红外光谱分析技术及其应用

合集下载

红外光谱技术的应用

红外光谱技术的应用

红外光谱技术的应用红外光谱技术是一种经典而广泛应用的分析技术,能够分析物质的分子结构、化学键、官能团和它们之间的差异。

这种技术基于物质的吸收率,可以在检测分子中的物质时发现其吸收的特定波长。

其中,大约占有80%的材料都适用于红外光谱技术。

这种技术已成功应用于科学研究,工业生产和刑侦等领域。

一、医学和生物领域红外光谱技术在医学和生物领域有着广泛的应用。

在有关癌症的研究中,该技术可用于定量分析癌细胞和正常细胞之间的差异。

例如,红外吸收谱可以检测精子的品质,分析血样,确定癌症病变的浸润度等。

此外,红外光谱技术还可以用于检测蛋白质和其他大型分子的结构和性质。

二、工业生产在工业上,红外光谱技术已被广泛应用于化学制造业,尤其是有机化学行业。

它可以用来检测和分析化学品和原材料,以确保它们符合要求。

此外,红外光谱技术也可以用于检测产品中的杂质和异常成分,以及检测产品所蕴含的化学物质。

例如,可以通过检测石油化学产品中的颜色来确定其质量。

还可以检测纸张和塑料等产品中的品质。

三、食品产业在食品产业中,红外光谱技术也非常有用。

它可以用于检测食品和饮料中的成分和杂质,以及检测食物中可能存在的毒素和有害物质。

例如,可以通过检测口味和香味来鉴定食品的成分和质量,并分析蛋白质、糖类、脂肪和其他营养成分。

结论红外光谱技术是一种非常有用的分析技术,它有着广泛的应用领域。

无论是在医学和生物领域,还是在工业生产和食品产业中,红外光谱技术都有着重要的作用。

通过可靠的检测手段,我们可以更好地保证产品的质量和安全。

同时,我们相信,在不久的将来,红外光谱技术将在更多领域发挥更大的作用。

红外光谱分析技术在材料科学中的应用研究

红外光谱分析技术在材料科学中的应用研究

红外光谱分析技术在材料科学中的应用研究红外光谱分析技术是一种常见的材料科学分析方法,它可以通过检测样品对不同波长的红外光的吸收情况,来确定材料的成分和结构。

因此,红外光谱分析技术不仅在材料科学中具有广泛的应用价值,也在其他领域得到了广泛的应用。

一、红外光谱分析技术的基本原理和应用范围红外光谱是指波长在0.78-1000微米之间的电磁波,红外光谱分析技术是一种利用物质对红外光的不同频率的吸收与发射的特性进行物质结构和化学成份分析的方法。

应用范围广泛,涉及的领域包括但不限于:药物、食品、环保、医学、新材料、生命科学、地质学、建筑材料、聚合物、纺织等。

在材料科学中,红外光谱分析技术的主要作用是用来分析材料的化学成分和结构,以便更好的控制材料的质量和性能。

二、红外光谱分析技术在材料科学中的应用研究1、材料成分分析材料成分分析是红外光谱分析技术在材料科学中最常见的应用。

通过红外光谱分析技术,可以非常精准地识别出样品中有机化合物和无机化合物的种类和含量,从而确定样品的成分。

在工业生产中,红外光谱分析技术也是一种常用的成分分析方法。

例如,通过红外光谱分析技术可以快速准确地分析出各种塑料的成分,从而更好地控制产品的质量和性能。

2、材料结构分析材料结构分析是红外光谱分析技术在材料科学中另一个重要的应用领域。

通过红外光谱分析技术,可以确定各种有机化合物和有机聚合物的结构,从而更好地控制材料的生产过程,提高产品的性能。

例如,在医药领域,红外光谱分析技术可以用来确定药物分子的结构,从而确定药物的生产过程,保证药物的质量和疗效。

3、材料性能研究红外光谱分析技术在材料科学中的另一个应用领域是材料性能研究。

通过红外光谱分析技术,可以对材料的振动情况进行研究,从而了解材料的力学性能、光学性能等各种性能参数,进而优化材料的性能。

例如,在新材料研发中,红外光谱分析技术常常被用来研究新材料的结构和性能,从而更好地控制新材料的生产过程,提高新材料的性能。

近红外光谱分析的原理技术与应用

近红外光谱分析的原理技术与应用

近红外光谱分析的原理技术与应用引言近红外光谱分析是一种非破坏性、快速、准确的分析技术,广泛应用于食品、医药、化妆品、环境监测等领域。

本文将介绍近红外光谱分析的原理、技术和应用。

近红外光谱分析的原理近红外光谱分析利用物质吸收或反射近红外光时产生的特征光谱来分析物质的成分和性质。

近红外光谱分析主要基于以下两个原理:1.分子振动吸收原理:物质中的化学键振动会引起近红外光的吸收,吸收峰的位置与化学键的特异性有关。

2.红外光与物质的相互作用原理:物质吸收了红外光后,其分子内部发生改变,从而产生特征的近红外光谱。

近红外光谱分析的技术近红外光谱分析的技术主要包括光源、光谱仪和数据处理三个方面。

光源常用的光源有白炽灯、光电二极管和激光等。

其中白炽灯发射连续谱,适用于宽波长范围的分析;光电二极管具有快速响应和高稳定性,常用于近红外光谱分析仪器;激光具有较高的亮度和窄的波长范围,适用于特定波长范围的分析。

光谱仪常用的光谱仪有分光镜、光栅和红外线摄像机等。

分光镜通过将近红外光谱聚焦到光栅上,并通过旋转光栅来选择不同波长光线;光栅则将不同波长的光线分散成不同的角度形成光谱;红外线摄像机可通过感应近红外光谱并将其转换成数字信号。

数据处理近红外光谱分析的数据处理通常包括预处理、特征提取和模型建立等步骤。

预处理常用的方法有光谱校正、光谱平滑和光谱标准化等;特征提取可使用主成分分析、偏最小二乘回归等方法;模型建立则可以采用多元回归分析、支持向量机等模型进行建立。

近红外光谱分析的应用近红外光谱分析在多个领域具有广泛应用,以下为几个常见的应用示例:•食品质量检测:近红外光谱分析可用于检测食品中的营养成分、添加剂和污染物等,以保证食品的安全和质量。

•药物分析:近红外光谱分析可用于药品的成分分析、质量控制以及伪药的鉴定等。

•化妆品分析:近红外光谱分析可用于分析化妆品中的成分、性质和质量,以确保产品的合规性和安全性。

•环境监测:近红外光谱分析可用于监测土壤、水质和大气中的污染物,以帮助保护环境和预防环境污染。

红外光谱分析技术的应用前景

红外光谱分析技术的应用前景

红外光谱分析技术的应用前景引言:红外光谱分析技术是一种非常重要的分析方法,具有广泛的应用领域。

本文将探讨红外光谱分析技术的应用前景及其在不同领域中的具体应用。

1. 红外光谱分析技术的基本原理红外光谱分析技术是通过测量物质与红外辐射的相互作用来获取物质的结构及性质信息。

其基本原理是物质分子在受到红外辐射后,会发生特定的振动和转动,从而产生特定波长的红外光谱。

通过测量这些红外辐射的吸收光谱,可以确定物质的组成和结构。

2. 红外光谱分析技术的应用领域2.1 化学领域红外光谱分析技术在化学领域中得到广泛应用。

它可以用于分析有机化合物、高分子材料和无机材料等。

通过红外光谱分析,我们可以确定化合物的结构、官能团以及分子间的相互作用,从而对其性质进行准确的解析和判断。

2.2 药学领域在药学领域中,红外光谱分析技术被用于药物的质量控制和研究。

通过红外光谱分析,可以对药物的成分进行定性和定量的分析,判断其纯度和稳定性,并提供可靠的药物质量评估标准。

2.3 环境保护领域红外光谱分析技术在环境保护领域中具有重要意义。

它可以用于检测和分析环境中的有机物、无机物和污染物等。

通过红外光谱分析,可以准确鉴定和定量分析环境中的各种有害物质,为环境保护提供科学依据。

2.4 食品科学领域红外光谱分析技术在食品科学领域中也有广泛应用。

它可以用于食品的成分分析、品质评价和检测等。

通过红外光谱分析,可以精确分析食品中的脂肪、蛋白质、糖类等成分,从而为食品质量控制和食品安全提供重要参考。

3. 红外光谱分析技术的发展趋势随着科技的不断进步,红外光谱分析技术也在不断发展壮大。

具体体现在以下几个方面:3.1 仪器设备的改进随着光学技术和计算机技术的发展,红外光谱分析仪器设备将更加精密和高效。

仪器的分辨率和准确度将进一步提高,数据处理和谱图解析将更加智能化和自动化,使得红外光谱分析技术更加易于应用和操作。

3.2 数据库的建设建立和更新红外光谱数据库是红外光谱分析技术发展的重要方向。

红外光谱技术的应用和意义

红外光谱技术的应用和意义

红外光谱技术的应用和意义红外光谱技术是一种非常重要的分析技术。

它可以对物质的结构、组成以及性质进行分析,具有极高的灵敏度和精确性,已经被广泛应用于化学、材料、生物等领域。

本文将从红外光谱技术的原理、应用和意义三个方面来探讨它的重要性。

一、红外光谱技术的原理红外光谱技术是一种基于分子振动的谱学方法。

分子由一系列原子组成,这些原子之间通过键相连,形成不同的结构和化学键。

每种结构和化学键都有其特定的振动模式,产生不同的红外光谱响应。

通过测量分子在不同波长下吸收和散射的红外光谱,可以对分子进行定性分析和定量分析。

红外光谱技术通常使用红外光谱仪来进行测量。

光谱仪通过红外光源和红外检测器,将样品置于光路上,并根据样品所吸收的不同波长的光强度,绘制出其光谱图。

利用这些光谱图,可以得出物质的分子结构、化学键的类型、烷基取代位置等信息。

二、红外光谱技术的应用红外光谱技术的应用涉及多个领域。

下面将介绍一些典型的应用。

1. 化学领域化学中经常需要分析化合物的结构和性质,以确定其用途。

红外光谱技术可以用于确定分子结构、化学键的类型和烷基取代位置等信息。

例如,通过红外光谱分析,可以确定某种化合物是否含有酮基、酯基等化学键。

这对于药物研发、新材料的开发等有着极大的意义。

2. 材料领域红外光谱技术也广泛应用于材料领域。

例如,通过红外光谱分析,可以确定材料的组成、结构和变化趋势等信息。

这对于高分子材料的研究、新材料的开发等都具有很大的帮助。

此外,红外光谱技术也可以用于石油、化工等行业的分析。

3. 生物领域在生物领域,红外光谱技术可以用于研究蛋白质、DNA等化合物。

例如,通过红外光谱分析,可以确定蛋白质的二级结构(如α螺旋、β折叠等),也可以进行生物分子的相互作用研究。

这对于疾病治疗、药物研发等都有着极大的帮助。

三、红外光谱技术的意义红外光谱技术的意义在于其具有广泛的应用价值,并且可以在多个领域中为人们提供便利。

红外光谱技术可以用于分析不同的物质,并确定它们的化学结构和化学键类型,这对于科学研究具有很大的帮助。

红外光谱技术的应用与发展

红外光谱技术的应用与发展

红外光谱技术的应用与发展红外光谱技术是一种非常重要的光谱分析方法,它可以用于研究分子的振动和转动,还可以用于判断物质的组成、结构以及化学性质等方面。

对于各种化学、生物、医学和环境等研究领域都有着非常重要的作用。

本文就着重探讨红外光谱技术的应用以及未来发展方向。

一、红外光谱技术的应用1. 化学领域红外光谱技术在化学领域中的应用很广泛,主要用于物质的分析和检测。

例如,可以利用红外光谱技术来研究化合物的结构和功能,判断物质的组成和形态,以及检测杂质等。

此外,在新材料研究中也可以应用红外光谱技术来确认化学键的种类和数量。

2. 生物医学领域红外光谱技术在生物医学领域中也有着广泛的应用,例如,可以应用于酶和蛋白质的研究,还可以用于检测生物分子的含量和结构等。

同时,红外光谱技术还可以对病毒和细菌等微生物的检测和鉴定方面发挥重要作用。

3. 环境监测领域红外光谱技术在环境监测领域也有重要应用。

例如,可以用于检测空气中的有害物质、水中的污染物等。

此外,还可以用于检测土壤中的重金属和化学物质,以及监测工业废水和废气等。

二、红外光谱技术未来的发展方向1. 红外成像技术的应用未来,红外光谱技术有望应用到红外成像技术中,这将会更方便和快捷地分析、检测和描述物质。

红外光谱成像技术主要是将红外光谱技术与红外摄像技术相结合,可以对物质进行成像、分类和定性分析。

2. 红外光谱技术应用于医学领域在医学领域,红外光谱技术也有着重要的应用前景。

例如,可以利用该技术来研究肿瘤、神经退行性疾病和代谢性疾病等。

红外光谱技术可以帮助医学家研究蛋白质的结构、功能和相互作用,从而更好地了解疾病的本质和发展过程。

3. 红外光谱技术应用于材料科学领域红外光谱技术在材料科学领域的应用也逐渐扩大和深入。

未来,红外光谱技术有望应用到各种新材料的分析和研究领域中,从而帮助科学家更加深入地理解材料的组成和性能等问题,为人类创造更好的生活条件。

总之,红外光谱技术是一种非常重要的技术手段,为各种研究领域提供了丰富的思路和方法。

红外光谱分析技术及其在高分子材料研究中的应用

红外光谱分析技术及其在高分子材料研究中的应用

红外光谱分析技术及其在高分子材料研究中的应用红外光谱分析技术在高分子材料研究中具有广泛的应用。

高分子材料是指由大量类型相同或相似的基本单位(单体)通过共价键相互连接形成的材料,如塑料、橡胶、纤维等。

红外光谱分析可以用于高分子材料的结构表征、化学成分分析和性能评价。

首先,红外光谱分析可用于高分子材料的结构表征。

由于高分子材料通常由许多重复单元组成,因此红外光谱中的特征吸收峰可以提供关于材料的结构信息。

例如,聚合物的主链振动频率和键长可以通过红外光谱中的C-H、C-O和C=O等吸收峰位置和强度来确定。

通过比较不同高分子材料的红外光谱,可以判断高分子链的配位方式、取代基的种类与位置等结构差异。

其次,红外光谱分析可用于高分子材料的化学成分分析。

高分子材料通常包含多种化学成分,例如主链、支链、取代基等。

红外光谱可以通过比较吸收峰的位置和强度,定量分析高分子材料中各个组分的含量。

同时,红外光谱还可以检测材料中的杂质和附加成分,以及表征材料中的交联、缩聚和氢键等化学反应。

最后,红外光谱分析可用于高分子材料的性能评价。

高分子材料的性能往往与其结构和化学成分密切相关。

通过红外光谱可以研究材料的分子间相互作用和宏观物理性质,如熔点、热稳定性、机械强度和导电性等。

红外光谱还可以用于研究材料在不同环境条件下的吸湿性、耐紫外光性能、氧化降解和老化行为等。

红外光谱分析技术在高分子材料研究中的应用不仅能够为材料设计和制备提供理论指导,还可以为材料的性能评价和质量控制提供可靠的分析手段。

随着红外光谱分析技术的不断发展和改进,相信在高分子材料研究中的应用将会进一步扩展和深入。

现代近红外光谱技术及应用进展

现代近红外光谱技术及应用进展

现代近红外光谱技术及应用进展近红外光谱技术是一种快速、高效、无损的分析技术,广泛应用于化学、食品、药物等领域。

尤其是随着科学技术的发展,现代近红外光谱技术在样品制备、光谱采集、数据处理等方面都有了显著的提升,极大地扩展了近红外光谱技术的应用范围。

近红外光谱是指介于可见光和中红外光之间的电磁波,波长范围为700-2500nm。

现代近红外光谱技术利用近红外光子的能量和量子力学中的跃迁原理,通过对样品进行照射,使样品中的分子吸收近红外光子的能量后从基态跃迁到激发态,再返回基态时发出特征光谱。

通过对特征光谱进行定性和定量分析,可以获取样品的组成、结构和性质等信息。

化学分析:现代近红外光谱技术在化学分析领域的应用主要体现在有机物和无机物的定性和定量分析上。

例如,利用近红外光谱技术对石油样品进行定性和定量分析,可以有效地识别石油中的不同组分,同时也可以对石油中的含硫量、含氮量等进行快速准确的测定。

食品质量检测:在食品质量检测方面,现代近红外光谱技术可以用于食品成分分析、食品质量评估和食品掺假检测等。

例如,利用近红外光谱技术对奶粉进行检测,可以快速准确地检测出奶粉中的蛋白质、脂肪、糖等主要成分的含量。

药物研究:现代近红外光谱技术在药物研究方面的应用主要体现在药物成分分析、药物代谢研究和药物疗效评估等方面。

例如,利用近红外光谱技术对中药材进行检测,可以快速准确地测定中药材中的有效成分含量,为中药材的质量控制提供了一种有效的手段。

近年来,现代近红外光谱技术在国内外都取得了显著的研究进展。

在国内,中国科学院上海药物研究所利用近红外光谱技术对中药材进行有效成分的快速检测,取得了重要的成果。

国内的一些高校和研究机构也在近红外光谱技术的研究和应用方面开展了大量的工作,推动了近红外光谱技术的发展。

在国外,近红外光谱技术已经成为药物研发和食品质量检测的重要手段。

例如,荷兰的菲利普公司成功开发出了一款基于近红外光谱技术的药物代谢研究仪器,可以为新药的开发和疗效评估提供快速准确的数据支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外光谱分析技术及其应用(作者: _________ 单位:___________ 邮编: ___________ )作者:范雪芳徐淼侯晓涛王帅李洪宇张丽华【摘要】红外光谱(IR)分析技术是一门发展迅猛的高新技术,与传统分析技术相比,红外光谱分析技术具有分析速度快,样品用量少,无破坏无污染等特点。

红外光谱测定的是物质中分子的吸收光谱,不同的物质会有其特征指纹的特性,利用红外指纹图谱技术对中成药进行质量鉴定与分析,借助计算机和模式识别等技术,以综合的、宏观的、非线性的分析理念和质量控制模式来评价中药的真伪优劣【关键词】红外光谱;红外指纹图谱技术【Abstract ] Infrared spectrum (IR) is a fast developing newly tech no logy. Comparedwith traditi onal an alysis tech no logy, IR possesses characters of fast analysis, little sample, no breach and no pollution. IR measures the absorption spectrum of molecule, and different substances have different fingerprint patter ns. Thus, IR tech no logy can be applied to detect and an alyze the quality of traditi onal Chin ese drug. Using the computer, pattern recognition and so on, we can estimate iftraditional Chinese drug is real or fake, good or bad under theguida nee of comprehe nsive, macroscopic and non 拟li nearan alysis idea as well as quality con trol models. 【Key words ]in frared spectrum; tech no logy of IR fin gerpri nt红外光谱分析技术是一门发展迅猛的高新技术,在分析化学领域里被誉为分析“巨人”,这个“巨人”的出现掀起了一场分析技术革命。

使用传统的分析方法测定一个样品的多种性质或浓度数据需要多种分析仪器,耗费大量人力、物力和时间,因此成本高,工作效率低,远不能适应现代工业的需要;与传统分析技术相比,IR分析技术能在几十秒甚至几秒内,仅通过对样品的一次IR简单测量,就能同时测定一个样品的几种甚至几十种物质或浓度数据,而且被测样品用量很少,无破坏,无污染,无损伤分析,操作简单,分析成本低口拟4]。

1红外光谱分析技术的发展过程红外光谱是研究红外光与物质分子间相互作用的吸收光谱,红外光谱分近红外区(泛频区)波长范围12 500〜4 000/cm,中红外区(基本震动区)波长范围4 000〜400/cm,远红外区(转动区)波长范围400〜25/cm [5]。

而近红外区(NIR)最初于1800年被英国物理学家赫谢耳(William F Hershel)发现,是人们最早发现的非可见光区域。

1835年Ampere利用新发明的热电偶证明了NIR具有同可见光一样的光学性质[5,6]。

早期的红外光谱广泛应用棱镜作为单色器,用连续波扫描,分辨率低,但仍在化合物结构表征发挥重要作用。

20世纪60年代以后以光栅为单色器,提高了分辨率,曾在传统的农副产品领域中有所应用。

而近红外方法作为一种新兴的定量分析方法今年来取得了显著进展,在食品、农产品、烟草等方面尤为突出[7]。

20世纪80年代后期曾出现过红外光谱法鉴别中药的某些报道,但由于光谱总体解析知识的贫乏、思路上的保守和缺乏交叉学科的相互渗透,其进展并不显著。

20世纪90年代后期以来,出现了将红外光谱法与计算机辅助解析技术有机的结合应用于中药鉴定的若干报道。

2红外光谱技术2.1红外数据库随着计算机的普及红外光谱分析与薄层色谱法、高效液相色谱法、气相色谱法、高效毛细管电泳法、紫外光谱法、红外光谱法、核磁共振和X 拟射线衍射法、质谱及分子生物学技术连用[8],为红外光谱的应用开辟了更广阔的领域。

随后又有人将红外数据库通过计算机系统运用于红外光谱仪中,即将光谱的数字化形式存放在IBM计算机穿孔卡片上形成红外数据库。

目前已建立的红外数据库主要有:(1)ASTM 红外光谱;(2)Sadtler 谱库;(3)Aldrich/Nicolet凝聚相普图库;(4)Sigma 生物化学谱库;(5)Nicolet 蒸气相谱库;(6)Georgia州犯罪实验室麻醉剂谱库;(7)多伦多法法庭谱库;(8)Aldrich 蒸气相谱库;(9)Sadtler Sped以Finder 数据库;(10)PE谱库;(11)固体药物FT以IR谱库;(12)EPA气相FT拟IR谱2.2红外光谱仪与其他仪器的连用在实际工作中,红外光谱仪经常通过与其他仪器连用。

常见的有GC/FTIR联用技术[8];HPLC拟FTIR 联用技术[9,10];TLC拟FTIR联用技术[11,12];SFC拟FTIR联用技术[13];TGA拟FTIR联用技术[14拟16]等。

范雪芳,等.红外光谱分析技术及其应用成都医学院学报2009年9月,4(3)3红外指纹图谱技术现状红外光谱测定的是物质中分子的吸收光谱,不同的物质会有其特征指纹的特性,目前红外指纹图谱已成为鉴定和分析不同产地及品种的中药材内在质量的重要手段。

但由于中药指纹图谱相当复杂,人工比较难掌握结果的准确性,因此将其用于复方中药的鉴定和分析[17拟20]。

对于中药的品种和真伪鉴别,除液相和薄层等以色谱为主的指纹图谱方法外,还可以使用光谱测定的指纹图谱方法,即红外指纹图谱鉴别技术,该技术无需对中药进行提取分离等繁杂的化学处理,而直接进行红外光谱分析检测,是目前中药材及其制剂最直接、快速、准确的鉴定鉴别和质量控制方法。

目前我国中药指纹图谱的实施,已由实验室研究进入到实际应用和作为法定质量标准的阶段。

它不仅从图谱的整体特征来综合地鉴别真伪,还可以以一定的量化参数大致评价中药产品质量的稳定性和一致性。

在现阶段,据此判断原料、半成品、成品的质量相关性、一致性和稳定性,应用范围包括1094光谱学与光谱分析原料药材的筛选、生产工艺的优化、成品质量的稳定考察、市场商品的质量监控。

实践证明,色谱指纹图谱分析所表达的质量信息远比测试单一成分要丰富得多[21,22]。

例如天士力集团已将多元色谱指纹图谱分析定为内控方法。

对复方丹参滴丸主要化学成分进行了系统分析,鉴定出10种丹参水溶性成分和20种三七皂苷类成分,基本揭示了复方丹参滴丸化学物质基础;能更完整地反映出复杂药产品的化学组成特征,可用于复中药产品的质量控制[23](各批次的复方丹参滴丸产品中有效成分的含量一致,确保了复方丹参滴丸质量的稳定)。

4红外指纹图谱的应用近两年来红外光谱在中药质控领域取得突破性进展,突破了检测样品有损、存在大量废弃物的问题,形成了一种无损、环保的新型检测体系。

常规的制药分析样品前处理繁琐,分析周期较长,使用有毒有害试剂较多,常产生大量废气、废液;相比之下红外光谱分析有如下鲜明的技术特点:分析速度快,多种成分同时分析,无污染分析,样品不需特别的预处理,不使用有毒、有害试剂,无损伤分析,操作简单,分析成本低。

红外光谱技术已在中药材鉴定、中药材炮制、中药注射剂各个领域发挥了重要作用,分述如下。

4.1中药材鉴定4.1.1常用中药材的深入研究红外光谱对常用中药的研究已经不局限于通过谱图的差异来作出简单辨别;而出现两个新的应用研究方向:一种是在谱图计算机辅助解析方面进行深入研究,采用多种分析方法挖掘谱图数据信息;另一种是为了增大样品差异性对样品进行前处理。

例如王凤岭等[24 ]利用红外三级鉴定法区别栽培和野生丹参,徐海星等[7]使用不同溶剂对原药材进行提取处理,采用红外光谱图谱鉴别法对提取物进行分析。

红外光谱技术应用新进展表现为:一方面通过应用了不同的溶媒进行试验,对药材进行提取处理,增大了样品差异性,提高了谱图差异化,更有利于差异性小的药材辨识;另一方面谱图计算机辅助解析通过量化峰高比、主成分分析、谱图半定量分析、相关二维、神经网络等方面的深入研究,挖掘了更多的谱图数据信息。

4.1.2地方民族药的鉴别由于地方民族药还停留在外观形状经验鉴别水平,相应色谱含量分析较少。

因此红外光谱分析技术已迅速被彝、藏、蒙等少数民族医药所接受,并且在地域性药物鉴别、基原调查、珍稀药材保护等领域进行了有益的尝试。

例如杨群等[25]采用傅里叶变换衰减反射红外光谱法对鸡根、大红袍两种彝药药材进行了快速无损的红外光谱测定;关昕璐等[26]采用红外光谱法直接测定藏药翼首草不同产地、不同药用部位的红外光谱,并比较了它们的红外光谱差别;徐良等[27]用红外三种光谱法对四种蒙药材进行了鉴别研究,四种药材粉末的红外光谱有明显区别。

红外光谱在地方民族药中的应用,打破了其长期缺乏有效质控方法的局面。

与此同时,红外光谱也将成为地方民族医药核心质控技术。

4.2中药材炮制红外指纹图谱用于中药炮制品的鉴别是可行的,特别是二维相关的使用,使炮制过程不再成为不可控的过程;且红外光谱法样品制备简单,仪器设备普及性强,在中药饮片的快速鉴别与过程监控中具有一定的优势。

例如鲍红娟等[28]利用红外光谱技术分析研究河南道地药材怀菊花及其炮制品,找出怀菊花、炒菊花和菊花炭的红外光谱和二阶导数谱的“指纹”特征。

4.3中药注射剂红外光谱在重要注射剂中同样发挥重要作用,例如王晶等[29]将红外光谱技术应用于中药注射剂鉴别;潘艳丽[30]研究黄金菊粉针(金莲花、野菊花、金银花)药效组分的红外指纹表征。

5结语随着红外光谱与色谱指纹图谱在解决中药质量标准与检验方面优势的显现,中药质控领域结合自身实际情况对其在该领域的研究进行了有效的延伸与扩展,基本形成以红外光谱为定性、半定量分析,色谱指纹图谱为定量分析的两大模式;在药物质量控制过程中,红外光谱可以应用于前道质量控制与样品稳定性考察;色谱指纹图谱可以应用于后续重点成份指标含量控制;两者互相渗透、互为补充,为中药现代化铺平了道路。

【参考文献】[1] Burns DA,Ciurczak EW. Handbook of near 拟infraredanalysis[M]. New York: Marcel Dekker Inc,2001.[2] 孙素琴,秦竹,周群,等.中药药材红外光谱非分离提取多级宏观指纹鉴定方法[P].中国专利:CN 147110A,2003.[3] 孙素琴,秦竹,周群,等.中药二维相关红外光谱鉴定图集[M].北京:化学工业出版社,2003: 9.[4] 中华人民共和国国家药典委员会.中国人民共和国药典[M].北京:化学工业出版社,2000.[5] Hildrum Kl,lsaksson T,Naes T,et al. Near拟infrared spectros 拟copy bridging the gap between data analysis and NIR application[M]. New York: Ellis Horwood,1994: 153.[6] 聂晶,田颂九,王国荣.中药指纹图谱的研究现状[J]. 中草药,2000,31(12) : 881拟884.[7] 严衍录,张录达,景茂,等.傅里叶变换近红外漫反射光谱分析应用基础的研究[J].北京农业大学学报(增刊),1990,16:5拟17.[8] Griffiths PR. Optimized sampling in the gaschromatography 拟infrared spectroscopy interface[J]. Appl Spectrosc,1977,31:284 拟288.[9] Kizer KL ,Mantz AW Bonar LC. Am Lab,1975,5:85.[10] 黄威东,王俊德.在线正相微孔柱高效液相色谱与傅氏变换红外光谱的联用方法[J].光谱学与光谱分析,1991,6 : 11.[11] Percival CJ,Griffiths PR. Direct measurement ofthe in frared spectra of compo unds separated by thin 拟layer chromatography[J].A nal Chem,1975,47:154.[12] Lloyd LB, Yeates RC,Eyri ng EM. Fourier tra nsformin frared photoacoustic spectroscopy in thi n layer chromatography[J].A nal Chem,1982,54:549.[13] Shafer K H,Griffiths P R. Anal Chem,1983,55:1939.[14] Low MJD. Gas Effluent Analysis[M]. New York: M Dekker,1967.[15] Lephardt JO. Appl Spectrosc Rev,1982拟83,18:265.[16] Cara ngelo R M. Thermochim Acta,1986,103:221.[17] 黄吴,李静.中药配方颗粒红外指纹图谱研究[J].分析化学研究简报,2003,31(7) : 828.[18] 梁鑫淼,徐青,肖红斌.中药质量控制的策略与方法[J].中国中西医结合杂志,2002, (9) : 56.[19] 芦锰,樊克峰,白雁.红外光谱技术在中药整体质量评价中的应用[J].河南中医,2004,11:423.[20] 李湘南,刘小平.白花蛇舌草与其伪品水线草的FTIR 谱鉴定[J].中药材,2004,(27) : 335.[21] 谢培山.色谱指纹图谱分析是中草药质量控制的可行策略[J].中药新药与临床药理,2001,12(3): 141.doi:10.3969/j.iss n.1674 拟2257.2009.03.019。

相关文档
最新文档