高中数学函数试题

合集下载

(精选试题附答案)高中数学第三章函数的概念与性质真题

(精选试题附答案)高中数学第三章函数的概念与性质真题

(名师选题)(精选试题附答案)高中数学第三章函数的概念与性质真题单选题1、函数f(x)=log2x−1x的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)答案:B解析:判断函数的单调性,结合函数零点存在性定理,判断选项.f(1)=0−1=−1<0,f(2)=1−12=12>0,且函数f(x)=log2x−1x 的定义域是(0,+∞),定义域内y=log2x是增函数,y=−1x也是增函数,所以f(x)是增函数,且f(1)f(2)<0,所以函数f(x)=log2x−1x的零点所在的区间为(1,2).故选:B小提示:方法点睛:一般函数零点所在区间的判断方法是:1.利用函数零点存在性定理判断,判断区间端点值所对应函数值的正负;2.画出函数的图象,通过观察图象与x轴在给定区间上是否有交点来判断,或是转化为两个函数的图象交点判断.2、已知幂函数y=f(x)的图象过点P(2,4),则f(3)=()A.2B.3C.8D.9答案:D分析:先利用待定系数法求出幂函数的解析式,再求f(3)的值解:设f(x)=xα,则2α=4,得α=2,所以f(x)=x2,所以f(3)=32=9,故选:D3、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项.对于A ,f (x )=−x 为R 上的减函数,不合题意,舍.对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍.对于D ,f (x )=√x 3为R 上的增函数,符合题意,故选:D.4、函数f (x )在(−∞,+∞)上是减函数,且a 为实数,则有( )A .f (a )<f (2a )B .f (a 2)<f (a )C .f (a 2+1)<f (a )D .f (a 2−a )<f (a )答案:C分析:利用a =0可排除ABD ;根据函数单调性和a 2+1>a 恒成立可知C 正确.当a =0时,ABD 中不等式左右两侧均为f (0),不等式不成立,ABD 错误;∵a 2+1−a >0对于a ∈R 恒成立,即a 2+1>a 恒成立,又f (x )为R 上的减函数,∴f (a 2+1)<f (a ),C 正确.故选:C.5、“幂函数f (x )=(m 2+m −1)x m 在(0,+∞)上为增函数”是“函数g (x )=2x −m 2⋅2−x 为奇函数”的()条件A .充分不必要B .必要不充分C .充分必要D .既不充分也不必要答案:A分析:要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,求出m =1,可得函数g (x )为奇函数,即充分性成立;函数g (x )=2x −m 2⋅2−x 为奇函数,求出m =±1,故必要性不成立,可得答案. 要使函数f (x )=(m 2+m −1)x m 是幂函数,且在(0,+∞)上为增函数,则{m 2+m −1=1m >0,解得:m =1,当m =1时,g (x )=2x −2−x ,x ∈R , 则g (−x )=2−x −2x =−(2x −2−x )=−g (x ),所以函数g (x )为奇函数,即充分性成立;“函数g (x )=2x −m 2⋅2−x 为奇函数”,则g (x )=−g (−x ),即2x −m 2⋅2−x =−(2−x −m 2⋅2x )=m 2⋅2x −2−x ,解得:m =±1,故必要性不成立,故选:A .6、若函数f (x )=x ln (x +√a +x 2)为偶函数,则a 的值为( )A .0B .1C .﹣1D .1或﹣1答案:B分析:由f (x )=x ln (x +√a +x 2)为偶函数,则设g (x )=ln (x +√a +x 2)是奇函数,由g (0)=0,可求出答案.解:∵函数f (x )=x ln (x +√a +x 2)为偶函数,x ∈R ,∴设g (x )=ln (x +√a +x 2)是奇函数,则g (0)=0,即ln √a =0,则√a =1,则a =1.故选:B .7、设函数f(x)=x 2+2(4−a)x +2在区间(−∞,3]上是减函数,则实数a 的取值范围是( )A .a ≥−7B .a ≥7C .a ≥3D .a ≤−7答案:B分析:根据二次函数的图象和性质即可求解.函数f(x)的对称轴为x=a−4,又∵函数在(−∞,3]上为减函数,∴a−4⩾3,即a⩾7.故选:B.小提示:本题考查由函数的单调区间求参数的取值范围,涉及二次函数的性质,属基础题.8、若函数y=f(x)在R上单调递增,且f(2m−3)>f(−m),则实数m的取值范围是()A.(−∞,−1)B.(−1,+∞)C.(1,+∞)D.(−∞,1)答案:C分析:由单调性可直接得到2m−3>−m,解不等式即可求得结果.∵f(x)在R上单调递增,f(2m−3)>f(−m),∴2m−3>−m,解得:m>1,∴实数m的取值范围为(1,+∞).故选:C.9、已知f(x)是定义在(−2,2)上的单调递减函数,且f(2a−3)<f(a−2),则实数a的取值范围是()A.(0,4)B.(1,+∞)C.(12,52)D.(1,52)答案:D分析:根据函数自变量的定义域以及函数单调递减列式,求出a的取值范围. ∵f(x)是定义在(−2,2)上的单调递减函数,且f(2a−3)<f(a−2),则{2a−3>a−2−2<a−2<2−2<2a−3<2,解得1<a<52故选:D..10、已知f(x+1)=x−5,则f(f(0))=()A.−9B.−10C.−11D.−12答案:D分析:根据f(x+1)=x−5,利用整体思想求出f(x)的解析式,求得f(0),从而即求出f(f(0)).解:因为f(x+1)=x−5=(x+1)−6,所以f(x)=x−6,f(0)=−6,所以f(f(0))=f(−6)=−12.故选:D.填空题11、设函数f(x)=x3+(x+1)2x2+1在区间[−2,2]上的最大值为M,最小值为N,则(M+N−1)2022的值为______. 答案:1分析:先将函数化简变形得f(x)=x 3+2xx2+1+1,然后构造函数g(x)=x3+2xx2+1,可判断g(x)为奇函数,再利用奇函数的性质结合f(x)=g(x)+1可得M+N=2,从而可求得结果由题意知,f(x)=x 3+2xx2+1+1(x∈[−2,2]),设g(x)=x 3+2xx2+1,则f(x)=g(x)+1,因为g(−x)=−x 3−2xx2+1=−g(x),所以g(x)为奇函数,g(x)在区间[−2,2]上的最大值与最小值的和为0,故M+N=2,所以(M+N−1)2022=(2−1)2022=1.所以答案是:112、若幂函数y=f(x)的图像经过点(18,2),则f(−18)的值为_________.答案:−2分析:根据已知求出幂函数的解析式f(x)=x −13,再求出f(−18)的值得解. 设幂函数的解析式为f(x)=x a ,由题得2=(18)a =2−3a ,∴−3a =1,∴a =−13,∴f(x)=x −13. 所以f(−18)=(−18)−13=(−12)3×(−13)=−2.所以答案是:−2.小提示:本题主要考查幂函数的解析式的求法和函数值的求法,意在考查学生对这些知识的理解掌握水平.13、若函数f (x )={−x 2+x,x >00,x =0ax 2+x,x <0是奇函数,则实数a 的值为___________.答案:1分析:利用奇函数的性质进行求解.若f(x)是奇函数,则有f (−x )=−f (x ).当x >0时,−x <0,则f (−x )=a (−x )2+(−x )=ax 2−x ,又当x >0时,f (x )=−x 2+x ,所以−f (x )=x 2−x ,由f (−x )=−f (x ),得ax 2−x =x 2−x ,解得a =1.所以答案是:1.14、设函数f (x )={x,x ≤1,(x −1)2+1,x >1,则不等式f (1−|x |)+f (2)>0的解集为________. 答案:(−3,3)分析:根据分段函数的单调性,把问题中的函数值大小比较转化为自变量大小比较,从而求得解集. 由函数解析式知f(x)在R 上单调递增,且−f(2)=−2=f(−2),则f (1−|x |)+f (2)>0⇒f (1−|x |)>−f (2)=f(−2),由单调性知1−|x |>−2,解得x ∈(−3,3)所以答案是:(−3,3)小提示:关键点点睛:找到函数单调性,将函数值大小比较转化为自变量大小比较即可.15、已知函数f(x)=x3+3x,若f(a+3)+f(a−a2)>0恒成立,则实数a的取值范围是________. 答案:(−1,3)分析:先判断函数f(x)的奇偶性和单调性,根据奇偶性和单调性脱掉f,再解不等式即可.f(x)=x3+3x的定义域为R,因为f(−x)=−x3−3x=−(x3+3x)=−f(x),所以f(x)=x3+3x为奇函数,因为y=x3和y=3x都是R上的增函数,所以f(x)=x3+3x在R上单调递增,由f(a+3)+f(a−a2)>0可得f(a+3)>−f(a−a2)=f(a2−a),可得a+3>a2−a,即a2−2a−3<0,解得:−1<a<3,所以实数a的取值范围是(−1,3),所以答案是:(−1,3).解答题16、判断下列函数的奇偶性:(1)f(x)=x4−2x2;(2)f(x)=x5−x;(3)f(x)=3x;1−x2(4)f(x)=|x|+x.答案:(1)偶函数(2)奇函数(3)奇函数(4)非奇非偶函数分析:(1)利用偶函数的定义可判断函数的奇偶性;(2)利用奇函数的定义可判断函数的奇偶性;(3)利用奇函数的定义可判断函数的奇偶性;(4)利用反例可判断该函数为非奇非偶函数.(1)f(x)的定义域为R,它关于原点对称.f(−x)=(−x)4−2(−x)2=x4−2x2=f(x),故f(x)为偶函数. (2)f(x)的定义域为R,它关于原点对称.f(−x)=(−x)5−(−x)=−x5+x=−f(x),故f(x)为奇函数. (3)f(x)的定义域为(−∞,−1)∪(−1,1)∪(1,+∞),它关于原点对称. f(−x)=−3x=−f(x),故f(x)为奇函数.1−(−x)2(4)f(1)=|1|+1=2,f(−1)=0,故f(1)≠f(−1),f(−1)≠−f(1),故f(x)为非奇非偶函数. 17、已知f(x)=1(x∈R,x≠-2),g(x)=x2+1(x∈R).x+2(1)求f(2),g(2)的值;(2)求f(g(3))的值;(3)作出f(x),g(x)的图象,并求函数的值域.答案:(1)14,5;(2)112;(3)图见解析,f (x )的值域为(-∞,0)∪(0,+∞),g (x )的值域为[1,+∞). 分析:(1)将2代入f (x ),g (x )计算即得;(2)先求出g (3),再将所求得的值代入f (x )计算得解;(3)用描点法作出f (x ),g (x )的图象,根据图象求出它们的值域.(1)f (2)=12+2=14,g (2)=22+1=5;(2)g (3)=32+1=10,f (g (3))=f (10)=110+2=112;(3)函数f (x )的图象如图:函数g (x )的图象如图:观察图象得f (x )的值域为(-∞,0)∪(0,+∞),g (x )的值域为[1,+∞).18、已知幂函数f (x )=(2m 2−5m +3)x m 的定义域为全体实数R.(1)求f (x )的解析式;(2)若f (x )>3x +k −1在[−1,1]上恒成立,求实数k 的取值范围.答案:(1)f (x )=x 2(2)(−∞,−1)分析:(1)根据幂函数的定义可得2m 2−5m +3=1,结合幂函数的定义域可确定m 的值,即得函数解析式;(2)将f (x )>3x +k −1在[−1,1]上恒成立转化为函数g (x )=x 2−3x +1−k 在[−1,1]上的最小值大于0,结合二次函数的性质可得不等式,解得答案.(1)∵f (x )是幂函数,∴2m 2−5m +3=1,∴m =12或2.当m =12时,f (x )=x 12,此时不满足f (x )的定义域为全体实数R ,∴m =2,∴f (x )=x 2.(2)f (x )>3x +k −1即x 2−3x +1−k >0,要使此不等式在[−1,1]上恒成立,令g (x )=x 2−3x +1−k ,只需使函数g (x )=x 2−3x +1−k 在[−1,1]上的最小值大于0. ∵g (x )=x 2−3x +1−k 图象的对称轴为x =32,故g (x )在[−1,1]上单调递减, ∴g (x )min =g (1)=−k −1,由−k −1>0,得k <−1,∴实数k 的取值范围是(−∞,−1).19、若函数f(x)的定义域为[0,1],求g(x)=f(x +m)+f(x −m)(m >0)的定义域.答案:分类讨论,答案见解析.分析:根据复合函数的定义域的求法,建立不等式组即可得到结论.解:∴f(x)的定义域为[0,1],∴g(x)=f(x +m)+f(x −m)中的自变量x 应满足{0⩽x +m ⩽1,0⩽x −m ⩽1,即{−m ⩽x ⩽1−m,m ⩽x ⩽1+m.当1−m =m ,即m =12 时,x =12 ;当1−m >m ,即0<m <12 时,m ⩽x ⩽1−m ,如图:当1−m<m,即m>12时,x∈∅,如图综上所述,当0<m<12时,g(x)的定义域为[m,1−m];当m=12时,g(x)的定义域为{12};当m>12时,函数g(x)不存在.小提示:本题主要考查函数定义域的求法,根据复合函数的定义域之间的关系是解决本题的关键,属于中档题.。

高中数学试题及答案大全

高中数学试题及答案大全

高中数学试题及答案大全一、选择题(每题3分,共30分)1. 若函数f(x)=2x+1,则f(-1)的值为()。

A. -1B. 1C. 3D. -32. 下列哪个选项是不等式x^2 - 4x + 3 < 0的解集()。

A. (1, 3)B. (-∞, 1) ∪ (3, +∞)C. (-∞, 1) ∪ (3, +∞)D. (1, 3)3. 圆心在原点,半径为5的圆的方程是()。

A. x^2 + y^2 = 25B. x^2 + y^2 = 5C. (x-5)^2 + y^2 = 25D. (x+5)^2 + y^2 = 254. 函数y = 3x - 2的反函数是()。

A. y = (x + 2) / 3B. y = (x - 2) / 3C. y = 3x + 2D. y = 3x - 25. 集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的元素个数是()。

A. 1B. 2C. 3D. 46. 函数y = sin(x)在区间[0, π]上的最大值是()。

A. 0B. 1C. -1D. π7. 直线y = 2x + 3与x轴的交点坐标是()。

A. (-3/2, 0)B. (3/2, 0)C. (0, -3)D. (0, 3)8. 抛物线y = x^2 - 4x + 3的顶点坐标是()。

A. (2, -1)B. (2, 1)C. (-2, -1)D. (-2, 1)9. 等差数列{an}的首项a1 = 2,公差d = 3,则第五项a5的值为()。

A. 17B. 14C. 10D. 710. 函数y = ln(x)的定义域是()。

A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. (-∞, 0) ∪ (0, +∞)二、填空题(每题4分,共20分)1. 函数f(x) = x^3 - 3x^2 + 2的极大值点是______。

2. 等比数列{bn}的首项b1 = 4,公比q = 1/2,则第六项b6的值为______。

数学高中试题及答案

数学高中试题及答案

数学高中试题及答案一、选择题(每题4分,共40分)1. 若函数\( f(x) = ax^2 + bx + c \)的图像经过点(1, 2),则下列哪个选项是正确的?A. \( a + b + c = 2 \)B. \( a + b + c = 1 \)C. \( a + b + c = 0 \)D. \( a + b + c = 3 \)答案:A2. 已知集合A={1, 2, 3},集合B={2, 3, 4},那么A∩B等于:A. {1, 2, 3}B. {2, 3}C. {1, 4}D. {4}答案:B3. 函数\( y = \frac{1}{x} \)在点(1, 1)处的切线斜率是:A. 0B. 1C. -1D. 不存在答案:C4. 若\( \sin x = \frac{1}{2} \),则\( \cos 2x \)的值是:A. 0B. 1C. -1D. \( \frac{1}{2} \)答案:A5. 圆的方程为\( x^2 + y^2 - 6x - 8y + 25 = 0 \),则圆心坐标是:A. (3, 4)B. (-3, -4)C. (0, 0)D. (3, -4)答案:A6. 等差数列的前三项依次为2, 5, 8,则该数列的公差是:A. 1B. 2C. 3D. 4答案:B7. 已知\( \log_2 8 = 3 \),则\( \log_2 32 \)的值是:A. 5B. 4C. 6D. 3答案:A8. 函数\( y = x^3 - 3x^2 + 4 \)的极大值点是:A. (1, 2)B. (2, 2)C. (0, 4)D. (3, 4)答案:A9. 抛物线\( y = x^2 - 4x + 3 \)的顶点坐标是:A. (2, 1)B. (2, -1)C. (-2, 1)D. (-2, -1)答案:A10. 已知\( \tan \alpha = 2 \),则\( \sin \alpha \)的值是:A. \( \frac{2}{\sqrt{5}} \)B. \( \frac{1}{\sqrt{5}} \)C. \( \frac{2}{\sqrt{3}} \)D. \( \frac{1}{\sqrt{3}} \)答案:A二、填空题(每题4分,共20分)11. 函数\( y = \sqrt{x} \)的定义域是 ________。

高一数学必修一函数各章节测试题4套

高一数学必修一函数各章节测试题4套

函数的性质测试题一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根 6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若 函 数()()2212f x x a x =+-+在区间 (]4,∞-上是减 函 数,则 实 数a 的 取值范 围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( ) A .(10)(13)(15)f f f << B .(13)(10)(15)f f f << C .(15)(10)(13)f f f << D .(15)(13)(10)f f f <<二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。

高中必修1函数数学试卷

高中必修1函数数学试卷

是R上的单调递增函数,则实数a的取值范围为( ) A.(1,+∞) B.[4,8) C.(4,8) D.(1,8) 9.下列函数中,既是奇函数又是增函数的为( )A. y=x+1 B.y=﹣x3 C.y=x-1 D.y=x|x|
10.函数 ,则该函数为( ) A.单调递增函数,奇函数 B.单调递增函数,偶函数 C.单调 递减函数,奇函数 D.单调递减函数,偶函数 11.下列函数中,在(0,+∞)上为增函数的是( )A.y=(x ﹣1)2 B.y=x2 C.y=(0.5)x D.y=3/x 12.x为实数,[x]表示不超过x的最大整数,则函数f(x)=x﹣ [x]在R上为( ) A.周期函数 B.奇函数 C.偶函数 D.增函数 二.填空题(共4小题)13.已知全集U=R,集合P={x||x﹣2| ≥1},则P= . 14.已知集合A={0,1,2},则A的子集的个数 为 . 15.已知集合A={1},B={﹣1,2m﹣1},若AB,则实数m的 值为 . 16.设A={x|1≤x≤3},B={x|m+1≤x≤2m+4,m∈R},AB,则m 的取值范围是 . 三.解答题(共6小题) 17.设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2﹣1=0},其中 x∈R,如果A∩B=B,求实数a的取值范围.
D.y=x+ex 4.已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|
≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1) ∈A,(x2,y2)∈B},则A⊕B中元素的个数为( ) A.77 B.49 C.45 D.30 5.设集合A={x|﹣1<x<2},集合B={x|1<x<3},则 A∪B=( ) A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D. {x|2<x<3} 6.已知函数f(x)的定义域为(﹣1,0),则函数f(2x+1) 的定义域为( ) A.(﹣1,1)B. C.(﹣1,0)D. 7.函数y= 的定义域是( )A.{x|x> } B.{x|x≠0,x∈R} C.{x|x< } D.{x|x≠ ,x∈R} 8.f(x)=

高中数学_经典函数试题及答案

高中数学_经典函数试题及答案

高中数学_经典函数试题及答案【第一份试题】1. 已知函数 y = f(x) 满足 f(2) = 1,f'(x) = 2x - 3。

求函数 f(x) 的解析式。

解答:根据题意,已知了 f'(x) = 2x - 3,因此函数 f(x) 的原函数为 F(x) = x^2 - 3x + C,其中 C 为常数。

根据 f(2) = 1,可得到 F(2) = 1,代入原函数求得 C = 0。

所以函数 f(x) 的解析式为 f(x) = x^2 - 3x。

2. 若函数 f(x) = 2x^3 + 4x + c 是奇函数,求常数 c 的值。

解答:根据题意,函数 f(x) 是奇函数,即满足 f(-x) = -f(x)。

代入函数 f(x) = 2x^3 + 4x + c,得到 -2x^3 - 4x - c = 2x^3 + 4x + c,整理得到 4x^3 + 8x + 2c = 0。

对比系数可得 -c = 2c,解得 c = 0。

所以常数 c 的值为 0。

3. 已知函数 f(x) = (x - 1) / (x + 1),求函数 f(x) 的反函数。

解答:要求函数 f(x) 的反函数,可以将 y(即 f(x))与 x 对调位置,并解出 x 关于 y 的表达式。

首先,将函数 f(x) 表示为 y = (x - 1) / (x + 1)。

交换 x 和 y,得到 x = (y - 1) / (y + 1)。

解以上方程,可以得到 y = (x + 1) / (x - 1)。

所以函数f(x) 的反函数为 f^(-1)(x) = (x + 1) / (x - 1)。

【第二份试题】1. 已知函数y = f(x) = 3sin(2x + π/4),求 f(x) 的周期和最大值、最小值。

解答:对于函数 y = 3s in(2x + π/4),参数 2 决定了正弦函数的周期。

周期T = 2π / 2 = π。

最大值和最小值可以通过观察正弦函数的图像得出。

超全高中数学函数专项练习题目

超全高中数学函数专项练习题目

一、图形判断1、如图放置的边长为1的正方形PABC 沿x 轴滚动。

设顶点p (x ,y )的纵坐标与横坐标的函数关系是()y f x =,则()f x 的最小正周期为 ;()y f x =在其两个相邻零点间的图像与x 轴所围区域的面积为 。

2、函数y=ax 2+ bx 与y= ||log b ax (ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是( )3、如图,质点p 在半径为2的圆周上逆时针运动,其初始位置为0p (2,2-),角速度为1,那么点p 到x 轴距离d 关于时间t 的函数图像大致为( )4、函数22xy x =-的图像大致是( )5、如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t 时刻五角星露出水面部分的图形面积为()((0)0)S t S =,则导函数'()y S t =的图像大致为( A )函数专题训练6、设)()(,2b x a x y b a --=<函数的图像可能是( )7、函数xx xx ee e e y ---+=的图象大致为 ( )8、设0>abc ,二次函数c bx ax x f ++=2)(的图象可能是( )9、函数)01(112≤≤--+=x x y 的反函数图像是( )10、函数ln cos ()22y x x ππ=-<<的图象是( )11、函数x y 2log =的图象大致是 ( )二、定义域及X 的特定取值范围1、设函数()f x 满足4)(2-=x x f ,则(){}20x f x -=>( ) (A ){}2x x x <-或>4 (B ){}0x x x <或>4(C ){}0x x x <或>6(D ){}2x x x <-或>22、若0x 是方程31)21(x x=的解,则0x 属于区间( )(A )(1,32). (B )(32,21). (C )(21,31) (D )(31,0) 3、下列函数)(x f 中,满足“对任意1x ,2x ∈),0(+∞,当21x x <时,都有)()(21x f x f >”的是( )A .xx f 1)(=B .2)1()(-=x x fC .xe xf =)(D .)1(1)(+=x n x f4、已知偶函数x f x f x f 的则满足上单调增加在区间)31()12(,),0()(<-+∞取值范围是( )A .)32,31(B .]32,31[C .)32,21(D .]32,21[5、已知定义在R 上的奇函数)(x f ,满足)()4(x f x f -=-,且在区间]2,0[上是增函数,若方程)0()(>=m m x f 在区间]8,8[-上有四个不同的根4321,,,x x x x ,则4321x x x x +++=( )A 、—8B 、8C 、4D 、—4三、值域及最值1、)13(log )(2+=xx f 的值域为( )(A )(0,)+∞ (B )[)0,+∞(C )(1,)+∞(D )[)1,+∞2、已知0t >,则函数241t t y t-+=的最小值为____________ .四、函数值1、已知函数)(x f 满足:41)1(=f ,()()()()()4,f x f y f x y f x y x y R =++-∈, 则()2010f =_____________.2、已知函数f (x )={3x log x, x 0,2, x 0,≤则f 19f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=( )A .4B .14C .-4D .-143、若)(x f 是R 上周期为5的奇函数,且满足,2)2(,1)1(==f f 则)4()3(f f -=( )(A )-1(B )1(C )-2(D )24、552log 10log 0.25+=( )(A )0(B )1(C ) 2 (D )45、已知定义在R 上的函数)(x f 是奇函数且满足 3)2(),()23(=-=-f x f x f ,数列}{n a 满足1=n a ,且n a S n n +=2(n S 为n a 的前n 项和)。

数学试题及答案高中

数学试题及答案高中

数学试题及答案高中一、选择题(每题3分,共30分)1. 函数f(x) = 2x^3 - 3x^2 + 1的导数是:A. 6x^2 - 6xB. 6x^2 - 3xC. 6x^2 - 6x + 1D. 6x^2 - 6x - 12. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 43. 直线y = 2x + 1与x轴的交点坐标为:A. (0, 1)B. (-1/2, 0)C. (1/2, 0)D. (0, -1)4. 一个几何体的体积为V,表面积为S,若体积扩大到原来的8倍,则表面积扩大到原来的:A. 2倍B. 4倍C. 8倍D. 16倍5. 一个等差数列的前三项为1,3,5,则该数列的第n项为:A. 2n - 1B. 2n + 1C. 2n - 3D. 2n + 36. 已知函数f(x) = x^2 - 4x + 3,g(x) = x + 1,则f(g(x))的解析式为:A. x^2 - 2x + 1B. x^2 - 6x + 8C. x^2 - 4x + 4D. x^2 - 6x + 47. 一个圆的半径为r,圆心到直线的距离为d,若圆与直线相切,则d 等于:A. rB. r/2C. 2rD. 08. 已知复数z = 1 + i,则|z|的值为:A. √2B. 2C. 1D. 09. 函数f(x) = sin(x) + cos(x)的最大值为:A. 1B. √2C. 2D. 010. 已知等比数列的前三项为2,6,18,则该数列的公比为:A. 3B. 1/3C. 2D. 1/2二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 - 6x + 8,求f(1)的值为_________。

12. 已知向量a = (3, -1),b = (2, 4),则向量a·b的值为_________。

13. 已知双曲线x^2/9 - y^2/16 = 1的焦点坐标为(±5, 0),则该双曲线的离心率为_________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数测试题
一、 选择题。

1. 函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是( )
A .0=x
B .1-=x
C .21
=x D .21-=x
2. 已知1,10-<<<b a ,则函数b a y x +=的图象不经过( )
A .第一象限
B .第二象限
C . 第三象限
D . 第四象限
3. 函数62ln -+=x x y 的零点必定位于区间( )
A .(1,2)
B .(2,3)
C .(3,4)
D .(4,5)
4. 给出四个命题:
(1)当0=n 时,n x y =的图象是一条直线;
(2)幂函数图象都经过(0,1)、(1,1)两点;
(3)幂函数图象不可能出现在第四象限;
(4)幂函数n x y =在第一象限为减函数,则n 0<。

其中正确的命题个数是 ( )
A .1
B .2
C .3
D .4
5. 设)(x f 是奇函数,当0>x 时,,log )(2x x f =则当0<x 时,=)(x f ( )
A .x 2log -
B .)(log 2x -
C .x 2log
D .)(log 2x --
6. 对一切实数x ,不等式1||2++x a x ≥0恒成立,则实数a 的取值范围是 ( )
A .-∞(,-2]
B .[-2,2]
C .[-2,)+∞
D .[0,)+∞
7. 已知)(x f 是周期为2的奇函数,当10<<x 时,.lg )(x x f =设
),23(),56(f b f a ==),2
5(f c =则 ( )
A .c b a <<
B . c a b <<
C . a b c <<
D . b a c <<
8. 已知01<<<<a y x ,则有 ( )
A .0)(log <xy a
B .1)(log 0<<xy a
C .1<0)(log <xy a
D .2)(log >xy a
9. 当[]2,0∈x 时,函数3)1(4)(2--+=x a ax x f 在2=x 时取得最大值,
则a 的取值范围是 A.1[,)2-
+∞ B. [)+∞,0 C. [)+∞,1 D.2[,)3+∞ 10. 已知(31)4,1()log ,
1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是
A.(0,1)
B.1(0,)3
C.1[,1)7
D.11[,)73
11. 某种电热水器的水箱盛满水是200升,加热到一定温度,即可用来洗浴。

洗浴时,已知每分钟放水34升,在放水的同
时按4升/分钟的匀加速度自动注水。

当水箱内的水量达到最
小值时,放水程序自动停止,现假定每人洗浴用水量为65升,
则该热水器一次至多可供( )
A .3人洗浴
B .4人洗浴
C .5人洗浴
D .6人洗
二、填空题。

12. 若函数14455ax y a x +⎛⎫=≠ ⎪+⎝⎭
的图象关于直线y x =对称,则a = 。

13. 若函数)34(log 2++=kx kx y a 的定义域是R,则k 的取值范围
是 .
14. 函数],1,1[,122)(-∈++=x a ax x f 若)(x f 的值有正有负,则实数a
的取值范围为 .
15. 设()f x 是定义在R 上的以3为周期的奇函数,若
23(1)1,(2)1a f f a ->=
+,则a 的取值范围是 。

16. 给出下列命题:
①函数)1,0(≠>=a a a y x 与函数x
a a y log =)1,0(≠>a a 的定义域相同;
②函数3x y =与x y 3=的值域相同;
③函数12121-+=x y 与函数x x x y 2)21(2⋅+=均是奇函数;
④函数2)1(-=x y 与12-=x y 在+R 上都是增函数。

其中正确命题的序号是 .
三、 解答题。

17. 设0>a ,x x e a a e x f +=)(是R 上的偶函数。

⑴求a 的值;
⑵证明:)(x f 在()+∞,0上是增函数。

18. 已知集合A ={|(2)[(31)]0}x x x a --+<,B =22{|0}(1)
x a x x a -<-+. (1)当
a =2时,求A B ;
(2)求使B ⊆A 的实数a 的取值范围.
19. 已知方程022=++ax x ,分别在下列条件下,求实数a 的取值范围。

⑴方程的两根都小于1-;
⑵方程的两个根都在区间)0,2(-内;
⑶方程的两个根,一个根大于1-,一个根小于1-。

20. 已知函数)1,0)(1(log )(),1(log )(≠>-=+=a a x x g x x f a a 且其中
⑴求函数)()(x g x f +的定义域;
⑵判断函数)()(x g x f -的奇偶性,并予以证明; ⑶求使)()(x g x f +<0成立的x 的集合。

21. 函数)(x f 对任意R b a ∈,都有,1)()()(-+=+b f a f b a f 并且当
0>x 时1)(>x f 。

求证:函数)(x f 是R 上的增函数。

22. 设二次函数2()(,,)f x ax bx c a b c R =++∈满足下列条件: ①当x ∈R 时,()f x 的最小值为0,且f (x -1)=f (-x-1)成立; ②当x ∈(0,5)时,x ≤()f x ≤21x -+1恒成立。

(1)求(1)f 的值;
(2)求()f x 的解析式;
(3)求最大的实数m(m>1),使得存在实数t,只要当x ∈[]1,m 时,
就有()
+≤成立。

f x t x。

相关文档
最新文档