复变函数-积分变换-场论期末复习2010-2011-1(定稿)
《复变函数与积分变换》期末考试试卷及答案

«复变函数与积分变换»期末试题(A)一.填空题(每小题3分,共计15分)1.231i-的幅角是();2.)1(iLn+-的主值是();3. 211)(zzf+=,=)0()5(f();4.0=z是4sinzzz-的()极点;5.zzf1)(=,=∞]),([Re zfs();二.选择题(每小题3分,共计15分)1.解析函数),(),()(yxivyxuzf+=的导函数为();(A)yxiuuzf+=')(;(B)yxiuuzf-=')(;(C)yxivuzf+=')(;(D)xyivuzf+=')(.2.C是正向圆周3=z,如果函数=)(zf(),则0d)(=⎰C zzf.(A)23-z;(B)2)1(3--zz;(C)2)2()1(3--zz;(D)2)2(3-z. 3.如果级数∑∞=1nnnzc在2=z点收敛,则级数在(A)2-=z点条件收敛;(B)iz2=点绝对收敛;(C)iz+=1点绝对收敛;(D)iz21+=点一定发散.4.下列结论正确的是( )(A)如果函数)(zf在z点可导,则)(zf在z点一定解析;(B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞(D) .sin 1的孤立奇点为z ∞三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a(2).计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ;(3)计算⎰=++3342215d )2()1(z z z z z(4)函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos«复变函数与积分变换»期末试题(A )答案及评分标准一.填空题(每小题3分,共计15分)1.231i -的幅角是(Λ2,1,0,23±±=+-k k ππ);2.)1(i Ln +-的主值是(i 432ln 21π+ );3.211)(z z f +=,=)0()5(f( 0 ),4.0=z 是4sin z z z -的( 一级 )极点;5. zz f 1)(=,=∞]),([Re z f s (-1 );二.选择题(每题3分,共15分)1----5 B D C B D三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
复变函数与积分变换复习提纲(仅供参考)

例18 设f(z)= sin z ,则Res[f(z),0]=______ z
例19
1
Res e z ,
0 =
.
例20
z=i是f(z)=
(z 2
1 1)2
的____________
(填孤立奇点的类型(若是极点说明其级数))
例21
设函数
f
(z)
e iz (z 2 1) 2
虚部,已知虚部会求实部)
第四章:重点是展开级数,求收敛域,求和函数
1. 理解复数列级数的概念,理解泰勒,罗朗级数的定义 2. 掌握幂级数求法,求收敛半径(比值和根值判别法) 3. 使用已知级数(识记五种简单级数展开式)和间接法展开泰
勒级数和罗朗级数(P117定理四),注意在不同点展开后是 不一样的。收敛域的求法。
1 z
的实部,虚部和模。
z 例3
函数 w 1 将 z
平面上的曲线
(x 1)2 y 2 1 变成 w 平面上的曲线
是________.
例4 若 (1 i)n (1 i)n
试求n的值
例5 设 z rei , 试证
Re[ln(z 1)] 1 ln(1 r 2 2r cos )
1. 理解拉普拉斯变换的概念 2. 灵活应用拉普拉斯变换的性质(4条)和卷积定理来求拉普拉
斯变换,以及理解用留数定理求拉普拉斯逆变换的方法 3. 掌握微分和积分方程的拉普拉斯解法 4. 熟记若干简单的函数的拉普拉斯变换(拉普拉斯逆变换)
例1 计算 3 8
例2 求复数 1 z (复数z 1)
在上半平面的所有孤立奇点;
(2)求f(z)在以上各孤立奇点的留数; (3)利用以上结果计算积分
复变函数与积分变换复习重点及 习题

双曲函数 shz ez ez , chz ez ez ;
2
2
shz 奇函数, chz 是偶函数。 shz, chz 在 z 平面内解析,且 shz chz,chz shz 。
(四)解析函数的概念
1.复变函数的导数
1)点可导:
f
z0
=
lim
z 0
f
z0
z
z
f
z0
;
2)区域可导: f z 在区域内点点可导。
c
(七)关于复变函数积分的重要定理与结论
1.柯西—古萨基本定理:设 f z 在单连域 B 内解析, c 为 B 内任一闭曲线,则
f z dz 0
c
6
2.复合闭路定理: 设 f z 在多连域 D 内解析,c 为 D 内任意一条简单闭曲线,c1, c2, cn 是 c 内的简单闭曲线,它们互不包含互不相交,并且以 c1, c2, cn 为
复变函数与积分变换期末考试复习知识点
(一)复数的概念
1.复数的概念: z x iy , x, y 是实数, x Re z , y Im z . i2 1.
注:两个复数不能比较大小.
2.复数的表示
1)模: z x2 y2 ;
2)幅角:在 z 0 时,矢量与 x 轴正向的夹角,记为 Arg z (多值函数);主值 arg z 是位于 ( , ] 中的幅角。
2 i n!
f
n z0
n
曲线 c 内有多于一个奇点: f z dz
f z dz ( ci 内只有一个奇点 zk )
c
k 1 ck
n
或: f z dz 2i Re s[ f (z), zk] (留数基本定理)
复变函数积分方法总结定稿版

复变函数积分方法总结 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】复变函数积分方法总结经营教育乐享[选取日期]复变函数积分方法总结数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。
就复变函数:z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。
arg z=θ? θ?称为主值 -π<θ?≤π,Arg=argz+2kπ。
利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。
z=re i θ。
1.定义法求积分:定义:设函数w=f(z)定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑的有向曲线,把曲线C 任意分成n 个弧段,设分点为A=z 0 ,z 1,…,z k-1,z k ,…,z n =B ,在每个弧段z k-1 z k (k=1,2…n)记?z k = z k - z k-1,弧段z k-1 z k 的长度 δ=max1≤k ≤n {?S k }(k=1,2…,n),当 δ→0时,不论对c 的分∫f (z )dz c=limδ 0∑f (?k )nk −1?z k设C 负方向(即B 到A 的积分记作) ∫f (z )dz c −.当C 为闭曲线时,f(z)的积分记作∮f (z )dz c(C 圆周正方向为逆时针方向) 例题:计算积分1)∫dz c 2) ∫2zdz c ,其中C 表示a 到b 的任一曲线。
(1) 解:当C 为闭合曲线时,∫dz c =0. ∵f(z)=1 S n =∑f (?k )nk −1(z k -z k-1)=b-a∴lim n 0Sn =b-a,即1)∫dz c =b-a.(2)当C 为闭曲线时,∫dz c =0. f(z)=2z;沿C 连续,则积分∫zdz c 存在,设?k =z k-1,则 ∑1= ∑Z n k −1(k −1)(z k -z k-1) 有可设?k =z k ,则∑2= ∑Z n k −1(k −1)(z k -z k-1)因为S n 的极限存在,且应与∑1及∑2极限相等。
复变函数和积分变换重要知识点归纳

.WORD.格式.复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数,()()Re ,Im x z y z ==.21i =-.注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示1)模:z=2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z ez z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。
复变函数与积分变换重要知识点归纳

复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:22z x y =+;2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctanyx之间的关系如下: 当0,x > arg arctany z x=; 当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-= 3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。
《复变函数与积分变换》期末考试试卷及答案

«复变函数与积分变换»期末试题(A)一.填空题(每小题3分,共计15分)1.231i-的幅角是();2.)1(iLn+-的主值是();3. 211)(zzf+=,=)0()5(f();4.0=z是4sinzzz-的()极点;5.zzf1)(=,=∞]),([Re zfs();二.选择题(每小题3分,共计15分)1.解析函数),(),()(yxivyxuzf+=的导函数为();(A)yxiuuzf+=')(;(B)yxiuuzf-=')(;(C)yxivuzf+=')(;(D)xyivuzf+=')(.2.C是正向圆周3=z,如果函数=)(zf(),则0d)(=⎰C zzf.(A)23-z;(B)2)1(3--zz;(C)2)2()1(3--zz;(D)2)2(3-z. 3.如果级数∑∞=1nnnzc在2=z点收敛,则级数在(A)2-=z点条件收敛;(B)iz2=点绝对收敛;(C)iz+=1点绝对收敛;(D)iz21+=点一定发散.4.下列结论正确的是( )(A)如果函数)(zf在z点可导,则)(zf在z点一定解析;(B) 如果)(z f 在C 所围成的区域内解析,则0)(=⎰Cdz z f(C )如果0)(=⎰Cdz z f ,则函数)(z f 在C 所围成的区域内一定解析;(D )函数),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、),(y x v 在该区域内均为调和函数.5.下列结论不正确的是( ).(A) 的可去奇点;为z1sin ∞(B) 的本性奇点;为z sin ∞(C) ;1sin 1的孤立奇点为z∞(D) .sin 1的孤立奇点为z ∞三.按要求完成下列各题(每小题10分,共计40分)(1)设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a(2).计算⎰-Czz z z e d )1(2其中C 是正向圆周:2=z ;(3)计算⎰=++3342215d )2()1(z z z z z(4)函数3232)(sin )3()2)(1()(z z z z z z f π-+-=在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.四、(本题14分)将函数)1(1)(2-=z z z f 在以下区域内展开成罗朗级数; (1)110<-<z ,(2)10<<z ,(3)∞<<z 1五.(本题10分)用Laplace 变换求解常微分方程定解问题⎩⎨⎧='==+'-''-1)0()0()(4)(5)(y y e x y x y x y x六、(本题6分)求)()(0>=-ββtet f 的傅立叶变换,并由此证明:te d t ββπωωβω-+∞=+⎰2022cos«复变函数与积分变换»期末试题(A )答案及评分标准一.填空题(每小题3分,共计15分)1.231i -的幅角是( 2,1,0,23±±=+-k k ππ);2.)1(i Ln +-的主值是( i 432ln 21π+ );3.211)(z z f +=,=)0()5(f( 0 ),4.0=z 是4sin z z z -的( 一级 )极点;5. zz f 1)(=,=∞]),([Re z f s (-1 ); 二.选择题(每题3分,共15分)1----5 B D C B D三.按要求完成下列各题(每小题10分,共40分)(1).设)()(2222y dxy cx i by axy x z f +++++=是解析函数,求.,,,d c b a解:因为)(z f 解析,由C-R 条件y v x u ∂∂=∂∂ xv y u ∂∂-=∂∂ y dx ay x 22+=+,22dy cx by ax --=+,2,2==d a ,,2,2d b c a -=-=,1,1-=-=b c给出C-R 条件6分,正确求导给2分,结果正确2分。
复变函数与积分变换重点公式归纳

复变函数与积分变换复习提纲第一章 复变函数一、复变数和复变函数()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续极限 A z f z z =→)(lim 0连续 )()(lim 00z f z f z z =→第二章 解析函数一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。
二、柯西——黎曼方程掌握利用C-R 方程⎪⎩⎪⎨⎧-==xy yx v u v u 判别复变函数的可导性与解析性。
掌握复变函数的导数:yx y x y y x x v iv iu u v iu y fi iv u x f z f +==-=+-=∂∂=+=∂∂=1)('三、初等函数重点掌握初等函数的计算和复数方程的求解。
1、幂函数与根式函数θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数nk z i n ner z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数2、指数函数:)sin (cos y i y e e w xz+==性质:(1)单值.(2)复平面上处处解析,zze e =)'((3)以i π2为周期 3、对数函数ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……)性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:kk z z 1)'(ln =。
4、三角函数:2cos iz iz e e z -+= ie e z iziz 2sin --=性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界5、反三角函数(了解)反正弦函数 )1(1sin 2z iz Ln iz Arc w -+==反余弦函数 )1(1cos 2-+==z z Ln iz Arc w 性质与对数函数的性质相同。