多级离心泵的平衡机构
多级离心泵常见的轴向力平衡装置

多级离心泵常见的轴向力平衡装置軸向力平衡装置的选取是多级离心泵设计中的关键问题,其目的是平衡轴向力,防止转子的轴向窜动。
文章分析了多级离心泵轴向力产生原因,并介绍了常用的平衡装置。
标签:多级泵;轴向力;平衡装置引言多级离心泵在电力、石油化工等行业被广泛应用。
轴向力平衡装置的选取是泵组设计的关键问题,检查平衡装置是否需要更换或优化也是多级离心泵维修中的一项重要工作。
泵组运转过程中,若平衡装置不能中和泵组产生的轴向力,则会造成泵动静部件摩擦而降低效率,严重时泵转子与各静部件咬死而导致泵损坏。
1 轴向力的产生多级离心泵运行过程中产生的轴向力包括以下几种:因作用在各叶轮吸入端(驱动端)和吐出端(自由端)的压力不相等,从而产生指向泵驱动端的轴向力;液体从吸入口到排出口改变方向时作用在叶片上的力,指向叶轮背面,称为动反力;由于泵内叶轮进口压力与外部大气压不同,在轴端和轴台阶上产生的轴向力;立式泵转子重量引起的向下的轴向力;其他轴向力。
2 轴向力的平衡装置总轴向力会使转子轴向窜动,造成泵动静部件摩擦,而平衡装置的两端有一个压力差,其中的液体形成一个与总轴向力方向相反的平衡力,平衡力大小随平衡盘的移动而变化,直到与轴向力抵消,但由于惯性的作用转子不会立即停止窜动,而是在平衡位置左右窜动且幅度不断减小,最终停留在平衡位置,故随着运行工况的变化,泵转子始终处于动态平衡状态。
平衡装置的设计为多级离心泵设计中的重点,包括叶轮对称布置(适用于偶数级泵)与平衡盘(鼓)法两大类,平衡盘(鼓)法又包括平衡鼓、平衡盘、平衡盘鼓、双平衡鼓形式,随着结构的逐渐复杂,平衡效果也越好。
平衡盘(鼓)法多与推力轴承配合使用,推力轴承一般只承受5%~10%的轴向力,在设计平衡盘(鼓)时,一般不考虑推力轴承平衡的轴向力,保证泵在推力轴承损坏的情况下,平衡盘(鼓)仍能正常工作。
2.1 叶轮对称布置法叶轮级数为偶数时可采用叶轮对称布置法平衡轴向力,设计上要注意反向叶轮入口前的密封节流衬套尺寸要与叶轮轮毂尺寸一致。
多级离心泵平衡盘

多级离心泵平衡盘
多级离心泵平衡盘是多级离心泵的一个重要组成部分,用于实现流体的平衡和调节。
离心泵平衡盘通常由两个或多个平衡盘组成,每个平衡盘之间都有一定的间隙,通过这些间隙的流体通道,实现不同级别流道之间的压力平衡和流量调节。
平衡盘的作用是在每个泵级之间分隔流体,使得每个泵级所承受的压力相对均衡,从而减小泵叶轮受到的径向力和轴向力,提高泵的运行稳定性和寿命。
同时,通过调整平衡盘之间的间隙和通道面积,可以实现对流量的调节,满足不同工况下的需求。
离心泵平衡盘通常采用金属材料制作,如不锈钢、铜合金等,以确保其具有足够的强度和耐腐蚀性能。
在泵的设计和制造过程中,需要根据实际工况和要求进行合理的平衡盘设计,并考虑到流体的压力、温度、粘度等因素,以确保泵的运行效果和安全性能。
多级离心泵平衡盘作用

多级离心泵平衡盘作用嘿,朋友!想象一下这样一个场景,在一个巨大的工厂车间里,机器轰鸣,工人们忙忙碌碌。
而在这一片繁忙之中,多级离心泵就像一位不知疲倦的大力士,默默地承担着输送液体的重任。
那你知道在这多级离心泵中,有一个很重要的部件叫平衡盘吗?它的作用可不容小觑!先来说说多级离心泵工作时面临的挑战吧。
它就像一个在长跑中不断加速的运动员,随着级数的增加,内部的压力差也会越来越大。
如果没有平衡盘这个“小助手”,那可就乱套啦!平衡盘就像是一位神奇的平衡大师。
当泵在运转时,它能巧妙地平衡掉轴向力。
你可能会问,轴向力是啥?简单来说,就是泵在工作时,由于叶轮前后压力不同而产生的一种让泵“跑偏”的力。
这股力要是不被平衡掉,那泵就像个醉汉一样,摇摇晃晃,不仅工作效率低下,还可能很快就出现故障。
咱们来想象一下,如果没有平衡盘,多级离心泵就像一辆失去平衡的自行车,你骑着它能稳当吗?肯定不行!而有了平衡盘,就相当于给自行车安装了一个稳定器,让你可以轻松地在路上飞驰。
平衡盘是怎么做到平衡轴向力的呢?它就像是一个聪明的调解官。
当轴向力出现不平衡时,平衡盘会通过自身的移动来调整两侧的压力差,从而达到新的平衡状态。
这就好比两个人在拔河,平衡盘就是那个公正的裁判,根据双方的力量随时调整,让比赛保持公平和稳定。
在实际的运行中,工人们对平衡盘也是充满了依赖和信任。
每次对泵进行维护和检查时,都会特别留意平衡盘的状态。
要是发现它有一点“不舒服”,那可不得了,得赶紧给它“治病”。
你看,平衡盘虽然个头不大,但在多级离心泵的世界里,它可是个举足轻重的角色。
它默默工作,保障着泵的稳定运行,让工厂的生产能够顺利进行。
所以说,多级离心泵的平衡盘作用巨大,是维持其高效稳定工作不可或缺的一部分!。
自平衡多级离心泵与普通多级离心泵区别

自平衡多级离心泵与普通多级离心泵区别离心泵是一种广泛应用于工业、农业、建筑等领域的流体输送设备,它能够将液体通过旋转叶轮的作用产生离心力,从而将液体输送到更高的位置。
在离心泵中,自平衡多级离心泵和普通多级离心泵是两种常见的类型,它们在结构和性能上存在一些明显的区别。
本文将分别对自平衡多级离心泵和普通多级离心泵进行介绍,深入探讨它们之间的区别。
一、自平衡多级离心泵自平衡多级离心泵是一种采用自平衡结构设计的离心泵,其主要特点是具有自动平衡功能,能够在输送高温液体或液体温度变化较大的情况下保持稳定的工作状态。
自平衡多级离心泵通常采用轴向吸入、径向排出的结构设计,能够有效提高泵的整体效率和性能稳定性。
在工作过程中,自平衡多级离心泵能够自动调节叶轮的位置,使得泵的运行更加平稳,并且减少了对轴承和密封件的磨损,延长了泵的使用寿命。
普通多级离心泵是一种传统的离心泵类型,其结构相对简单,主要由泵壳、叶轮、轴和密封件等部件组成。
普通多级离心泵通常需要外部辅助装置来实现平衡和稳定的工作状态,比如安装平衡油环或者利用外部机械密封来实现密封性能。
在输送高温液体或者液体温度变化较大的情况下,普通多级离心泵的性能可能会受到影响,泵的稳定性和效率均会下降。
1. 自动平衡功能:自平衡多级离心泵具有自动平衡功能,能够在工作过程中自动调节叶轮的位置,保持泵的稳定运行状态;而普通多级离心泵需要外部辅助装置来实现平衡和稳定的工作状态。
2. 效率和稳定性:自平衡多级离心泵采用轴向吸入、径向排出的结构设计,能够提高泵的整体效率和性能稳定性,特别适用于输送高温液体或者液体温度变化较大的工况;而普通多级离心泵在这种工况下,可能会出现性能下降和稳定性不足的情况。
3. 使用寿命:由于自平衡多级离心泵能够减少对轴承和密封件的磨损,因此能够延长泵的使用寿命;而普通多级离心泵由于缺乏自动平衡功能,需要依赖外部辅助装置来实现平衡和稳定的工作状态,因此对轴承和密封件的磨损更大,使用寿命相对较短。
多级离心泵常见的轴向力平衡装置

究方 向: 采购 管理。
6结束 语
些无人值守岗位的需求, 可是实现其远程控制。
参 考文献
智能电话远程控制系统设计采用了 2 8 个引脚的 P I C 1 6 F 7 3 单片机 作为系统的核心信息检测 、 信息处理 , 以及控制实现的实现模块 , 充分 利用硬件资源和单片机内部结构资源, 并充分结合软件编程, 使其发挥 最大作用实现了对语音、 密码 、 显示等服务, 丰富了设计的功能 , 系统运 行更 加人性化 , 有 很强 的可操作性 。该 系统做 到了高稳定 性 、 低成本 、 小 体积 、 内嵌容易, 可以远程通过语音提示 , 实现人机交互 , 实现对家里面 空调器、 洗衣机、 电饭煲、 电灯等设备的开关实现 ; 符合未来家电的智能 化、 网络化发展方向。另外 , 本设计也可以用在工业 、 农业等领域 , 对一
2 . 3平 衡盘法
△P 2
图 3双平衡鼓 示意 图
3结束语 平衡装置 的设计 是多级 泵设计 中 的关键 问题 之一 ,选 择合适 的平 衡装 置对泵 组平稳运行 、 节省维护 费用意义重 大。 作者简介: 王胜坤( 1 9 8 6 , 8 一 ) , 男, 北京, 研究生学历 , 助理工程师, 研
科 技 创 新
2 0 1 3 年 第 2 o 期I 科技创新与应用
多级离 心泵常见 的轴 向力平衡 装置
王 胜 坤 罗 乐
ห้องสมุดไป่ตู้
( 中国核 电工程有 限公 司, 北京 1 0 0 8 4 0 ) 摘 要 : 轴 向力平衡装置的选取是 多级 离心泵设计 中的关键 问题 , 其 目的是平衡轴向力 , 防止转子的轴向 窜动。文章分析 了多 级 离心 泵轴 向力 产 生原 因 , 并 介 绍 了常 用 的平 衡 装 置 。
多级离心泵轴向力平衡装置改造

严 重 时 刚换 上 备 件 ,启 动后 立 刻 磨 损 。 由于泵 两 端 支 承轴 承 为 中分 式 巴 氏合 金 滑 动 轴 承 ,运 行 时 形 成 动 压 润滑 ,使 转 子 沿轴 线 窜 动 灵 活 ,保 证 平 衡 装 置灵 敏 可靠 。平 衡 盘 的过 度 磨 损 ,会使 动 静 部 件 相碰 擦 ,导 致转 子导 叶几 乎 全 部 报废 、电 动 机 轴承损 坏 的严 重事故 。
使 用 ,水 泵 的工 作 运行 工 况稳 定 ,很 少 出现 剧烈
的平衡力不足 以平 衡轴向推力 ,最终造成平衡盘 和平 衡 座 咬死 。而 且 ,由 图 1 以看 出 ,在 平 衡 可 盘与平衡座形成的高压密封腔 中 ,水通过轴 向间 隙泄 漏 ,后 面没 有节 流措 施 ,当平 衡 盘 向右 移 动 、
厂 提供 了 4台 D 20 10 1 G 5— 6x 0型锅 炉给水 泵 ,其轴 向力平 衡结 构均 为平 衡 盘 。但 设 备运 行 时 间不 长 ,
就 相继 出 现 了一 系 列 问题 :振动 超标 、轴 瓦烧 坏 。
我公司服务人员和技术人员配合用户 ,多次到现 场 ,对 水 泵 进 行 了拆 检 ,发 现平 衡 盘 严 重 磨 损 , 比较 严 重 的 是 有 的平 衡 盘 由 于 高 速 磨 损 、发 热 , 导 致烧 结在 一起 。有时一 月 之 内数 次更 换 平衡 盘 ,
多级离心泵轴向力平衡方法有哪几种?

(1)平衡鼓法这是一种径向间隙液压平衡装置,它装在最后一级叶轮和平衡室之间,和泵轴一起旋转的称为平衡鼓轮,静止部分称为平衡鼓轮头。
用一根管线平衡室与泵进口连通,这样平衡室内的压力就等于进口连通管线中损失压力之和。
平衡鼓法平衡原理:平衡鼓轮前面是最后一级叶轮的后泵腔,其压力接近于泵的排出压力,因而平衡鼓两个端面之间有一个很大的压力差,能够把平衡鼓轮向后推,从而带动整个转子向后移动。
如果我们设法使这个推力和离心泵的轴向力相等,就能够达到平衡轴向力的目的。
(2)平衡盘法(下图):平衡盘是一种轴向间隙液压平衡装置。
装在最后一级叶轮与平衡室之间,和轴一起转动的称为平衡盘,静止不动的称为平衡环(套)。
平衡原理:从叶轮出来的一部分液体经过平衡盘与平衡环之间的轴向间隙漏入平衡室,再用管路把平衡室与泵吸入口连通,这时平衡盘背面所受的压力是平衡室压力。
平衡盘正面最小直径上受到的压力是泵的吐出压力,而在周界上是平衡室压力。
只要选择好平衡盘的内、外直径尺寸,就可以使平衡盘正面与背面的压力差和泵的轴向力相等,从而达到平衡的目的。
平衡盘法假如泵的轴向力增加,这额外的压力就会把泵的转子推向吸入口侧,从而使平衡盘和平衡环之间的端面间隙减小。
此时通过这个间隙的漏失量将减少,平衡室压力下降,这时平衡盘前后的压力差增加,将转子向吐出口方向推,直到与轴向力平衡为止。
反之,如果泵的轴向力减小,就会造成平衡盘与平衡环之间的轴向间隙增大,漏失量增加,平衡压力增高,直到又获得新的平衡为止。
(3)平衡盘与平衡鼓组合法(下图):平衡盘与平衡鼓组合实际上是一种径向、轴向液压平衡装置。
高压多级离心泵普遍采用此法,平衡效果好,组合法的平衡原理与上述两法相同。
平衡盘与平衡鼓组合法(4)叶轮对称布置平衡法:在多级水平中开式离心泵中通常采用叶轮对称布置平衡法来平衡轴向力,使成组叶轮的吸人口方向正好相反,从而起到平衡轴向力的作用。
在泵上也要安装止推轴承。
多级离心泵的结构图_多级离心泵工作原理

多级离心泵的结构图,多级离心泵工作原理从总体上看,多级离心泵是若干个叶轮安装在同一泵轴上,叶轮的外侧是液体导流装置及泵壳。
然而,如何将叶轮组安装在泵体内或者从泵体内取出呢?无外乎两个办法,一个是将泵体及导流装置沿泵轴的轴线水平剖分,使其成为上下两部份,这叫水平剖分式多级离心泵;另一个办法是将泵体及液体导流装置沿泵轴方向在叶轮之间以垂直于泵轴的平面剖切成若干个段,这叫分段式多级离心泵。
图3 1水平剖分式多级离心泵结构图1泵盏,2泵体,3轴承体;4-轴套;5—叶轮;6泵轴;7一轴头油泵下面分别对水平剖分式和分段式多级离心泵的结构加以介绍。
1水平剖分式多级离心泵的结构图3 1所示为水平剖分式多级离心泵结构图。
这种泵采用蜗壳形泵体,每一个叶轮的外围都有相应的蜗室,相当于将几个单级蜗壳泵装在同一根轴上串联工作,所以又叫蜗壳式多级泵。
由于泵体是水平剖分式, 吸入口和排出口都直接铸在泵体上,检修时很方便,只需把泵盖取下,即可暴露整个转子,在检修转子时,需将整个转子吊出时,不必拆卸连接管路。
这种泵的叶轮通常为偶数对称布置,大部份轴向力得到平衡,于是不需要安装轴向平衡装置。
水平剖分式多级泵流量范围为450 ~ 1500m7h,最高扬程可达1800mHzO。
由于叶轮对称布置,泵壳内有交叉流道,如图3 2所示,所以它比同性能的分段式多级泵体积大,铸造工艺复杂,泵盖和泵体的定位要求高,在压力较高时,泵盖和泵体的结合面密封难度大。
2.分段式多级离心泵的结构在压力较高时,通常采用多级离心泵。
这种泵是一种垂直剖分多级泵,它有—个前段、一个尾段和若干个中段组成,用四个长杆螺栓连接为一个整体。
安装在泵轴上的叶轮的个数就代表离心泵的级数,中段的每一个叶轮配一个导轮,导轮的作用基本上同蜗壳相同,主要是将动能转化为静压能。
叶轮普通为单吸的,吸人口都朝向一个方向。
为了平衡轴向力,在末段后面装有平衡盘,并用平衡管和前段进口相连通。
其转子在工作过程中可以沿轴向摆布窜动,靠平衡盘的推力平衡叶轮组的轴向力,将转子维持在平衡位置附近。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多级离心泵的平衡机构
离心泵依靠旋转叶轮对液体的作用把原动机的机械能转化为介质的压力能-泵的出口和入口之间会产生一个压差,而在该压差的作用下会出现一个由出口高压指向入口低压的力,该力称之为轴向推力。
单级、单吸离心泵的轴向推力相对较小,可以通过平衡孔+耐磨环的方式来平衡(残余轴向力则由推力轴承承受)。
然而,对于多级离心泵来说,这个轴向推力相对较大,如果不采用适当的措施来平衡,将对轴承及其它零部件造成伤害。
平衡机构的工作原理
根据所使用的工况不同,多级离心泵常用的平衡机构有三种:平衡鼓、平衡盘和双平衡鼓(介于平衡盘于平衡鼓之间的)结构,它们装在泵的末级叶轮之后,随转子一起旋转。
不同的平衡机构其间隙数量不同,平衡鼓结构只有一道间隙,平衡盘结构有两道间隙,双平衡鼓结构有三道间隙。
另外,还有一种自平衡结构,但不在此漫谈之列。
现以平衡盘为例,它有两道间隙,一道是平衡盘与平衡套间形成的径向间隙b1,另一道是平衡盘与平衡套端面形成的轴向间隙b2,平衡盘后面的平衡室通过平衡回水管与泵吸入口相通(见图1)。
径向间隙前的压力是末级叶轮后泵腔的压力p3,通过径向间隙b1下降为p4,又经过轴向间隙b2下降为p5,平衡盘后面的压力为p6。
平衡盘前面的压力p4大于后面的压力p6,其压差在平衡盘上产生平衡力F,指向左方,用以平衡作用在转子上的指向右方的轴向力A。
平衡盘是靠泄漏产生的压差来工作的,没有泄漏,就没有平衡力。
在设计平衡盘时,应设法在最小泄漏下产生大的平衡力。
通常,泵平衡盘的泄漏量为额定流量的3%-8%。
平衡盘象一个浮动的液体润滑轴承,平衡盘和平衡鼓不同,它能自动平衡轴向力,这是因为平衡盘两个间隙相辅相成的结果。
泵在工作过程中,由于工况点的变化和耐磨环磨损等原因,轴向力也相应发生变化,转子作相应移动以达到新的平衡。
但是,由于惯性,移动的转子不会立即停在平衡位置,要靠惯性向前移动稍许后,才能
停止。
此停止位置已超过了平衡位置,转子要向回移动。
可见,平衡盘的工作过程,是处于运动平衡的过程,平衡是暂时的,相对的。
鉴于平衡盘的工作具有左右移动的特点,一般不配备止推轴承。
但是,为了提高泵的可靠性、延长机械密封的使用寿命,目前几乎所有带平衡盘的泵均配备止推轴承,这样,虽能平衡轴向力,但在一定程度上限制了平衡盘自动平衡的特点。
平衡机构分析比较
多级离心泵轴向力平衡机构主要有:
1)平衡盘;
2)平衡鼓;
3)双平衡鼓(也称为平衡鼓盘,是介于平衡盘与平衡鼓中间的一种结构)。
平衡盘结构(见图1)
平衡盘结构能够平衡泵在任何工况下所产生的所有轴向力,普通清水介质、采用填料密封的情况下,可以不安装止推轴承,结构简单,制造要求不高,造价低,泄漏量小,泵效率高。
对于间歇运行(如石化行业延迟焦化装置中的高压水力除焦泵,每天启动1-2次,每次运行2-4小时)、频繁起动且介质中含有颗粒工况,泵组每起动或停机一次,平衡盘与平衡套端面就会磨损一次。
当平衡盘的磨损量超过离心泵向吸入端所留窜动量时,会使离心泵叶轮前盖板耐磨环(旋转件)与离心泵壳体耐磨环(静止件)发生磨损,严重时会使离心泵转子部件中叶轮与耐磨环发生咬合,从而威胁到泵组的安全稳定运行。
此外,采用平衡盘结构,介质在泵中会稍有升温,尤其在小流量下更甚(因为泵的效率更低)。
在这种情况下,平衡泄漏水通过很小的间隙降压,有可能汽化,产生压力波动。
当通过平衡回水管直接引入多级离心泵入口时,会使泵发生汽蚀,引起运行不稳定。
在某些大型高压水泵(如:火电厂锅炉给水泵)的起动或停运过程中,为了均匀升温/降温,转子必须低速盘车,尤其采用汽轮机驱动时,汽轮机必须进行更低转速暖机。
如果采用平衡盘结构,则由于汽轮机转速很低,泵出水压力较低,平衡盘左右的压差更小,往往不足以打开平衡盘而造成平衡盘的磨损,甚至咬住,难以进行盘车。
因此,平衡盘结构转速不能太低也不能太高。
平衡鼓结构(见图2)
平衡鼓是个圆柱体,装在末级叶轮之后,随转子一起旋转。
平衡鼓外圆表面与平衡套间仅形成径向间隙,没有像平衡盘那样(还有一道)轴向间隙,从而保证了多级离心泵在任何变工况下,平衡鼓与平衡套之间均不易发生咬合现象,大大提高了运行的可靠性。
由于平衡鼓与平衡套之间间隙较大,不会像平衡盘结构那样容易出现低速盘车时固体杂物卡在间隙内的现象。
但是,平衡鼓结构不能平衡100%的轴向力,因为其结构不具备随轴向力的变化而自动平衡的能力。
平衡鼓直径通常设计成平衡掉90-95%的定量轴向力,其余的5-10%的变量轴向力则由一组双向止推轴承承担。
另外,由于平衡鼓的径向间隙较大,其泄漏量在三种平衡机构中也是最大的(约为设计点流量的5-20%),这给泵的效率带来很大影响,因此,该结构通常被使用于那些频繁启停和/或介质中带固体颗粒的多级离心泵中。
双平衡鼓结构(见图3)
图3双平衡鼓结构
双平衡鼓结构也称为平衡鼓盘结构,它是一种平衡鼓+平衡盘的联合结构。
国内泵行业所见到的这种结构最早来自于德国KSB公司,其主要应用于火电厂的高压锅炉给水泵上。
其突出优点是既保留了平衡盘自动补偿轴向力变化的能力,又克服了平衡鼓泄漏量大的缺陷。
这种结构理论上能平衡100%的轴向力,但在变工况(如泵起动或停机)下产生的残余轴向力则由双向止推轴承承担,止推轴承将平衡机构限制在一个非常小的范围之内。
推力盘与推力轴承接触时,双平衡鼓结构中的平衡盘与平衡套之间有一个很小的轴向间隙,当多级离心泵在起动或停机过程中、泵组进行低速盘车时,泵出口压力很低,平衡盘左右的压差很小,由平衡鼓和双向止推轴承平衡轴向力,从而使平衡盘与平衡套之间不易磨损或咬住;当泵组正常运转时,平衡盘左右压差增大,平衡盘与平衡套之间的轴向间隙增大,使推力盘与推力轴承脱离,泵转子的轴向力由平衡鼓和平衡盘完全承担。
这种平衡机构,既具有平衡盘的优点,又具有平衡鼓加双向止推轴承的优点,安全可靠性高,是一种非常好的平衡机构。
另外,如果在平衡鼓外圆上加上反向螺旋槽或不规则环形槽,可以减小泄漏量,提高泵的效率。
其缺点是结构复杂,制造和装配相对要求高。
这种结构最佳的使用工况是输送无固体颗粒的清洁介质。
如果用于频繁启动和/或低速盘车工况,将会影响平衡机构的使用寿命(应在标准结构的基础上进行相应的优化设计)。