1,1],|f (t)﹣f0(t)|=|﹣t(a﹣a0)+(b ﹣b0)|,易知t=±1时,取得最大值,设g (t)=|﹣t(a﹣a0)+(b﹣b0)|,而g(1)=|﹣(a ﹣a0)+(b﹣b0)|,g(﹣1)=|(a﹣a0)+(b ﹣b0)|,则当(a﹣a0)(b ﹣b0)≥0时,D=g (t)max=g(﹣1)=|(a﹣a0)+(b ﹣b0)|;当(a﹣a0)(b ﹣b0)≤0时,D=g (t)max=g(1)=|﹣(a﹣a0)+(b﹣b0)|.(Ⅲ)由(Ⅱ)得ab≥0时,D=|a+b|,当ab≤0时,D=|a﹣b|.即有或,点(a,b)在如图所示的区域内,则有s=b ﹣,当b取最大值1时,取最小值0时,s max=1.点评:本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.2015年北京市高考数学试卷(文科)参与本试卷答题和审题的老师有:刘长柏;changq;双曲线;maths;742048;w3239003;qiss;孙佑中;雪狼王;cst(排名不分先后)菁优网2015年6月13日.21。

2015年安徽省高考数学试卷理科【精编】

2015年安徽省高考数学试卷理科【精编】

2015年安徽省高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=15.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<010.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f (0)<f(2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD 均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.2015年安徽省高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先化简复数,再得出点的坐标,即可得出结论.【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.【点评】本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1【分析】利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.【解答】解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选:A.【点评】本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用指数函数的单调性,结合充分必要条件的定义,即可判断.【解答】解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选:C.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选:D.【点评】本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.32【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2【分析】根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥【分析】由题意,知道,,根据已知三角形为等边三角形解之.【解答】解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,∴的方向应该为的方向.所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选:D.【点评】本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<0【分析】分别根据函数的定义域,函数零点以及f(0)的取值进行判断即可.【解答】解:函数在P处无意义,由图象看P在y轴右边,所以﹣c>0,得c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a<0,b>0,c<0,故选:C.【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f(0)的符号是解决本题的关键.10.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f (0)<f(2)D.f(2)<f(0)<f(﹣2)【分析】依题意可求ω=2,又当x=时,函数f(x)取得最小值,可解得φ,从而可求解析式f(x)=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.【解答】解:依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,∴f(x)=Asin(2x+2kπ+)=Asin(2x+).∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0,f(0)=Asin=Asin>0,又∵>﹣4+2π>>,而f(x)=Asinx在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0).故选:A.【点评】本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是35(用数字填写答案)【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,T r+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.【分析】圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.【解答】解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为4【分析】模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.【解答】解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n 的值是解题的关键,属于基础题.14.(5分)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于2n﹣1.【分析】利用等比数列的性质,求出数列的首项以及公比,即可求解数列{a n}的前n项和.【解答】解:数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{a n}的前n项和为:=2n﹣1.故答案为:2n﹣1.【点评】本题考查等比数列的性质,数列{a n}的前n项和求法,基本知识的考查.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.【分析】对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.【解答】解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.【点评】本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.【分析】由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)【分析】(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.【解答】解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:X200300400PEX=200×+300×+400×=350.【点评】本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.18.(12分)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.【分析】(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:T n=x12x32…x2n﹣12=,当n=1时,,2==>==,当n≥2时,因为x2n﹣1所以T n;,均有.综上所述,可得对任意的n∈N+【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD 均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.【分析】(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD的一个法向量的夹角的余弦值的绝对值,计算即可.【解答】(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.【点评】本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.【分析】(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.【解答】解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴椭圆E的方程为:.【点评】本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.【分析】(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)结合不等式的性质求得最大值;(Ⅲ)由(Ⅱ)结合不等式的性质求得z=b﹣的最大值.【解答】解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)﹣≤x≤时,|f(sinx)﹣f0(sinx)|=|(a﹣a0)sinx+b﹣b0|≤|a﹣当(a﹣a0)(b﹣b0)≥0时,取x=,等号成立;当(a﹣a0)(b﹣b0)≤0时,取x=﹣,等号成立.由此可知,|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值为D=|a﹣a0|+|b ﹣b0|.(Ⅲ)D≤1即为|a|+|b|≤1,此时0≤a2≤1,﹣1≤b≤1,从而z=b﹣≤1取a=0,b=1,则|a|+|b|≤1,并且z=b﹣=1.由此可知,z=b﹣满足条件D≤1的最大值为1.【点评】本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.。

2015年全国高考理科数学试题及答案-安徽卷-推荐下载

2015年全国高考理科数学试题及答案-安徽卷-推荐下载


(C) y2 x2 1 4
b
满足
(C)16
A

2a

AC
(D) y2 x2 1 4

2a

b
(D) 32
,则下列结
(A) b 1
9、函数
f
x
(A) a 0 , b 0 , c 0
(C) a 0 , b 0 , c 0
(A)1 3
(Cபைடு நூலகம்1 2 2
8、
AC
论正确的是( )
是边长为
2
的等边三角形,已知向量
(B) 2 3
(D) 2 2
a
第 2 页 共 11 页
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2015年高考理科数学安徽卷

2015年高考理科数学安徽卷
10
(Ⅰ)求 E 的离心率 e ;
(Ⅱ)设点 C 的坐标为 (0, b) , N 为线段 AC 的中点,点 N 关于直线 AB 的对称点的
7 纵坐标为 ,求 E 的方程.
2
21.(本小题满分 13 分) 设函数 f (x) x2 ax b .
ππ (Ⅰ)讨论函数 f (sin x) 在(- , )内的单调性并判断有无极值,有极值时求出极值;
⑤a 1,b 2.
三、解答题:本大题共 6 小题,共 75 分.解答应写出必要的文字说明、证明过程或演算步骤.
16.(本小题满分 12 分)
3π 在 △ABC 中, A , AB=6 , AC 3 2 ,点 D 在 BC 边上, AD BD ,求 AD 的
4
长. 数学试卷 第 4 页(共 6 页)
1i
()
A. 第一象限
B. 第二象限

C. 第三象限
D. 第四象限
数学试又存在零点的是 A. y cos x B. y sin x C. y ln x D. y x2 1
3. 设 p :1 x 2 , q : 2x 1,则 p 是 q 成立的
D. f (2) f (0) f (2)
数学试卷 第 3 页(共 6 页)
第Ⅱ卷(非选择题 共 100 分)
二、填空题:本大题共 5 小题,每小题 5 分,共 25 分.把答案填在题中的横线上. 11. (x3 1 )7 的展开式中 x5 的系数是_________(用数字填写答案).
数学试卷 第 5 页(共 6 页)
20.(本小题满分 13 分) x2 y2
设椭圆 E 的方程为 (1 a b 0),点 O 为坐标原点,点 A 的坐标为 (a,0) ,点 a2 b2

2015高考真题——数学理(安徽卷)Word版含解析

本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至第2页,第II 卷第3至第4页.全卷满分150分,考试时间120分钟.
考生注意事项:
1.答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.
2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.
3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在答题卷、草稿纸上答题无效.
4.考试结束,务必将试卷和答题卡一并上交.
参考公式:
如果事件与互斥,那么.
标准差,其中.
第Ⅰ卷(选择题共50分)
一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.
(1)设i是虚数单位,则复数在复平面内所对应的点位于()
(A)第一象限(B)第二象限(C)第三象限(D)第四象限
【答案】B
【解析】
试题分析:由题意,其对应的点坐标为,位于第二象限,故选B.
考点:1.复数的运算;2.复数的几何意义.。

2015年安徽省高考数学试卷(理科)学生版

2015 年安徽省高考数学试卷(理科)一 . (每小 5 分,共 50 分,在每小 出的四个 中,只有一个是正确的)1.(5 分)(2015?安徽) i 是虚数 位, 复数 在复平面内 的点位于()A .第一象限B .第二象限C .第三象限D .第四象限2.(5 分)(2015?安徽)以下函数中,既是偶函数又存在零点的是(). y=cosx . y=sinx .2+1 A B C y=lnx D .y=x .( 分)( 2015?安徽) p :1<x <2,q :2 x>1, p 是 q 建立的( )3 5A .充足不用要条件B .必需不充足条件C .充足必需条件D .既不充足也不用要条件4.(5 分)(2015?安徽)以下双曲 中,焦点在 y 上且 近 方程 y=±2x的是()A .x 2=1.y 2=1. x 2D .y 2=1BC=1 5.(5 分)(2015?安徽)已知 m ,n 是两条不一样直 , α,β是两个不一样平面,以下命 正确的选项是()A .若 α, β垂直于同一平面, α与 β平行B .若 m ,n 平行于同一平面, m 与 n 平行C .若 α, β不平行, 在 α内不存在与 β平行的直D .若 m ,n 不平行, m 与 n 不行能垂直于同一平面6.(5 分)(2015?安徽)若 本数据 x 1,x 2,⋯, x 10的 准差8, 数据 2x 11,2x 2 1,⋯,2x 10 1 的 准差 ( )A .8B .15C .16D .327.(5 分)(2015?安徽)一个四周体的三 如 所示, 四周体的表面 是()A.1+B.2+C.1+2D.28.(5 分)(2015?安徽)△ ABC是边长为 2 的等边三角形,已知向量,知足=2 ,=2+ ,则以下结论正确的选项是().| =1B.⊥C.?=1D.(4+ )⊥A |9.(5 分)(2015?安徽)函数 f(x)=的图象如下图,则以下结论建立的是()A.a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c< 0D.a<0,b<0,c<010.( 5 分)(2015?安徽)已知函数f( x)=Asin(ωx+φ)( A,ω,φ均为正的常数)的最小正周期为π,当 x=时,函数 f (x)获得最小值,则以下结论正确的是()A.f( 2)< f (﹣ 2)< f(0)B.f (0)< f (2)< f(﹣ 2)C.f(﹣ 2)< f (0)< f(2)D.f(2)< f (0)< f(﹣ 2)二 .填空题(每题 5 分,共 25 分)11.( 5 分)( 2015?安徽)( x3+ )7的睁开式中的 x5的系数是(用数字填写答案)12.( 5 分)(2015?安徽)在极坐标系中,圆ρ=8sin上θ的点到直线θ=(ρ∈R)距离的最大值是.13.( 5 分)( 2015?安徽)履行如下图的程序框图(算法流程图),输出的n为14.( 5 分)( 2015?安徽)已知数列 { a n} 是递加的等比数列, a1+a4=9,a2a3 =8,则数列 { a n} 的前 n 项和等于.15.( 5分)(安徽)设3+ax+b=0,此中 a, b 均为实数,以下条件中,使2015?x得该三次方程仅有一个实根的是(写出全部正确条件的编)①a=﹣3,b=﹣3.② a=﹣ 3, b=2.③ a=﹣3,b>2.④ a=0,b=2.⑤ a=1,b=2.三 .解答题(共 6 小题, 75 分).(12分)(安徽)在△ABC中,∠A=, AB=6, AC=3,点 D在BC162015?边上, AD=BD,求 AD 的长.17.( 12 分)(2015?安徽)已知 2 件次品和 3 件正品混放在一同,现需要经过检测将其划分,每次随机一件产品,检测后不放回,直到检测出 2 件次品或许出 3 件正品束.(Ⅰ)求第一次出的是次品且第二次出的是正品的概率;(Ⅱ)已知每一件品需要用 100 元, X 表示直到出 2 件次品或许出 3 件正品所需要的用(位:元),求 X 的散布列和均(数学希望)18.( 12 分)(2015?安徽) n∈N*,x n是曲 y=x2n+2+1 在点( 1,2)的切与 x 交点的横坐.(Ⅰ)求数列 { x n } 的通公式;(Ⅱ) T 2 2⋯x﹣ 12,明:T≥.n=x1x3 2n n19.(13 分)(2015?安徽)如所示,在多面体 A1B1D1 DCBA中,四形 AA1B1B,ADD1A1,ABCD均正方形, E B1D1的中点, A1,D,E 的平面交 CD1于 F.(Ⅰ)明: EF∥ B1 C;(Ⅱ)求二面角 E A1D B1的余弦.20.( 13 分)(2015?安徽) E 的方程+(>>),点O坐=1 a b0原点,点 A 的坐( a,0),点 B 的坐( 0,b),点 M 在段 AB 上,足 | BM| =2| MA| ,直 OM 的斜率(Ⅰ)求 E 的离心率 e;(Ⅱ)点 C 的坐( 0, b),N 段 AC的中点,点 N 对于直 AB 的称点的坐,求 E 的方程.21.( 13 分)( 2015?安徽)函数 f( x) =x2ax+b.(Ⅰ)函数f( sinx)在(,)内的性并判断有无极,有极求出最;(Ⅱ)记 f0(x)=x2﹣a0x+b0,求函数 | f(sinx)﹣ f0( sinx)| 在[ ﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣知足条件D≤1 时的最大值.。

2015高考试题——数学理(安徽卷)解析版

本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页.全卷满分150分,考试时间120分钟. 考生注意事项:1. 答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2. 答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第II 卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写........的答案无效,在答题卷、草稿纸上答题无效.................... 4. 考试结束,务必将试卷和答题卡一并上交.参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+.标准差s =,其中121()n x x x x n=+++.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的. (1)设i 是虚数单位,则复数21ii-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】B 【解析】试题分析:由题意22(1)2211(1)(1)2i i i i i i i i +-+===-+--+,其对应的点坐标为(1,1)-,位于第二象限,故选B.考点:1.复数的运算;2.复数的几何意义.(2)下列函数中,既是偶函数又存在零点的是( )(A )y cos x = (B )y sin x = (C )y ln x = (D )21y x =+ 【答案】A考点:1.函数的奇偶性;2.函数零点的概念.(3)设:12,:21xp x q <<>,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A 【解析】试题分析:由0:22xq >,解得0x >,易知,p 能推出q ,但q 不能推出p ,故p 是q 成立的充分不必要条件,选A.考点:1.指数运算;2.充要条件的概念.(4)下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -=【答案】C 【解析】试题分析:由题意,选项,A B 的焦点在x 轴,故排除,A B ,C 项的渐近线方程为2204y x -=,即2y x =±,故选C. 考点:1.双曲线的渐近线.(5)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) (A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面 【答案】D考点:1.直线、平面的垂直、平行判定定理以及性质定理的应用.(6)若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A )8 (B )15 (C )16 (D )32【答案】C 【解析】试题分析:设样本数据1x ,2x ,⋅⋅⋅,10x 8=,即方差64DX =,而数据121x -,221x -,⋅⋅⋅,1021x -的方差22(21)2264D X DX -==⨯,所以其标准16=.故选C.考点:1.样本的方差与标准差的应用.(7)一个四面体的三视图如图所示,则该四面体的表面积是( )(A )1+ (B )2+(C )1+ (D )【答案】B考点:1.复数的运算;2.共轭复数.(8)C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB =,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅= (D )()4C a b +⊥B【答案】D 【解析】 试题分析:如图,由题意,(2)2BC AC AB a b a b =-=+-=,故||2b =,故A 错误;|2|2||2a a ==,所以||1a =,又22(2)4||222cos 602AB AC a a b a ab ⋅=⋅+=+=⨯=,所以1a b ⋅=-,故,B C 错误;设,B C 中点为D ,则2AB AC AD +=,且AD BC ⊥,所以()4C a b +⊥B ,故选D.考点:1.平面向量的线性运算;2.平面向量的数量积. (9)函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c > (C )0a <,0b >,0c < (D )0a <,0b <,0c <【答案】C考点:1.函数的图象与应用.(10)已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( )(A )()()()220f f f <-< (B )()()()022f f f <<- (C )()()()202f f f -<< (D )()()()202f f f <<- 【答案】A考点:1.三角函数的图象与应用;2.函数值的大小比较.第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效.二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)371()x x+的展开式中5x 的系数是 .(用数字填写答案) 【答案】35 【解析】试题分析:由题意372141771()()rr r r r r T C x C x x--+==,令2145r -=,得4r =,则5x 的系数是4735C =.考点:1.二项式定理的展开式应用.(12)在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是 .【答案】6考点:1.极坐标方程与平面直角坐标方程的转化;2.圆上的点到直线的距离. (13)执行如图所示的程序框图(算法流程图),输出的n 为.【答案】4 【解析】试题分析:由题意,程序框图循环如下:①1,1a n ==;②131,2112a n =+==+;③ 171,33512a n =+==+;④1171,471215a n =+==+,此时17| 1.414|0.0030.00512-≈<,所以输出4n =.考点:1.程序框图的应用.(14)已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 . 【答案】21n- 【解析】试题分析:由题意,14231498a a a a a a +=⎧⎨⋅=⋅=⎩,解得141,8a a ==或者148,1a a ==,而数列{}n a 是递增的等比数列,所以141,8a a ==,即3418a q a ==,所以2q =,因而数列{}n a 的前n 项和1(1)1221112n nn n a q S q --===---.考点:1.等比数列的性质;2.等比数列的前n 项和公式.(15)设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 .(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==. 【答案】①③④⑤考点:1函数零点与方程的根之间的关系;2.函数的单调性及其极值.三.解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的 指定区域内.(16)(本小题满分12分)在ABC ∆中,3,6,4A AB AC π===,点D 在BC 边上,AD BD =,求AD 的长.【解析】试题分析:根据题意,设出ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,由余弦定理求出a 的长度,考点:1.正弦定理、余弦定理的应用.(17)(本小题满分12分)已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)【答案】(1)310;(2)350.【解析】试题分析:(Ⅰ)依据题目所给的条件可以先设“第一次检查出的是次品且第二次检测出的是正品”为事件A.得出1123253()10A AP AA==.(Ⅱ)X的可能取值为200,300,400.依此求出各自的概率136,,101010,列出考点:1.概率;2.随机变量的分布列与期望. (18)(本小题满分12分) 设*n N ∈,n x 是曲线221n y x+=+在点(12),处的切线与x 轴交点的横坐标.(Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -=,证明14n T n≥. 【答案】(1)1n n x n =+;(2)14n T n≥. 【解析】试题分析:(Ⅰ)对题中所给曲线进行求导,得出曲线221n y x+=+在点(12),处的切线斜率为22n +.从而可以写成切线方程为2(22)(1)y n x -=+-.令0y =.解得切线与x 轴交点的横坐标1111n nx n n =-=++.(Ⅱ)要证14n T n≥,需考虑通项221n x -,通过适当放缩能够使得每项相消.先表示出考点:1.曲线的切线方程;2.数列的通项公式;3.放缩法证明不等式. (19)(本小题满分13分)如图所示,在多面体111A B D DCBA ,四边形11AA B B ,11,ADD A ABCD 均为正方形,E 为11B D 的中点,过1,,A D E 的平面交1CD 于F. (Ⅰ)证明:1//EF B C(Ⅱ)求二面角11E A D B --余弦值.【答案】(1)1//EF B C ;(2考点:1.线面平行的判定定理与性质定理;2.二面角的求解. (20)(本小题满分13分)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM . (I )求E 的离心率e ;(II )设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求 E 的方程.【答案】(I (II )221459x y +=.试题解析:(I )由题设条件知,点M 的坐标为21(,)33a b ,又OM k =,从而2b a =,进而得,2a c b ===,故c e a ==. (II )由题设条件和(I )的计算结果可得,直线AB 1yb+=,点N 的坐标为1,)2b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则线段NS 的中点T 的坐标为117,)244x b +-+.又点T 在直线AB 上,且1NS AB k k ⋅=-,从而有17441b b -++=⎨⎪=⎪⎪⎪⎩解得3b =,所以b =E 的方程为221459x y +=. 考点:1.椭圆的离心率;2.椭圆的标准方程;3.点点关于直线对称的应用. (21)(本小题满分13分) 设函数2()f x x ax b =-+. (Ⅰ)讨论函数(sin )f x 在(,)22ππ-内的单调性并判断有无极值,有极值时求出极值;(Ⅱ)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在[]22ππ-,上的最大值D ;(Ⅲ)在(Ⅱ)中,取000a b ==,求24a z b =-满足D 1≤时的最大值.【答案】(Ⅰ)极小值为24a b -;(Ⅱ)00||||D a a b b =-+-; (Ⅲ)1.试题解析:(Ⅰ)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<.[(sin )]'(2sin )cos f x x a x =-,22x ππ-<<.考点:1.函数的单调性、极值与最值;2.绝对值不等式的应用.。

2015年全国统一高考真题数学试卷(理科)(新课标ⅰ)(含答案及解析)

2015年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1B.C.D.22.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.3125.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C.D.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.810.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.6011.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.812.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数,则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i﹣)2(x i﹣)(y i﹣)(w i﹣)(y i﹣)46.6563 6.8289.8 1.61469108.8表中w i=i,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()A.1B.C.D.2【考点】A8:复数的模.【专题】11:计算题;5N:数系的扩充和复数.【分析】先化简复数,再求模即可.【解答】解:∵复数z满足=i,∴1+z=i﹣zi,∴z(1+i)=i﹣1,∴z==i,∴|z|=1,故选:A.【点评】本题考查复数的运算,考查学生的计算能力,比较基础.2.(5分)sin20°cos10°﹣cos160°sin10°=()A.B.C.D.【考点】GP:两角和与差的三角函数.【专题】56:三角函数的求值.【分析】直接利用诱导公式以及两角和的正弦函数,化简求解即可.【解答】解:sin20°cos10°﹣cos160°sin10°=sin20°cos10°+cos20°sin10°=sin30°=.故选:D.【点评】本题考查诱导公式以及两角和的正弦函数的应用,基本知识的考查.3.(5分)设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2n C.∀n∈N,n2≤2n D.∃n∈N,n2=2n【考点】2J:命题的否定.【专题】5L:简易逻辑.【分析】根据特称命题的否定是全称命题即可得到结论.【解答】解:命题的否定是:∀n∈N,n2≤2n,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.312【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】判断该同学投篮投中是独立重复试验,然后求解概率即可.【解答】解:由题意可知:同学3次测试满足X∽B(3,0.6),该同学通过测试的概率为=0.648.故选:A.【点评】本题考查独立重复试验概率的求法,基本知识的考查.5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】利用向量的数量积公式,结合双曲线方程,即可确定y0的取值范围.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.【点评】本题考查向量的数量积公式,考查双曲线方程,考查学生的计算能力,比较基础.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A.14斛B.22斛C.36斛D.66斛【考点】LF:棱柱、棱锥、棱台的体积.【专题】5F:空间位置关系与距离.【分析】根据圆锥的体积公式计算出对应的体积即可.【解答】解:设圆锥的底面半径为r,则r=8,解得r=,故米堆的体积为××π×()2×5≈,∵1斛米的体积约为1.62立方,∴÷1.62≈22,故选:B.【点评】本题主要考查椎体的体积的计算,比较基础.7.(5分)设D为△ABC所在平面内一点,,则()A.B.C.D.【考点】96:平行向量(共线).【专题】5A:平面向量及应用.【分析】将向量利用向量的三角形法则首先表示为,然后结合已知表示为的形式.【解答】解:由已知得到如图由===;故选:A.【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为.8.(5分)函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为()A.(kπ﹣,kπ+),k∈z B.(2kπ﹣,2kπ+),k∈zC.(k﹣,k+),k∈z D.(,2k+),k∈z【考点】HA:余弦函数的单调性.【专题】57:三角函数的图像与性质.【分析】由周期求出ω,由五点法作图求出φ,可得f(x)的解析式,再根据余弦函数的单调性,求得f(x)的减区间.【解答】解:由函数f(x)=cos(ωx+ϕ)的部分图象,可得函数的周期为=2(﹣)=2,∴ω=π,f(x)=cos(πx+ϕ).再根据函数的图象以及五点法作图,可得+ϕ=,k∈z,即ϕ=,f(x)=cos (πx+).由2kπ≤πx+≤2kπ+π,求得2k﹣≤x≤2k+,故f(x)的单调递减区间为(,2k+),k∈z,故选:D.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由周期求出ω,由五点法作图求出φ的值;还考查了余弦函数的单调性,属于基础题.9.(5分)执行如图所示的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.8【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:第一次执行循环体后,S=,m=,n=1,不满足退出循环的条件;再次执行循环体后,S=,m=,n=2,不满足退出循环的条件;再次执行循环体后,S=,m=,n=3,不满足退出循环的条件;再次执行循环体后,S=,m=,n=4,不满足退出循环的条件;再次执行循环体后,S=,m=,n=5,不满足退出循环的条件;再次执行循环体后,S=,m=,n=6,不满足退出循环的条件;再次执行循环体后,S=,m=,n=7,满足退出循环的条件;故输出的n值为7,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.60【考点】DA:二项式定理.【专题】11:计算题;5P:二项式定理.【分析】利用展开式的通项,即可得出结论.=,【解答】解:(x2+x+y)5的展开式的通项为T r+1令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()A.1B.2C.4D.8【考点】L!:由三视图求面积、体积.【专题】5Q:立体几何.【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可.【解答】解:由几何体三视图中的正视图和俯视图可知,截圆柱的平面过圆柱的轴线,该几何体是一个半球拼接半个圆柱,∴其表面积为:×4πr2+×πr22r×2πr+2r×2r+×πr2=5πr2+4r2,又∵该几何体的表面积为16+20π,∴5πr2+4r2=16+20π,解得r=2,故选:B.【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)【考点】51:函数的零点;6D:利用导数研究函数的极值.【专题】2:创新题型;53:导数的综合应用.【分析】设g(x)=e x(2x﹣1),y=ax﹣a,问题转化为存在唯一的整数x0使得g (x0)在直线y=ax﹣a的下方,求导数可得函数的极值,数形结合可得﹣a>g (0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解关于a的不等式组可得.【解答】解:设g(x)=e x(2x﹣1),y=ax﹣a,由题意知存在唯一的整数x0使得g(x0)在直线y=ax﹣a的下方,∵g′(x)=e x(2x﹣1)+2e x=e x(2x+1),∴当x<﹣时,g′(x)<0,当x>﹣时,g′(x)>0,∴当x=﹣时,g(x)取最小值﹣2,当x=0时,g(0)=﹣1,当x=1时,g(1)=e>0,直线y=ax﹣a恒过定点(1,0)且斜率为a,故﹣a>g(0)=﹣1且g(﹣1)=﹣3e﹣1≥﹣a﹣a,解得≤a<1故选:D.【点评】本题考查导数和极值,涉及数形结合和转化的思想,属中档题.二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数,则a=1.【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】由题意可得,f(﹣x)=f(x),代入根据对数的运算性质即可求解.【解答】解:∵f(x)=xln(x+)为偶函数,∴f(﹣x)=f(x),∴(﹣x)ln(﹣x+)=xln(x+),∴﹣ln(﹣x+)=ln(x+),∴ln(﹣x+)+ln(x+)=0,∴ln(+x)(﹣x)=0,∴lna=0,∴a=1.故答案为:1.【点评】本题主要考查了偶函数的定义及对数的运算性质的简单应用,属于基础试题.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.【考点】K3:椭圆的标准方程.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用椭圆的方程求出顶点坐标,然后求出圆心坐标,求出半径即可得到圆的方程.【解答】解:一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.可知椭圆的右顶点坐标(4,0),上下顶点坐标(0,±2),设圆的圆心(a,0),则,解得a=,圆的半径为:,所求圆的方程为:(x﹣)2+y2=.故答案为:(x﹣)2+y2=.【点评】本题考查椭圆的简单性质的应用,圆的方程的求法,考查计算能力.15.(5分)若x,y满足约束条件.则的最大值为3.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设k=,则k的几何意义为区域内的点到原点的斜率,由图象知OA的斜率最大,由,解得,即A(1,3),k OA==3,即的最大值为3.故答案为:3.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义以及直线的斜率,利用数形结合的数学思想是解决此类问题的基本方法.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).【考点】HT:三角形中的几何计算.【专题】15:综合题;2:创新题型;58:解三角形.【分析】如图所示,延长BA,CD交于点E,设AD=x,AE=x,DE=x,CD=m,求出x+m=+,即可求出AB的取值范围.【解答】解:方法一:如图所示,延长BA,CD交于点E,则在△ADE中,∠DAE=105°,∠ADE=45°,∠E=30°,∴设AD=x,AE=x,DE=x,CD=m,∵BC=2,∴(x+m)sin15°=1,∴x+m=+,∴0<x<4,而AB=x+m﹣x=+﹣x,∴AB的取值范围是(﹣,+).故答案为:(﹣,+).方法二:如下图,作出底边BC=2的等腰三角形EBC,B=C=75°,倾斜角为150°的直线在平面内移动,分别交EB、EC于A、D,则四边形ABCD即为满足题意的四边形;当直线移动时,运用极限思想,①直线接近点C时,AB趋近最小,为﹣;②直线接近点E时,AB趋近最大值,为+;故答案为:(﹣,+).【点评】本题考查求AB的取值范围,考查三角形中的几何计算,考查学生的计算能力,属于中档题.三、解答题:17.(12分)S n为数列{a n}的前n项和,已知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.【考点】8E:数列的求和;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(I)根据数列的递推关系,利用作差法即可求{a n}的通项公式:(Ⅱ)求出b n=,利用裂项法即可求数列{b n}的前n项和.【解答】解:(I)由a n2+2a n=4S n+3,可知a n+12+2a n+1=4S n+1+3两式相减得a n+12﹣a n2+2(a n+1﹣a n)=4a n+1,即2(a n+1+a n)=a n+12﹣a n2=(a n+1+a n)(a n+1﹣a n),∵a n>0,∴a n+1﹣a n=2,∵a12+2a1=4a1+3,∴a1=﹣1(舍)或a1=3,则{a n}是首项为3,公差d=2的等差数列,∴{a n}的通项公式a n=3+2(n﹣1)=2n+1:(Ⅱ)∵a n=2n+1,∴b n===(﹣),∴数列{b n}的前n项和T n=(﹣+…+﹣)=(﹣)=.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.【考点】LM:异面直线及其所成的角;LY:平面与平面垂直.【专题】5F:空间位置关系与距离;5G:空间角;5H:空间向量及应用.【分析】(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,运用线面垂直的判定定理得到EG⊥平面AFC,再由面面垂直的判定定理,即可得到;(Ⅱ)以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,求得A,E,F,C的坐标,运用向量的数量积的定义,计算即可得到所求角的余弦值.【解答】解:(Ⅰ)连接BD,设BD∩AC=G,连接EG、EF、FG,在菱形ABCD中,不妨设BG=1,由∠ABC=120°,可得AG=GC=,BE⊥平面ABCD,AB=BC=2,可知AE=EC,又AE⊥EC,所以EG=,且EG⊥AC,在直角△EBG中,可得BE=,故DF=,在直角三角形FDG中,可得FG=,在直角梯形BDFE中,由BD=2,BE=,FD=,可得EF==,从而EG2+FG2=EF2,则EG⊥FG,(或由tan∠EGB•tan∠FGD=•=•=1,可得∠EGB+∠FGD=90°,则EG⊥FG)AC∩FG=G,可得EG⊥平面AFC,由EG⊂平面AEC,所以平面AEC⊥平面AFC;(Ⅱ)如图,以G为坐标原点,分别以GB,GC为x轴,y轴,|GB|为单位长度,建立空间直角坐标系G﹣xyz,由(Ⅰ)可得A(0,﹣,0),E(1,0,),F(﹣1,0,),C(0,,0),即有=(1,,),=(﹣1,﹣,),故cos<,>===﹣.则有直线AE与直线CF所成角的余弦值为.【点评】本题考查空间直线和平面的位置关系和空间角的求法,主要考查面面垂直的判定定理和异面直线所成的角的求法:向量法,考查运算能力,属于中档题.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i ﹣)(w i ﹣)(y i ﹣)46.6563 6.8289.8 1.61469108.8表中w i =i ,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.【考点】BK:线性回归方程.【专题】5I:概率与统计.【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(Ⅲ)(i)年宣传费x=49时,代入到回归方程,计算即可,(ii)求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型;(Ⅱ)令w=,先建立y关于w的线性回归方程,由于==68,=﹣=563﹣68×6.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68,(Ⅲ)(i)由(Ⅱ)知,当x=49时,年销售量y的预报值=100.6+68=576.6,年利润z的预报值=576.6×0.2﹣49=66.32,(ii)根据(Ⅱ)的结果可知,年利润z的预报值=0.2(100.6+68)﹣x=﹣x+13.6+20.12,当==6.8时,即当x=46.24时,年利润的预报值最大.【点评】本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)【考点】KH:直线与圆锥曲线的综合.【分析】(I)联立,可得交点M,N的坐标,由曲线C:y=,利用导数的运算法则可得:y′=,利用导数的几何意义、点斜式即可得出切线方程.(II)存在符合条件的点(0,﹣a),设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.直线方程与抛物线方程联立化为x2﹣4kx﹣4a=0,利用根与系数的关系、斜率计算公式可得k1+k2=.k1+k2=0⇔直线PM,PN的倾斜角互补⇔∠OPM=∠OPN.即可证明.【解答】解:(I)联立,不妨取M,N,由曲线C:y=可得:y′=,∴曲线C在M点处的切线斜率为=,其切线方程为:y﹣a=,化为.同理可得曲线C在点N处的切线方程为:.(II)存在符合条件的点(0,﹣a),下面给出证明:设P(0,b)满足∠OPM=∠OPN.M(x1,y1),N(x2,y2),直线PM,PN的斜率分别为:k1,k2.联立,化为x2﹣4kx﹣4a=0,∴x1+x2=4k,x1x2=﹣4a.∴k1+k2=+==.当b=﹣a时,k1+k2=0,直线PM,PN的倾斜角互补,∴∠OPM=∠OPN.∴点P(0,﹣a)符合条件.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、直线与抛物线相交问题转化为方程联立可得根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于中档题.21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.【考点】6E:利用导数研究函数的最值;6H:利用导数研究曲线上某点切线方程.【专题】2:创新题型;53:导数的综合应用.【分析】(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0解出即可.(ii)对x分类讨论:当x∈(1,+∞)时,g(x)=﹣lnx<0,可得函数h(x)=min { f(x),g(x)}≤g(x)<0,即可得出零点的个数.当x=1时,对a分类讨论:a≥﹣,a<﹣,即可得出零点的个数;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.对a分类讨论:①当a≤﹣3或a≥0时,②当﹣3<a<0时,利用导数研究其单调性极值即可得出.【解答】解:(i)f′(x)=3x2+a.设曲线y=f(x)与x轴相切于点P(x0,0),则f(x0)=0,f′(x0)=0,∴,解得,a=.因此当a=﹣时,x轴为曲线y=f(x)的切线;(ii)当x∈(1,+∞)时,g(x)=﹣lnx<0,∴函数h(x)=min { f(x),g(x)}<0,故h(x)在x∈(1,+∞)时无零点.当x=1时,若a≥﹣,则f(1)=a+≥0,∴h(x)=min { f(1),g(1)}=g(1)=0,故x=1是函数h(x)的一个零点;若a<﹣,则f(1)=a+<0,∴h(x)=min { f(1),g(1)}=f(1)<0,故x=1不是函数h(x)的零点;当x∈(0,1)时,g(x)=﹣lnx>0,因此只考虑f(x)在(0,1)内的零点个数即可.①当a≤﹣3或a≥0时,f′(x)=3x2+a在(0,1)内无零点,因此f(x)在区间(0,1)内单调,而f(0)=,f(1)=a+,∴当a≤﹣3时,函数f(x)在区间(0,1)内有一个零点,当a≥0时,函数f(x)在区间(0,1)内没有零点.②当﹣3<a<0时,函数f(x)在内单调递减,在内单调递增,故当x=时,f(x)取得最小值=.若>0,即,则f(x)在(0,1)内无零点.若=0,即a=﹣,则f(x)在(0,1)内有唯一零点.若<0,即,由f(0)=,f(1)=a+,∴当时,f(x)在(0,1)内有两个零点.当﹣3<a时,f(x)在(0,1)内有一个零点.综上可得:a<时,函数h(x)有一个零点.当时,h(x)有一个零点;当a=或时,h(x)有两个零点;当时,函数h(x)有三个零点.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.【考点】N9:圆的切线的判定定理的证明.【专题】5B:直线与圆.【分析】(Ⅰ)连接AE和OE,由三角形和圆的知识易得∠OED=90°,可得DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由射影定理可得关于x的方程x2=,解方程可得x 值,可得所求角度.【解答】解:(Ⅰ)连接AE,由已知得AE⊥BC,AC⊥AB,在RT△ABC中,由已知可得DE=DC,∴∠DEC=∠DCE,连接OE,则∠OBE=∠OEB,又∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°,∴∠OED=90°,∴DE是⊙O的切线;(Ⅱ)设CE=1,AE=x,由已知得AB=2,BE=,由射影定理可得AE2=CE•BE,∴x2=,即x4+x2﹣12=0,解方程可得x=∴∠ACB=60°【点评】本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题.选修4一4:坐标系与参数方程23.(10分)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.【考点】Q4:简单曲线的极坐标方程.【专题】5S:坐标系和参数方程.【分析】(Ⅰ)由条件根据x=ρcosθ,y=ρsinθ求得C1,C2的极坐标方程.(Ⅱ)把直线C3的极坐标方程代入ρ2﹣3ρ+4=0,求得ρ1和ρ2的值,结合圆的半径可得C2M⊥C2N,从而求得△C2MN的面积•C2M•C2N的值.【解答】解:(Ⅰ)由于x=ρcosθ,y=ρsinθ,∴C1:x=﹣2 的极坐标方程为ρcosθ=﹣2,故C2:(x﹣1)2+(y﹣2)2=1的极坐标方程为:(ρcosθ﹣1)2+(ρsinθ﹣2)2=1,化简可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0.(Ⅱ)把直线C3的极坐标方程θ=(ρ∈R)代入圆C2:(x﹣1)2+(y﹣2)2=1,可得ρ2﹣(2ρcosθ+4ρsinθ)+4=0,求得ρ1=2,ρ2=,∴|MN|=|ρ1﹣ρ2|=,由于圆C2的半径为1,∴C2M⊥C2N,△C2MN的面积为•C2M•C2N=•1•1=.【点评】本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)当a=1时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数f(x)的解析式,求得它的图象与x轴围成的三角形的三个顶点的坐标,从而求得f(x)的图象与x轴围成的三角形面积;再根据f(x)的图象与x轴围成的三角形面积大于6,从而求得a的取值范围.【解答】解:(Ⅰ)当a=1时,不等式f(x)>1,即|x+1|﹣2|x﹣1|>1,即①,或②,或③.解①求得x∈∅,解②求得<x<1,解③求得1≤x<2.综上可得,原不等式的解集为(,2).(Ⅱ)函数f(x)=|x+1|﹣2|x﹣a|=,由此求得f(x)的图象与x轴的交点A (,0),B(2a+1,0),故f(x)的图象与x轴围成的三角形的第三个顶点C(a,a+1),由△ABC的面积大于6,可得[2a+1﹣]•(a+1)>6,求得a>2.故要求的a的范围为(2,+∞).【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共22页) 2015年安徽省高考数学试卷(理科) 一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的) 1.(5分)设i是虚数单位,则复数在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 2.(5分)下列函数中,既是偶函数又存在零点的是( ) A.y=cosx B.y=sinx C.y=lnx D.y=x2+1 3.(5分)设p:1<x<2,q:2x>1,则p是q成立的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是( )

A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1 5.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A.若α,β垂直于同一平面,则α与β平行 B.若m,n平行于同一平面,则m与n平行 C.若α,β不平行,则在α内不存在与β平行的直线 D.若m,n不平行,则m与n不可能垂直于同一平面 6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为( ) A.8 B.15 C.16 D.32 7.(5分)一个四面体的三视图如图所示,则该四面体的表面积是( ) 第2页(共22页)

A.1+ B.2+ C.1+2 D.2 8.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是( ) A.||=1 B.⊥ C.•=1 D.(4+)⊥ 9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是( )

A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<0 10.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是( ) A.f(2)<f(﹣2)<f(0) B.f(0)<f(2)<f(﹣2) C.f(﹣2)<f(0)<f(2) D.f(2)<f(0)<f(﹣2)

二.填空题(每小题5分,共25分) 第3页(共22页)

11.(5分)(x3+)7的展开式中的x5的系数是 (用数字填写答案) 12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是 . 13.(5分)执行如图所示的程序框图(算法流程图),输出的n为

14.(5分)已知数列{an}是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于 . 15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是 (写出所有正确条件的编号) ①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.

三.解答题(共6小题,75分) 16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长. 17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率; (Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者 第4页(共22页)

检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望) 18.(12分)设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标. (Ⅰ)求数列{xn}的通项公式; (Ⅱ)记Tn=x12x32…x2n﹣12,证明:Tn≥. 19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F. (Ⅰ)证明:EF∥B1C; (Ⅱ)求二面角E﹣A1D﹣B1的余弦值.

20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为 (Ⅰ)求E的离心率e; (Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程. 21.(13分)设函数f(x)=x2﹣ax+b. (Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值; (Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D; 第5页(共22页)

(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值. 第6页(共22页)

2015年安徽省高考数学试卷(理科) 参考答案与试题解析

一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的) 1.(5分)设i是虚数单位,则复数在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【分析】先化简复数,再得出点的坐标,即可得出结论. 【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限, 故选:B. 【点评】本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.

2.(5分)下列函数中,既是偶函数又存在零点的是( ) A.y=cosx B.y=sinx C.y=lnx D.y=x2+1 【分析】利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择. 【解答】解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点; 对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点; 对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点; 对于D,定义域为R,为偶函数,都是没有零点; 故选:A. 【点评】本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的. 第7页(共22页)

3.(5分)设p:1<x<2,q:2x>1,则p是q成立的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 【分析】运用指数函数的单调性,结合充分必要条件的定义,即可判断. 【解答】解:由1<x<2可得2<2x<4,则由p推得q成立, 若2x>1可得x>0,推不出1<x<2. 由充分必要条件的定义可得p是q成立的充分不必要条件. 故选:A. 【点评】本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.

4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是( ) A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1 【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案. 【解答】解:由A可得焦点在x轴上,不符合条件; 由B可得焦点在x轴上,不符合条件; 由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件; 由D可得焦点在y轴上,渐近线方程为y=x,不符合条件. 故选:C. 【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.

5.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A.若α,β垂直于同一平面,则α与β平行 B.若m,n平行于同一平面,则m与n平行 C.若α,β不平行,则在α内不存在与β平行的直线 D.若m,n不平行,则m与n不可能垂直于同一平面 第8页(共22页)

【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答. 【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误; 对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误; 对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误; 对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确; 故选:D. 【点评】本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.

6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为( ) A.8 B.15 C.16 D.32 【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可. 【解答】解:∵样本数据x1,x2,…,x10的标准差为8, ∴=8,即DX=64, 数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64, 则对应的标准差为==16, 故选:C. 【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.

7.(5分)一个四面体的三视图如图所示,则该四面体的表面积是( )

相关文档
最新文档