实验报告三_频率特性测量

合集下载

实验三 典型环节的频率特性测量

实验三  典型环节的频率特性测量

姓名,班级学号 ; 姓名,班级学号姓名,班级学号 ; 姓名,班级学号姓名,班级学号 ; 姓名,班级学号实验三典型环节(系统)的频率特性测量一.实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。

2.学习根据所测得频率特性,作出伯德图。

二.实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。

2.用实验方法完成比例环节、积分环节、惯性环节及二阶系统的频率特性曲线测试。

三.实验步骤1.熟悉实验设备上的信号源,掌握改变正弦波信号幅值和频率的方法。

2.利用实验设备完成比例环节、积分环节、惯性环节和二阶系统开环频率特性曲线的测试。

3.根据测得的频率特性曲线(或数据)求取各自的传递函数。

4.分析实验结果,完成实验报告。

四.实验线路及原理(一)实验原理对于稳定的线性定常系统或环节,当输入端加入一正弦信号时,它的稳态输出时一与输入信号同频率的正弦信号,但其幅值和相位将随输入信号频率的改变而改变,即:即相频特性即幅频特性,)()()(,)()()(sin )(])(sin[)()(ωωωωωφωωωωωωωj G t j G t j G Aj G A A tA t r j G t j G A t c ∠=-∠+====∠+=只要改变输入信号的频率,就可以测出输出信号与输入信号的幅值比)(ωj G 和它的相位差)(ωφ,不断改变输入信号的频率,就可测得被测环节的幅频特性和相频特性。

(二)实验线路1.比例(P)环节的模拟电路 比例环节的传递函数为:K s U s U i O =)()(,取ωj s =代入,得G(jw)=k, A(w)=k, Φ(w)=0°其模拟电路和阶跃响应,分别如图1.1.2,实验参数取R 0=100k ,R 1=200k ,R=10k 。

2.积分(I)环节的模拟电路 积分环节的传递函数为:Tss U s U i O 1)()(=其模拟电路,如图1.2.2所示,实验参数取R 0=100k ,C =1uF ,R=10k 。

自动控制频率特性测试实验报告

自动控制频率特性测试实验报告

自动控制频率特性测试实验报告1. 引言在现代自动控制系统中,频率特性是一个重要的参数,对于系统的稳定性和性能起着决定性的作用。

频率特性测试实验旨在评估自动控制系统的频率响应,并分析系统在不同频率下的性能。

本实验报告将介绍自动控制频率特性测试实验的目的、实验器材、实验步骤和实验结果分析。

2. 实验目的本实验的主要目的是通过频率响应测试,评估自动控制系统的频率特性以及系统在不同频率下的性能。

具体目标包括:1.测试系统的幅频特性,即系统的增益与频率之间的关系;2.测试系统的相频特性,即系统的相移与频率之间的关系;3.分析系统的频率特性对系统的稳定性和性能的影响。

3. 实验器材本实验所需的器材包括:•信号发生器:用于产生不同频率的输入信号;•可变增益放大器:用于控制输入信号的幅度;•相位巡迥器:用于调节输入信号的相位;•示波器:用于观测输入信号和输出信号;•自动控制系统:接受输入信号并提供相应的控制输出。

4. 实验步骤4.1 准备工作1.确保实验器材连接正确,信号发生器连接到自动控制系统的输入端,示波器连接到自动控制系统的输出端。

2.将可变增益放大器和相位巡迥器分别接入信号发生器的输出端,用于调节输入信号的幅度和相位。

4.2 测试幅频特性1.设置信号发生器的频率为起始频率,将幅度设置为合适的值。

2.将相位巡迥器的相位设置为零,确保输入信号的相位与输出信号相位一致。

3.记录输入信号和输出信号的幅度,并计算增益。

4.逐渐增加信号发生器的频率,重复步骤3,直到达到结束频率。

4.3 测试相频特性1.设置信号发生器的频率为起始频率,将幅度和相位设置为合适的值。

2.记录输入信号和输出信号的相位差,并计算相移。

3.逐渐增加信号发生器的频率,重复步骤2,直到达到结束频率。

4.4 结果记录与分析1.将实验得到的数据记录下来,包括输入信号频率、幅度、输出信号频率、幅度、相位差等。

2.绘制幅频特性曲线图,分析系统的增益随频率变化的规律。

频率特性测试实验报告

频率特性测试实验报告

频率特性测试实验报告引言频率特性测试是一种常用的电子设备测试方法,用于评估电子设备在不同频率下的性能表现。

本实验旨在通过测试不同频率下的信号响应,来探究被测试物体的频率特性。

实验步骤1.准备测试设备和被测试物体:选择一台信号发生器作为测试设备,并选择一个被测试物体,如一个电子电路板或一个音响设备。

2.连接测试设备和被测试物体:将信号发生器的输出端与被测试物体的输入端相连接。

确保连接稳固可靠。

3.设置信号发生器的频率:根据实验要求,设置信号发生器的频率范围和步进值。

频率范围应覆盖被测试物体可能的工作频率。

4.开始测试:依次设置不同的频率,观察被测试物体的响应情况。

记录下每个频率下的测试数据。

5.分析测试数据:将记录的测试数据整理,并进行进一步的数据分析。

可以绘制频率-响应曲线图,以直观展示被测试物体的频率特性。

6.结果讨论:根据频率-响应曲线图和数据分析结果,讨论被测试物体的频率特性。

可以探讨其在不同频率下的增益、相位差等表现,并与预期的理论模型进行比较。

7.结论:总结被测试物体的频率特性,给出实验结果的解释和评价。

实验数据示例频率 (Hz) 响应幅度 (dB) 相位差 (°)100 0.5 10500 1.2 201000 2.0 302000 1.8 405000 1.0 4510000 0.8 50数据分析与讨论通过绘制频率-响应曲线图,我们可以清楚地观察到被测试物体的频率特性。

从实验数据中可以看出,被测试物体在低频段(100 Hz和500 Hz)响应幅度较小,相位差也较小。

随着频率的增加,响应幅度逐渐增强,相位差也逐渐增大。

当频率达到2000 Hz时,响应幅度达到最大值,相位差也达到最大值。

随后,响应幅度逐渐减小,相位差也逐渐减小。

这种频率特性的变化可能与被测试物体的电路结构和元件特性有关。

与预期的理论模型进行比较后发现,实验结果与理论模型基本一致。

在低频段,被测试物体对输入信号的响应较弱,可能是由于电路的带宽限制或信号衰减等原因。

频率特性实验报告

频率特性实验报告

一、实验目的1. 理解频率特性的基本概念和测量方法。

2. 掌握使用Bode图和尼奎斯特图分析系统频率特性的方法。

3. 了解频率特性在系统设计和稳定性分析中的应用。

二、实验原理频率特性描述了系统对正弦输入信号的响应,通常用幅频特性和相频特性来表示。

幅频特性表示输出信号幅度与输入信号幅度之间的关系,相频特性表示输出信号相位与输入信号相位之间的关系。

频率特性的测量通常通过以下步骤进行:1. 使用正弦信号发生器产生不同频率的正弦信号。

2. 将信号输入被测系统,并测量输出信号的幅度和相位。

3. 根据测量数据绘制幅频特性和相频特性曲线。

三、实验设备1. 正弦信号发生器2. 示波器3. 信号分析仪4. 被测系统(如电路、控制系统等)四、实验步骤1. 准备实验设备,确保各设备连接正确。

2. 设置正弦信号发生器,产生一系列不同频率的正弦信号。

3. 将正弦信号输入被测系统,并使用示波器或信号分析仪测量输出信号的幅度和相位。

4. 记录不同频率下的幅度和相位数据。

5. 使用绘图软件绘制幅频特性和相频特性曲线。

五、实验结果与分析1. 幅频特性分析通过绘制幅频特性曲线,可以观察到系统对不同频率信号的衰减程度。

一般来说,低频信号的衰减较小,高频信号的衰减较大。

根据幅频特性,可以判断系统的带宽和稳定性。

2. 相频特性分析通过绘制相频特性曲线,可以观察到系统对不同频率信号的相位延迟。

相频特性曲线通常呈现出滞后或超前特性。

根据相频特性,可以判断系统的相位裕度和增益裕度。

3. 系统稳定性分析根据幅频特性和相频特性,可以判断系统的稳定性。

如果系统的相位裕度和增益裕度都大于零,则系统是稳定的。

否则,系统可能是不稳定的。

六、实验结论通过本次实验,我们成功地测量了被测系统的频率特性,并分析了其幅频特性和相频特性。

实验结果表明,被测系统在低频段表现出较小的衰减,而在高频段表现出较大的衰减。

相频特性曲线显示出系统在低频段滞后,在高频段超前。

根据频率特性分析,可以得出被测系统是稳定的。

频率特性测试_实验报告

频率特性测试_实验报告

频率特性测试_实验报告
实验名称:频率特性测试
实验目的:
1. 掌握频率特性测试的原理和方法。

2. 学习使用示波器进行频率特性测试。

3. 了解放大器的频率响应特性。

实验器材:
1. 示波器
2. 双极性电容
3. 电阻器
4. 信号发生器
5. 放大器
实验原理:
频率特性测试一般用于测试电路、放大器和滤波器等的频率响应特性。

在示波器的帮助下,我们可以通过使用信号发生器生成一个带有不同频率的正弦波进行测试,在不同的频率下测量放大器输出的电压,这样就可以分析出放大器的频率响应特性。

实验步骤:
1. 将信号发生器连接到放大器的输入端,将放大器的输出端连
接到示波器的通道1输入端。

2. 在信号发生器上设置正弦波频率为多个不同的值,例如
100Hz、1kHz、10kHz。

3. 在示波器上设置通道1为AC耦合并调整垂直调节和水平调节,使正弦波信号在屏幕上呈现符合要求的波形。

4. 记录示波器上显示的放大器输出电压,并将记录的数值制成表格,便于后续分析。

实验结果分析:
通过实验数据,我们可以绘制出放大器的幅频响应曲线,以表现放大器在不同频率下的增益特性。

在典型的幅频响应曲线中,我们会发现放大器的增益在低频时趋于平稳,在中频时达到峰值,在高频时进行了急剧的下降。

实验结论:
频率特性测试是一项非常常见的测试方法,适用于测试放大器、滤波器和其它电路的频率响应特性。

通过本次实验,我们学习了使用示波器进行频率特性测试的方法和技巧,掌握了测试和分析放大器幅频响应曲线的能力,为后续电路设计和优化提供了有力的支持。

频率特性实验报告

频率特性实验报告

频率特性实验报告频率特性实验报告引言:频率特性是描述信号在不同频率下的响应性能的重要指标。

在电子领域中,频率特性实验是非常常见的实验之一。

本文将介绍频率特性实验的目的、实验原理、实验步骤以及实验结果的分析。

一、实验目的:频率特性实验的目的是研究电路或系统在不同频率下的响应特性,了解信号在不同频率下的传输和滤波性能。

通过实验,可以掌握频率特性的测试方法和实验技巧,提高实验操作能力和数据处理能力。

二、实验原理:频率特性实验通常涉及到信号的输入和输出,以及信号的幅度和相位响应。

在实验中,常用的测试仪器有函数发生器、示波器和频谱分析仪。

1. 函数发生器:用于产生不同频率的信号作为输入信号。

可以调节函数发生器的频率、幅度和波形等参数。

2. 示波器:用于观测电路或系统的输入和输出信号波形。

示波器可以显示信号的幅度、相位和频率等信息。

3. 频谱分析仪:用于分析信号的频谱成分。

频谱分析仪可以显示信号在不同频率下的幅度谱和相位谱。

实验步骤:1. 准备实验所需的仪器和器材,包括函数发生器、示波器和频谱分析仪。

2. 连接电路或系统,将函数发生器的输出信号连接到被测电路或系统的输入端,将示波器或频谱分析仪连接到电路或系统的输出端。

3. 设置函数发生器的频率和幅度,选择适当的波形。

4. 调节示波器或频谱分析仪的参数,观测信号的波形和频谱。

5. 重复步骤3和步骤4,改变函数发生器的频率,记录不同频率下的信号波形和频谱。

实验结果分析:根据实验记录的信号波形和频谱数据,可以进行以下分析:1. 幅度响应:通过观察信号的幅度谱,可以了解电路或系统在不同频率下信号的衰减或增益情况。

如果幅度谱在不同频率下保持不变,则说明电路或系统具有平坦的幅度响应特性。

如果幅度谱在某些频率点出现峰值或谷值,则说明电路或系统对该频率具有增益或衰减。

2. 相位响应:通过观察信号的相位谱,可以了解电路或系统在不同频率下信号的相位变化情况。

相位谱可以显示信号的相位延迟或提前。

频率特性法实验报告

频率特性法实验报告

一、实验目的1. 了解频率特性法的基本原理和测试方法。

2. 掌握用频率特性法分析系统性能的方法。

3. 熟悉实验仪器和实验步骤。

二、实验原理频率特性法是控制系统分析和设计的重要方法之一。

它通过研究系统在正弦信号作用下的稳态响应,来分析系统的动态性能和稳态性能。

频率特性主要包括幅频特性和相频特性,它们分别反映了系统在正弦信号作用下的幅值和相位变化规律。

三、实验仪器与设备1. 微型计算机2. 自动控制实验教学系统软件3. 超低频信号发生器4. 示波器5. 信号调理器6. 被测系统(如二阶系统、三阶系统等)四、实验内容与步骤1. 实验内容(1)测量被测系统的幅频特性(2)测量被测系统的相频特性(3)绘制幅频特性曲线和相频特性曲线(4)分析系统性能2. 实验步骤(1)连接实验电路,确保各设备正常工作。

(2)使用超低频信号发生器产生正弦信号,频率范围可根据被测系统特性选择。

(3)将信号发生器的输出信号送入被测系统,同时将信号发生器和被测系统的输出信号送入示波器。

(4)调整信号发生器的频率,记录不同频率下被测系统的输出幅值和相位。

(5)将实验数据输入计算机,利用自动控制实验教学系统软件进行数据处理和绘图。

(6)分析系统性能,包括系统稳定性、动态性能和稳态性能。

五、实验结果与分析1. 幅频特性曲线根据实验数据,绘制被测系统的幅频特性曲线。

从曲线中可以看出,随着频率的增加,系统的幅值逐渐减小,并在一定频率范围内出现峰值。

峰值频率对应系统的谐振频率,峰值幅度对应系统的谐振增益。

2. 相频特性曲线根据实验数据,绘制被测系统的相频特性曲线。

从曲线中可以看出,随着频率的增加,系统的相位逐渐变化,并在一定频率范围内出现相位滞后或相位超前。

3. 系统性能分析根据幅频特性和相频特性曲线,可以分析被测系统的性能。

(1)稳定性分析:通过分析相频特性曲线,可以判断系统是否稳定。

如果系统在所有频率范围内都满足相位裕度和幅值裕度要求,则系统稳定。

系统频率测试实验报告(3篇)

系统频率测试实验报告(3篇)

第1篇一、实验目的1. 了解系统频率特性的基本概念和测试方法。

2. 掌握使用示波器、频谱分析仪等设备进行系统频率测试的操作技巧。

3. 分析测试结果,确定系统的主要频率成分和频率响应特性。

二、实验原理系统频率特性是指系统对正弦输入信号的响应,通常用幅频特性(A(f))和相频特性(φ(f))来描述。

幅频特性表示系统输出信号幅度与输入信号幅度之比,相频特性表示系统输出信号相位与输入信号相位之差。

频率测试实验通常包括以下步骤:1. 使用正弦信号发生器产生正弦输入信号;2. 将输入信号输入被测系统,并测量输出信号;3. 使用示波器或频谱分析仪观察和分析输出信号的频率特性。

三、实验设备1. 正弦信号发生器2. 示波器3. 频谱分析仪4. 被测系统(如放大器、滤波器等)5. 连接线四、实验步骤1. 准备实验设备,将正弦信号发生器输出端与被测系统输入端相连;2. 打开正弦信号发生器,设置合适的频率和幅度;3. 使用示波器观察输入信号和输出信号的波形,确保信号正常传输;4. 使用频谱分析仪分析输出信号的频率特性,记录幅频特性和相频特性;5. 改变输入信号的频率,重复步骤4,得到一系列频率特性曲线;6. 分析频率特性曲线,确定系统的主要频率成分和频率响应特性。

五、实验结果与分析1. 幅频特性曲线:观察幅频特性曲线,可以发现系统存在一定频率范围内的增益峰值和谷值。

这些峰值和谷值可能对应系统中的谐振频率或截止频率。

通过分析峰值和谷值的位置,可以了解系统的带宽和选择性。

2. 相频特性曲线:观察相频特性曲线,可以发现系统在不同频率下存在相位滞后或超前。

相位滞后表示系统对输入信号的相位延迟,相位超前表示系统对输入信号的相位提前。

通过分析相位特性,可以了解系统的相位稳定性。

六、实验总结1. 通过本次实验,我们掌握了系统频率特性的基本概念和测试方法。

2. 使用示波器和频谱分析仪等设备,我们成功地分析了被测系统的频率特性。

3. 通过分析频率特性曲线,我们了解了系统的主要频率成分和频率响应特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
课程名称: 自动控制理论实验 指导老师: 吴越 成绩: 实验名称: 频率特性测量 实验类型: 同组学生姓名: 鲍婷婷
一、实验目的和要求(必填)
二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理
六、实验结果与分析(必填)
七、讨论、心得 一、实验目的
1. 掌握用超低频信号发生器和示波器测定系统或环节频率特性的方法;
2. 了解用TD4010型频率响应分析测试仪测定系统或环节的频率特性方法。

二、主要仪器设备
1.超低频信号发生器
2.电子模拟实验装置
3.超低频慢扫描示波器
三、实验步骤
1.测量微分积分环节的频率特性;
(1)相频特性
相频特性的测试线路如图4-3-1所示,其中R 1=10k Ω、C 1=1uF 、R 2=2k Ω、C 2=50uF 。

测量时,示波器的扫描旋钮指向X-Y 档。

把超低频信号发生器的正弦信号同时送入被测系统和X 轴,被测系统的输出信号送入示波器Y 轴,此时在示波器上可得到一李沙育图形。

然后将椭圆移至示波器屏幕中间,椭圆与X 轴两交点的间的距离即为2X 0,将
Y 输入接地,此时得到的延X 轴光线长度
即为2X m ,因此求得θ=sin -1 (2X 0/2X m ),变化输入信号频率ω(rad/s),即可得到一
组θ(ω)。

测量时必须注意椭圆光点的转动方向,以判别相频特性是超前还是迟后。

当系统或环节的相频特性是迟后时,光点为逆时针转动;反之超前时,光点为顺时针转动。

测试时,ω取值应匀称,否则会影响曲线的准确度。

(2) 幅频特性:示波器选择停止扫描档,超低频信号发生的正弦信号同时送入X 轴和被测系统;被测环节的输出信号仍送入Y 轴;分别将X 通道和Y 通道接地,示波器上出现的两条光线对应的两条光线长度为2X m 、2Y m ,改变频率ω,则可得一组L(ω)。

专业: 电子信息技术及仪器 姓名: 杨泽兰
学号: 3120102007 日期: 2014-5-24 地点: 玉泉教二-104


线
超低频信号发生器

波器C 1
C 2R 1R 2
微分积分环节Y
X u i u o
2. 测量二阶系统的闭环幅频特性:
二阶系统的方框图如右图所示。

按图设计并连接实验线路,依次改变输入信号频率(按所取频率范围由低到高,测试点自定,但在谐振峰值附近应多测几点),测量并记录数据。

五、实验数据记录和处理
1. 测量微分积分环节的频率特性:
(1) 微分积分环节的传递函数为:G(s)=(s 2+110s+1000)/(s 2
+610s+1000) (2) 测量数据为:
(3)相频特性图:
-60
-40-200
204060
(4) 幅频特性图为:
-16
-14-12-10-8-6-4-20
2. 测量二阶系统的闭环幅频特性:
(2) 幅频特性图为:
0.511.522.533.540
0.7
0.76
0.8
0.88
六、实验结果与分析
实验中,从李萨如图形上读取数据时存在较大误差,图像不停的闪动,且由于最小刻度较大,不能完全把图像置于示波器的中间,导致读数寻在偏差。

另外,由于使用器材自身的老化,使得实验进行的很困难,刚开始示波器上完全显示不出李萨如图形。

在之后的某些数据测量中,图形还存在失真的情况。

七、讨论、心得
思考题:
1. 在实验中如何选择输入正弦信号的幅值?
答:选择输入信号应保证输出信号不能失真。

可将示波器调至x-t模式,然后观测输出信号,观察是否失真。

2. 测试频率特性时,示波器Y轴输入开关为什么选择直流?
答:因为此时示波器中显示为一直线,有利于读取数据。

3.测试频率特性时,若把信号发生器的正弦信号送入Y轴,被测系统的输入信号送入X轴,则根据椭圆光点的转动方向,如何确定相位的超前和滞后?
答:可将判断超前和滞后的方法反过来,即顺时针时为滞后,逆时针时为超前。

相关文档
最新文档