植物生物学名词解释

合集下载

植物生理学名词解释

植物生理学名词解释

1.光敏色素:植物体内存在着的能吸收红光和远红光并具有可逆转能力的水溶性色素蛋白。

2.自由水:指不被胶体颗粒或渗透物质所吸附或吸附力很小而能自由移动的水。

3.束缚水:细胞中被蛋白质等亲水性生物大分子组成的胶体颗粒或渗透物质所吸附不能自由。

移动的水。

4.单盐毒害:任何植物,假若培养在某种单一盐溶液中,不久即呈现不正常状态,最后死亡。

这种单一盐溶液对植物的毒害现象称为单盐毒害。

5.离子拮抗:若在单盐溶液中加入少量其他盐类,单盐毒害现象就会减弱或者消除。

这种离子间能够互相消除毒害的现象,称离子拮抗,也称离子对抗。

6.平衡溶液:由多种盐按一定比例组合而成的能使植物生长良好的溶液。

7.无氧呼吸消失点:指使植物体内无氧呼吸停止进行的外界气体环境中氧的含量。

8.转移细胞:在疏导组织末梢存在的一些具有物质转移功能的特化细胞,其显著特点是:细胞壁向内伸向细胞质,形成许多褶皱,质膜的表面积大大增加,富含ATP酶,为跨膜运输提供足够的能量。

9.第二信使:又称细胞信号转导过程中的次级信号,是指细胞感受胞外环境信号和胞间信号后产生的、将细胞外信息转变为细胞内信息的胞内信号分子。

10.极性运输:生长素只能从植物体的形态学上端向下端运输,而不能倒转过来运输的现象。

同时这种生长素的极性运输可以逆浓度梯度进行。

11.永久萎蔫系数:植物刚刚发生永久萎蔫时土壤中尚存的水分含量(占土壤干重的百分数)。

达到永久萎蔫时土壤所含的水分植物不能利用,属无效水分。

12.生长大周期:指植物一生的生长进程中其生长速率总是表现出慢-快-慢的变化规律。

如果以植物生长的体积、干重等参数对时间做图则可得“S”形曲线。

这种周期性的变化规律称为生长大周期。

13.生物钟:也称生理钟,生物体内存在的一种测时系统,由此系统控制生物在无重力、光照、温度、压力等条件的变化下,按其原有的时期呈周期性运动。

接近24小时周期性、节奏性的变化现象。

14.光周期现象:指植物生长对昼夜温度周期性变化的反应,即白天温度高,夜间温度低对植物有利的现象称为光周期现象。

植物生理学名词解释

植物生理学名词解释

生物膜:即构成细胞的所有膜的总称,它由脂类和蛋白质等组成,具有特定的结构和生理功能。

按其所处的位置可分为质膜和内膜。

共质体:由包间连丝把原生质连成一体的体系,包含质膜。

质外体:由细胞壁及间隙等空间组成的体系。

信号转导:指细胞偶联各种刺激信号与其引起的特定生理效应之间的一系列分子反应机制。

水势:每偏摩尔体积水的化学势差。

即水势为体系中水的化学势与处于等温、等压条件下纯水的化学势之差,再除以水的偏摩尔体积的商。

单位:MPa。

水通道蛋白:是存在于生物膜上的一类具有选择性、高效转运水分子功能的内在蛋白,亦称水孔蛋白。

渗透作用:水分子通过半透膜从水势高的区域向水势低的区域运转的作用。

吸胀作用:细胞质及细胞壁组成成分中亲水性物质吸水膨胀的作用。

根压:由于根系的生理活动儿使液流从根部上升的压力。

伤流:从植物茎的基部切断植株,则有液体不断地从切口溢出的现象。

吐水:未受伤的植物如果处于土壤水分充足,空气湿润的环境中,在叶的尖端或者叶的边缘向外溢出水滴的现象。

蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。

蒸腾作用:水分从植物地上部分表面以水蒸气的形式向外散失的过程。

蒸腾速率:之职务在单位时间内、单位叶面积通过蒸腾作用而散失的水量。

蒸腾效率:植物每蒸腾1kg水时所形成的干物质的克数。

蒸腾系数:植物每制造1kg干物质所消耗水分的克数。

小孔扩散率:指气体通过多孔表面的扩散速率不与其面积呈正比,而与其周长成正比。

水分临界期:植物对水分不足特别敏感的时期。

平衡溶液:在含有适当比例的多种盐溶液中各种离子的毒害作用被消除,用以培养植物可以正常生长发育,这种溶液称为平衡溶液。

单盐毒害:植物被培养在单一的盐溶液中,即使是植物必需的营养元素,不久即呈现不正常状态,最后死亡,这种现象称单盐毒害。

诱导酶:亦称适应酶,是指植物体内本来不含有,但在特定外来物质的诱导下可以生成的酶。

离子通道:是指贯穿质膜的由多亚基组成的蛋白质,通过构象变化而形成的调控离子跨膜运转的门系统,通过门的开闭控制离子运转的种类和速度。

植物生理学名词解释

植物生理学名词解释

第四章呼吸作用一、名词解释1、呼吸作用:生物体内的有机物质通过氧化还原而产生CO2,同时释放能量的过程。

2、有氧呼吸:指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出CO2并形成水,同时释放能量的过程。

3、三羧酸循环:丙酮酸在有氧条件下由细胞质进入线粒体逐步氧化分解,最终生成水和二氧化碳。

4、生物氧化:指有机物质在生物体内进行氧化分解,生成CO2和H2O,放出能量的过程。

5、呼吸链:呼吸代谢中间产物的电子和质子,沿着一系列有序的电子传递体组成的电子传递途径,传递到氧分子的总轨道。

6、氧化磷酸化:在生物氧化过程中,电子经过线粒体的呼吸链传递给氧(形成水分子),同时使ADP被磷酸化为ATP的过程。

7、呼吸商:又称呼吸系数。

是指在一定时间内,植物组织释放CO2的摩尔数与吸收氧的摩尔数之比。

8.糖酵解:胞质溶胶中的己糖在无氧或有氧状态下分解成丙酮酸的过程。

二、填空题1、呼吸作用的糖的分解代谢途径中,糖酵解和戊糖磷酸途径在细胞质中进行;三羧酸循环途径在线粒体中进行。

三羧酸循环是英国生物化学家Krebs 首先发现的。

2、早稻浸种催芽时,用温水淋种和时常翻种,其目的就是使呼吸作用正常进行。

当植物组织受伤时,其呼吸速率加快。

春天如果温度过低,就会导致秧苗发烂,这是因为低温破坏了线粒体的结构,呼吸“空转”,缺乏能量,引起代谢紊乱的缘故。

3.呼吸链的最终电子受体是 O2氧化磷酸化与电子传递链结偶联,将影响_ ATP _的产生。

4.糖酵解是在细胞细胞基质中进行的,它是有氧呼吸和无氧呼吸呼吸的共同途径。

5.氧化磷酸化的进行与 ATP合酶密切相关,氧化磷酸化与电子传递链解偶联将影响__ ATP__的产生。

6.植物呼吸过程中,EMP的酶系位于细胞的细胞基质部分,TCA的酶系位于线粒体的线粒体基质部位,呼吸链的酶系位于线粒体的嵴部位。

7. 一分子葡萄糖经有氧呼吸彻底氧化,可净产生__38__分子ATP,•需要经过__6_底物水平的磷酸化。

植物生理学 名词解释

植物生理学 名词解释

1.平衡溶液(balanced solution)能使植物正常生长和发育的含有适当浓度和比例的若干种必需矿质元素的混合溶液称为平衡溶液。

1.抗寒锻炼(cold hardening)或低温驯化(cold acclimation)耐寒品种只有经过低温和短日照的诱导才能逐步提高其抗寒性,此过程称为抗寒锻炼(或低温驯化)。

2. 寡霉素(Oligomycin)它是一种氧化磷酸化抑制剂,它抑制线粒体膜间空间的H+通过A TP合成酶的F0进入线粒体基质,从而抑制ATP酶活性。

3. 巯基假说是Levitt于1962年提出的,他认为冰冻对细胞的危害是破坏了蛋白质的空间结构。

由于细胞间隙结冰引起细胞质脱水,使蛋白质分子相互靠近,邻近蛋白质分子-SH氧化形成-S-S-键,蛋白质发生凝聚失去活性。

当解冻吸水时,由于二硫键比氢键稳定,因此氢键断裂,肽链松散,破坏了蛋白质分子的空间结构,导致蛋白质失活。

4. 有机物质运输的原生质环流假说(protoplasma circulation hypothesis of organic substances transport)用原生质环流现象,解释不同的有机物质同时沿不同方向运输的一种假说。

5. 渗透势亦称溶质势,是由于溶液中溶质颗粒的存在而引起的水势降低值。

用表示,一般为负值。

6.底物水平磷酸化(Substrate level phosphorylation)它是指与高能化合物水解放能作用相偶联,而不是与电子传递相偶联的ATP合成作用。

7.叶尖凋萎(wither-tip)缺铜使作物幼叶的叶尖坏死,继而延及叶缘,呈现凋萎状态,以致叶片脱落而整株植物凋萎的现象。

8.蒸腾流(transpiration flux)植物进行蒸腾作用,使体内的水分从下部向上部运输时形成的水流称为蒸腾流。

9.蒸腾系数植物每制造1g干物质所消耗水分的克数。

它是蒸腾效率的倒数,又称需水量。

9.蒸腾效率植物在一定生长期内积累的干物质与同时间内蒸腾消耗的水量的比值。

植物生物学名词解释

植物生物学名词解释

名词解释(一)胞间连丝:穿过细胞壁沟通相邻细胞的细胞质丝(为植物体的物质运输和信息传递提供了一个直接的.从细胞到细胞的细胞质通道)。

(二)纹孔:初生壁上完全不被次生壁覆盖的区域(存在于次生壁上,既可以在初生纹孔形成,也可在细胞壁无初生纹孔场处发育。

)分为单纹孔和具缘纹孔孔对——相邻两细胞间成对存在的纹孔。

(三)分生组织:植物体中具有分裂能力的细胞群。

顶端分生组织:植物根尖,茎端的分生组织。

从胚胎在保留下来,属于胚性细胞,有很强的分裂能力。

侧生分生组织:根茎等器官中,靠近表皮的,与器官长轴平行方向上,呈(1)部位桶型分布的分生组织。

(往往由已分化的细胞恢复分裂能力,转变为分生组织,包括形成层,木栓层。

)居间分生组织:已分化的成熟组织夹杂着的一些未完全分化的分生组织。

(属于初生分生组织。

单子叶植物节间下方。

)原分生组织:从胚胎中保留下来,处于未分化状态,具有持久分裂能力位于根茎顶端最前端。

(胚性细胞)初生分生组织:具有一定分裂能力,分布于根茎顶端,处于原分生组织(2)性质和与成熟组织之间,形态上已出现初步分化(原表皮,来源基本分生组织和原形成层)次生分生组织:由已分化的细胞恢复分裂能力,转变成的分生组织。

(四)输导组织:植物体内长距离输导水分.无机盐和有机物的管状组织。

疏导水分的结构为导管和管胞,疏导有机物德威筛管和伴胞。

(仅存在于被子植物,裸子植物和蕨类植物中,是它们适应陆生生活的特有结构。

)(1)管胞:运输水分和无机盐的长管状死细胞。

两端尖斜,无穿孔,有一定支持作用。

有环纹.螺纹.梯纹.网纹.孔纹五种类型。

(2)导管分子:长管状死细胞,两端有单穿孔板或复穿孔板。

直径比管胞粗,运输效率高。

(3)导管:几个或多个导管分子彼此以端壁相连,组成的一条连通的长导管。

(4)筛管:由无细胞核的生活细胞纵向连接而成,运输有机物的管状结构。

(5)伴胞:和筛管分子相伴而生的长形活细胞。

由同一个母细胞发育而来,彼此间有发达的胞间连丝。

植物生理学名词解释

植物生理学名词解释
14.红降:波长大于685nm的远红光照射光合植物时,虽然光子仍然被大量吸收,但量子产额急剧下降的现象。
15.双光增益效用《爱默生效应》:远红光条件下,如补充红光,则量子产额大增,并且比这两种波长的光单独照射时的总和还大的现象。
16.光补偿点:随着光强度的增高,光合速率相应提高,当达到某一光强度时,叶片的光合速率与呼吸速率相等,净光合速率为零,这时的光强度即为。
8、被动运输:植物细胞进行溶质吸收时,溶质顺着电化学梯度进入细胞而无需消耗能量的过程。
9、主动运输:细胞吸收溶质时逆着电化学梯度进行,并且需要消耗代谢能量的过程。
9.1、初级主动运输:H- ATPase(质子泵)执行的主动运输。H-ATPase利用ATP的能量跨膜转运H, 形成跨膜H电化学势梯度---质子动力(△μH)。又称为原初主动运转,原初主动运转在能量形式上把化学能转为渗透能。
35、光合速率:指单位时间、单位叶面积吸收二氧化碳的量或放出二氧化碳的量。
36、同化力:把ATP和NADPH这两种用于碳反应的二氧化碳的同化物质合成为同化力。
37、光呼吸;植物的绿色细胞依赖光照吸收二氧化碳和放出二氧化碳的过程。
38、光饱和点:当光照强度增加到某一点后,再增加光照强度,光合强度不再增加,这光强称为光饱和点。
2、大量元素:植物对某些元素的需求量相对较大的,称为大量元素或大量营养,包括钾钙镁硫磷硅氮。
3、微量元素:植物对某些元素的需求量相对较小的,称为微量元素,包括氯铁硼锰钠锌铜镍钼。
3.1、单盐毒害:如果将植物培养在只含一种金属离子的溶液中,即使这种离子是植物生长发育所必需的,如钾离子,而且在培养液中的浓度很低,植物也不能正常生活,不久即受害而死。
17.二氧化碳补偿点:随着二氧化碳浓度提高,光合速率增加,当光合速率与呼吸速率相等时,外界环境中二氧化碳浓度即为。

普通生物学复习资料—植物生物学

普通生物学复习资料—植物生物学

植物习题一、名词解释3.胞间连丝:胞间连丝是穿过细胞壁的原生质细丝,它连接相邻细胞间的原生质体。

它是细胞原生质体之间物质和信息直接联系的桥梁,是多细胞植物体成为一个结构和功能上统一的有机体的重要保证。

4.细胞分化:多细胞有机体内的细胞在结构和功能上的特化,称为细胞分化。

细胞分化表现在内部生理变化和形态外貌变化两个方面。

细胞分化使多细胞植物中细胞功能趋向专门化,有利于提高各种生理功能和效率。

因此,分化是进化的表现。

5.纹孔:在细胞壁的形成过程中,局部不进行次生增厚,从而形成薄壁的凹陷区域,此区域称为纹孔。

6.细胞周期:指连续分裂的细胞,从一次有丝分裂结束到下一次分裂结束之间的期限,叫做细胞周期。

一个细胞周期包括G1期、S期、G2期和M期。

7.定根和不定根:凡有一定生长部位的根,称为定根,包括主根和侧根两种。

在主根和主根所产生的侧根以外的部分,如茎、叶、老根或胚轴上生出的根,因其着生位置不固定,故称不定根。

8.直根系和须根系:有明显的主根和侧根区别的根系称直根系,如松、棉、油菜等植物的根系。

无明显的主根和侧根区分的根系,或根系全部由不定根和它的分枝组成,粗细相近,无主次之分,而呈须状的根系,称须根系,如禾本科植物稻、麦的根系。

9.凯氏带:双子叶植物根内皮层细胞,2个横向壁和2个径向壁栓质物质沉积形成的带状结构。

10. 根瘤与菌根:根瘤和菌根是种子植物与微生物间的共生关系现象。

根瘤是豆科(或豆目)植物以及其他一些植物(如桤木属、木麻黄属等)根部的瘤状突起。

它是由于土壤中根瘤细菌侵入根的皮层中,引起细胞分裂和生长而形成的。

根瘤细菌具有固氮作用,与具根瘤植物有着共生关系。

菌根是某些土壤中的真菌与种子植物根形成的共生结合体。

由于菌丝侵入的情况不同分为外生菌根(菌丝分布于根细胞的间隙,并在根表面形成套状结构)和内生菌根(菌丝侵入根细胞内)。

菌根和种子植物的共生关系是:真菌将所吸收的水分、无机盐类和转化的有机物质,供给种子植物,而种子植物把它所制造和储藏的有机养料供给真菌。

植物生物学名词解释

植物生物学名词解释

植物生物学名词解释植物生物学是一门研究生植物的生物学科目,它不仅涉及植物的基本结构和功能,而且也涉及植物的进化、繁殖、生态和系统学等方面。

一般而言,植物学家和植物生物学家使用一些专业名词来形容植物的不同特性。

本文将介绍一些植物生物学中常见的名词,让读者更好地了解植物生物学。

一、植物结构1、根:根是植物上部构造最底层的部分,主要功能是吸收水分和养分,使植物有能力吸收营养。

2、茎:茎是植物的主干,其主要功能是支撑植物的其他部分,亦可吸收水分和营养物质,并向上部运输水分和营养物质。

3、叶:叶是植物的最上层部分,其主要功能是进行光合作用,产生氧气和食物,并进行水的蒸发。

4、花:花是植物的繁殖器官,它分男花和雌花,分别含有生殖细胞和受精细胞,可以互相交配进行繁殖。

5、果实:果实是植物结果的载体,它把种子封装在其中,以使种子可以被传播出去,使植物更容易进行繁殖。

二、植物进化1、繁殖:繁殖是植物生存的基本机制,它可以帮助植物种群在一定环境下更快地进行适应性演变。

2、自然选择:自然选择是指植物的基因在一定环境下发生改变,进而对植物的发育、表现形态和繁殖有所影响。

3、进化:进化是指植物在长期繁殖、自然选择和环境变化的作用下,慢慢进化出更适应性的基因,用以应对环境变化。

三、植物生态1、群落:群落是指植物种类在一定的自然环境中的集合,它们可以通过直接或间接的接触互相影响,影响群落的生态状况。

2、栖息地:栖息地是一种群落的基本单位,它指的是植物种类居住的地方,它可以有助于植物种类保持其种群的稳定性。

3、生态平衡:生态平衡是植物群落中种类之间和环境之间相互作用的动态平衡,影响植物种类存在的数量和分布状况。

四、植物系统学1、分类:分类是把植物按照其形态、特征和生态状况等特点进行分类的学科,它是植物群落的基础。

2、植物科:植物科是植物分类系统中的第一级,它按照植物的特征和形态将植物分类到不同的科中。

3、植物属:植物属是植物科中的一级分类,它基于根部、茎部、叶部等植物结构中特定的结构特征将植物进行分属。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、名词解释种子休眠有些植物的种子形成后,即使在适宜环境下也不立即萌发,必须经过一段相对静止的阶段才能萌发,种子的这一性质称为种子休眠。

上胚轴连接胚芽和胚根并子叶相连的短轴称为胚轴,子叶以上的胚轴称为上胚轴。

下胚轴连接胚芽和胚根并子叶相连的短轴称为胚轴,子叶以下的胚轴称为下胚轴。

有胚乳种子种子成熟后包括种皮、胚和胚乳三部分,由于养分主要储存在胚乳中,这类种子的子叶相对较薄。

例如:蓖麻、小麦等。

无胚乳种子种子成熟后仅有种皮、胚二部分,营养物质主要储存于子叶中。

例如:豆类植物。

子叶出土幼苗种子萌发时,胚根先突破种皮伸入土中形成主根,然后下胚轴迅速伸长而将子叶和胚芽一起推出土面。

如:大豆、花生、油菜等。

子叶留土幼苗种子萌发时,下胚轴不伸长,而是上胚轴伸长,所以子叶留在土中,并不随胚芽一起伸出土面,直到养料耗尽死亡。

如:豌豆、玉米、大麦等。

细胞器细胞内具有一定形态、结构和特定功能的微小结构。

原生质是指细胞内有生命的物质,是细胞结构和生命活动的物质基础。

原生质体是指细胞中细胞壁以内各种结构的总称,它是细胞各类代谢活动进行的主要场所,是细胞最重要的部分。

胞基质细胞质的重要组成部分。

由半透明的原生质胶体组成,在电子显微镜下看不出特殊结构的细胞质部分,含有与糖酵解、氨基酸合成和分解有关的酶类等重要物质,是生命活动不可缺少的部分。

细胞周期细胞分裂中,把第一次分裂结束好第二次分裂结束之间的过程(即一个间期和一个分裂期)称为一个细胞周期。

一个细胞周期包括G1期、S期、G2和M期。

纹孔植物细胞壁上的结构单位,植物细胞在形成次生壁的时候,有一些不为不沉积壁物质,因此形成一些间隙,这种在次生壁形成过程中未增厚的部分称为纹孔。

胞间连丝相邻生活细胞之间,细胞质常常以极细的细胞质丝穿过细胞壁而彼此相互联系,这种穿过细胞壁的细胞质丝称胞间连丝。

它连接相邻细胞间的原生质体,是细胞间物质、信息传输的通道。

后含物是植物细胞在代谢过程中产生的、存在于细胞质中的一些非原生质物质,它包括植物细胞储藏物质和新陈代谢废弃物,如:淀粉、蛋白质、脂类、晶体、单宁、色素等。

细胞分化同源细胞逐渐变成形态、结构、功能不相同的几类细胞群的过程。

细胞全能性生物体内,每个生活的体细胞都具有像胚性细胞那样,经过诱导能分化发育成为一个新个体的潜在能力,并且具有母体的全部的遗传信息。

组织是由来源相同,形态、结构、生理功能相同或相似的细胞组成的细胞群。

维管束由原形成层分化而来,以输导为主的复合组织,由木质部和韧皮部或加上形成层共同构成的束状结构。

维管组织由木质部和韧皮部组成的复合组织。

维管系统植物体各器官中的由维管束构成的一个连续统一的系统,主要行使输导水分、矿质和同化产物的功能。

包括了输导水分和无机盐的木质部和输导有机养料的韧皮部。

初生生长直接来自顶端分生组织的衍生细胞的增生和成熟的生长过程,称为初生生长。

初生结构在植物体的初生生长过程中所产生的各种成熟组织,共同组成的结构称为初生结构。

次生生长在植物体初生生长结束后,发生了次生分生组织的维管形成层和木栓形成层,其分裂、分化形成各种成熟组织的生长过程称为次生生长。

次生生长的结果是使根茎等器官加粗。

次生结构在植物体的次生生长过程中所产生的各种成熟组织,共同组成的结构称为次生结构。

包括了次生维管组织和周皮。

外始式根的初生木质部在发育过程中,是由外向心逐渐分化成熟的,外方先成熟的部分为原生木质部,内方后成熟的为后生木质部,这种分化方式称为外始式。

内起源侧根起源于根尖成熟区中柱鞘的一定部位,这种起源于组织内部的方式称为内起源。

根瘤豆科植物根上,常形成各种形状的瘤状突起,称为根瘤。

是根与土壤中的根瘤菌所形成的共生体。

具有固氮的功能。

菌根有些植物根常与土壤中的真菌结合在一起,形成一种真菌与根的共生体,称为菌根。

定根发生位置固定的根。

包括主根和侧根。

不定根发生位置不固定的根,如在茎、叶、老根或胚轴上不定部位上产生的根。

凯氏带双子叶植物和裸子植物在根的内皮层细胞处于初生状态时,其细胞的径向壁和横向壁上形成木栓质的带状增厚。

对根内水分吸收和运输具有控制作用。

这种带状结构是凯斯伯里于1865年发现的,因而称为凯氏带。

外起源茎上的叶和芽起源于分生组织表面第一层或第二、三层细胞,这种起源于组织表面的方式称为外起源。

树皮树皮是双子叶植物木本茎的维管形成层以外的部分。

在较老的木质茎上,树皮包括了木栓层和它外方的死组织(统称外树皮或硬树皮或落皮层),以及木栓形成层、栓内层、韧皮部(统称内树皮或软树皮)。

年轮年轮是由于维管形成层细胞的分裂活动受季节的影响的生长轮。

是多年生的木本植物茎干横断面上,所现出的若干同心轮纹。

每一轮代表着一年中产生的次生木质部,由春材(早材)和秋材(晚材)组成。

髓射线茎的初生结构中,由薄壁组织构成的中心部分称为髓。

初生维管束之间的薄壁细胞称为髓射线,也称初生射线,连接皮层和髓,具有横向运输和贮藏营养物质的功能。

维管射线在次生维管组织中,还能分别地产生新的维管射线,它是次生维管组织的横向运输系统。

维管射线为径向排列的薄壁细胞,在木质部的称木射线;在韧皮部的称韧皮射线。

叶痕叶子脱落后在茎上留下的痕迹。

叶迹是指由茎进入叶的维管束痕迹,从茎中分枝起穿过皮层到叶柄基部止的这一部分。

定芽生在枝顶或叶腋内的芽。

不定芽不是生在枝顶或叶腋内的芽。

鳞芽在外面有芽鳞包被的芽。

芽鳞具有保护芽的作用。

如:杨等的芽。

裸芽在外面没有芽鳞,只被幼叶包着的芽。

如:棉、油菜、枫杨等边材靠近树皮部分的木材,是近年形成的次生木质部,色泽较淡,具有输导和贮藏的作用,边材可以逐年向内转变为心材,因此,心材可逐年增加,而边材的厚度却相对比较稳定。

心材靠近中央部分的木材,是次生木质部的内层,近中心部分,颜色较深,导管和管胞已失去输导的功能,但管腔内充填了物质,使其支持能力加强。

春材春夏季形成层活动旺盛,细胞分裂快,形成次生木质部的导管细胞直径大,管壁较薄木纤维数目少,细胞排列疏松,这部分次生木质部的材质疏松,颜色较浅,称为早材或春材。

秋材夏末秋初气候条件渐不适宜树木生长,形成层活动减弱,细胞分裂慢,形成次生木质部的导管细胞直径较小且数量少,木纤维和管胞较多,管壁较厚,细胞排列紧密,这部分次生木质部的材质地致密,色泽较深,称为晚材或秋材。

单轴分枝又称总状分枝。

自幼苗开始,主茎顶芽的活动可持续一生,且生长势强,形成一个直立而粗壮的主轴。

如:松、杨等。

合轴分枝顶芽活动一段时间后,生长编得极缓慢乃至死亡,或分化为花或卷须等变态器官,而靠近顶芽的一个腋芽成为活动芽,形成一段枝条后,又被其侧面的下一级腋芽的活动代替,如此重复进行生长,这样的分枝方式为合轴分枝。

如:苹果、桃、葡萄等。

芽鳞痕顶芽开放后,芽鳞脱落在枝条上留下的痕迹,可依此鉴别枝条的年龄。

内始式茎的初生木质部在发育过程中,是由内向外逐渐分化成熟的,内方先成熟的部分为原生木质部,外方后成熟的为后生木质部,这种分化方式称为内始式。

等面叶叶肉不能区分为栅栏组织和海绵组织的叶。

异面叶叶肉明显区分为栅栏组织和海绵组织的叶。

完全叶具有叶片、叶柄和托叶三部分的叶,叫完全叶。

如棉花、桃、豌豆等植物的叶。

不完全叶叶片、叶柄和托叶三部分中缺少任何一部分或二部分的叶,叫不完全叶。

如樟树、大白菜等植物的叶。

C3植物维管束鞘多为两层细胞,内层为厚壁细胞,几乎不含叶绿体,外层为较大的薄壁细胞,含叶绿体比叶肉细胞少。

C4 植物维管束鞘多为一层大型薄壁细胞,整齐排列,含有比叶肉细胞较多的叶绿体。

叶序叶在茎上的排列方式称为叶序。

叶序有三种基本类型,即互生、对生和轮生。

单叶一个叶柄上只有一片叶则称为单叶。

复叶每一叶柄上有两个以上的叶片叫做复叶。

复叶的叶柄称叶轴或总叶柄,叶轴上的叶称为小叶,小叶的叶柄称小叶柄。

由于叶片排列方式不同,复叶可分为羽状复叶,掌状复叶和单身复叶等类型。

变态在长期的历史发展过程中,有些植物的器官在功能和形态结构方面发生了种种变化,并能遗传给后代,这种变异称为变态。

同源器官器官外形与功能都有差别,而个体发育来源相同者,称为同源器官。

如茎刺和茎卷须,支持根和贮藏根。

同功器官器官外形相似、功能相同,但个体发育来源不同者,称为同功器官。

如茎刺和叶刺,茎卷须和叶卷须。

额外形成层由次生结构产生的形成层,它的活动可产生三生结构,使器官加粗。

完全花由花柄、花托、花萼、花冠、雄蕊群和雌蕊群等五个部分组成的花称为完全花。

例如:桃。

不完全花缺乏花萼、花冠、雄蕊和雌蕊中的一部分或几部分的花称为不完全花。

例如:黄瓜。

花序多数的花在花轴上(总花柄,花序轴)有规律的排列方式,花轴上无典型的营养叶着生,在花粉苞片的花轴基部有苞片着生,有的苞片密集于花序之下组成总苞。

心皮心皮是构成雌蕊的单位,是具生殖作用的变态叶。

胎座子房内壁上肉质突起的结构,称为胎座,其上着生胚珠。

单雌蕊一个雌蕊由一个心皮构成的称为单雌蕊。

复雌蕊一个雌蕊由几个心皮联合而成,称复雄蕊(合生雌蕊)。

传粉指花粉粒由花粉囊中散出,经媒介的作用而传送到柱头上的过程。

双受精花粉管到达胚囊后,释放出二精子,一个与卵细胞融合,成为二倍体的受精卵(合子),另一个与两个极核(或次生核)融合,形成三倍体的初生胚乳核,卵细胞和极核同时和二精于分别完成融合的过程称双受精。

双受精是被子植物有性生殖特有的现象。

花粉败育由于种种内在和外界因素的影响,有的植物散出的花粉没有经过正常的发育,起不到生殖的作用,这一现象称为花粉败育。

雄性不育植物由于内在生理、遗传的原因,在正常自然条件下,也会产生花药或花粉不能正常地发育、成为畸形或完全退化的情况,这一现象称为雄性不育。

雄性不育可有三种表现形式:一是花药退化,二是花药内无花粉,三是花粉败育。

无融合生殖在正常.情况下,被子植物的有性生殖是经过卵细胞和精子的融合,以后发育成胚。

但在有些植物,不经过精卵融合,直接发育成胚,这类现象称无融合生殖。

无融合生殖包括孤雌生殖、无配于生殖和无孢子生殖三种类型。

孤雌生殖胚囊中的卵细胞未经受精直接发育成胚的生殖现象。

单倍体胚囊中的卵细胞,经孤雌生殖形成单倍体胚,但后代不育;二倍体胚囊中的卵细胞,经孤雌生殖形成二倍体胚,但后代可育。

单性结实不经过受精作用,子房就发育成果实,这种现象称单性结实。

单性结实过程中,于房不经过传粉或任何其他刺激,便可形成无子果实,称为营养单性结实,如香蕉,若子房必须通过诱导作用才能形成无子果实,则称为诱导单性结实(或刺激单性结实),如以马铃薯的花粉刺激番茄的柱头可得到无籽果实。

上位子房花萼、花冠和雄蕊着生点都排在子房的下面,称之为子房上位或称下位花。

下位子房花托凹下成各种形状,子房隐陷于托内,花萼、花冠和雄蕊都着生于子房之上,称之为子房下位或称上位花。

真果仅由子房发育形成的果实。

如桃、棉的果实。

相关文档
最新文档