2015年高考数学复习学案:圆锥曲线的统一定义

合集下载

圆锥曲线的统一定义的教学设计1

圆锥曲线的统一定义的教学设计1

圆锥曲线的统一定义的教学设计一、教材分析1、教材的地位与作用圆锥曲线是高中数学的重要组成部分,也是高中数学的一个难点。

圆锥曲线的统一定义是我准备在学生学习完椭圆、双曲线、抛物线的标准方程以及它们的性质之后,对圆锥曲线进行一节总结性的专题课.它一方面可以使学生进一步加深对圆锥曲线的理解与认识,使学生对圆锥曲线之间的关系有一个更加系统、完整的认识。

同时也让学生进一步提高用代数方法解决几何问题的能力,体会数形结合思想和分类讨论思想。

2、学情分析(1)知识分析:学生已经掌握圆锥曲线的基础知识,但知识还不系统、不完整。

已经掌握了化简、推导圆锥曲线的基本方法。

(2)年龄分析:本课的教学对象为高二学生,这个年龄段的学生思维活跃、求知欲强,已经具备对数学问题进行合作探究的能力。

但高二学生程度参差不齐,两极分化已经形成,个性差异比较明显。

(3)思维分析:学生的思维已经基本完成从形象思维向理性思维的过度,但对形象思维还有依赖,思维习惯上还有待教师引导,因此数形结合是引导学生的较好方法。

3、教学重点与难点根据学生的认知方式,这一节课内容特点,结合学情实际,我确定如下的教学重点和难点:教学重点:圆锥曲线的统一定义的生成、理解、应用。

教学难点:圆锥曲线的统一定义的应用。

4、教学目标:新课标指出“三维"目标是一个密切联系的有机整体,应该在渗透知识和技能过程,同时成为学生树立正确价值观的过程。

这要求我们在教学中以知识技能为主线,渗透态度情感价值观.因此,我制定了以下的教学目标。

(1)知识与能力目标(直接性目标):掌握圆锥曲线的共同性质,对圆锥曲线有一个系统、完整的认识;会用圆锥曲线的统一定义解决距离、最值问题。

(2)过程与方法目标(发展性目标):引导学生通过观察、归纳、抽象、概括,自主构建圆锥曲线的统一定义等概念,使学生领会数形结合的数形思想和分类讨论思想.培养学生发现问题、分析问题、解决问题的能力。

(3)情感态度价值观目标(可持续性目标):在探究圆锥曲线的统一定义的过程中,培养学生主动探究知识、合作交流的意识,体验在探究问题的过程中获得的成功感。

圆锥曲线定义

圆锥曲线定义

圆锥曲线定义
圆锥曲线(二次曲线)的(不完整)统一定义:到定点(焦点)的距离与到定直线(准线)的距离的商是常数e(离心率)的点的轨迹。

当e\ue1时,为双曲线的一支,当e=1时,为抛物线,当0\uce\uc1时,为椭圆,当e=0时,为一点。

当平面与二次锥面的母线平行,且不过圆锥顶点,结果为抛物线。

当平面与二次锥面的母线平行,且过圆锥顶点,结果退化为一条直线。

平面内一个动点至一个定点与一条的定直线的距离之比是一个大于1的正常数e。

平面内一个动点至两个定点(焦点)的距离和等同于定长2a的点的子集(设动迪潘县p,两个定点为f1和f2,则pf1+pf2=2a)。

根据e的范围不同,曲线也各不相同。

具体如下:
1) e=0,轨迹为一点或一个圆;
2) e=1(即到p与到l距离相同),轨迹为抛物线;
3) 0\uce\uc1,轨迹为椭圆;
4) e\ue1,轨迹为双曲线。

圆锥曲线的统一定义

圆锥曲线的统一定义

认真 独立 限时第 1 页 共 1 页 圆锥曲线的统一定义班级 姓名 学号一、考纲点击了解圆锥曲线的统一定义,回顾圆锥曲线的几何性质,并能简单应用.二、基础达标1.圆锥曲线上的点到一个定点F 和到一条定直线l (F 不在定直线l 上)的距离之比为一个常数e .这个常数e 叫做圆锥曲线的_________定点F 就是圆锥曲线的_________,定直线l 就是该圆锥曲线的___________.椭圆的离心率满足__________,双曲线的离心率满足________________,抛物线的离心率满足______________.2.椭圆13610022=+y x 的焦点坐标为________________离心率为___________准线方程为____________________.3. 双曲线1322=-y x 上一点P 到左焦点的距离为2,则点P 到左准线的距离为 .4.已知椭圆13610022=+y x 上有一点P 到左、右焦点的距离之比为3:2,则点P 到右准线的距离为 .5.抛物线x y 42=上一点A 到焦点的距离为5,则点A 到y 轴的距离是__________.三、例题讲解例1.已知点)2,2(A ,若F 是抛物线x y 42=的焦点,点P 是抛物线上的动点,则当PF PA +最小时,求点P 的坐标.变式1.已知定点)3,2(-A ,点F 位椭圆1121622=+y x 的右焦点,点M 在椭圆上运动,求MF AM +的最小值,并求此时点M 的坐标.变式2.已知定点)3,5(A ,点F 为双曲线191622=-y x 的右焦点,点M 在此双曲线上运动,求MF AM 54+的最小值,并求此时点M 的坐标.。

高中数学 圆锥曲线的统一定义教案(1课时) 苏教版选修2-1

高中数学 圆锥曲线的统一定义教案(1课时) 苏教版选修2-1

2.5 圆锥曲线的统一定义(1课时)一、教学目标1. 了解圆锥曲线的统一定义.2.掌握根据标准方程求圆锥曲线的准线方程的方法。

二、教学重点、难点重点:圆锥曲线的统一定义。

难点:圆锥曲线的统一定义三、教学过程(一) 创设情境我们知道,平面内到一个定点F 的距离和到一条定直线L (F 不在L 上)的距离的比等于1的动点P 的轨迹是抛物线。

如图(1)即1PFPA =时,点P 的轨迹是抛物线。

下面思考这样个问题:当这个比值是一个不等于1的常数时,我们来观察动点P 的轨迹又是什么曲线呢?比如:12PF PA=和2PFPA =时,动点P 的轨迹怎么变化?(二 )师生探究(利用多媒体演示)我们可以观察出一个像椭圆,一个像双曲线。

下面我们来探讨这样个问题:(例1):已知点P(x,y)到定点F(c,0)的距离与它到定直线l:x=2ac 的距离的比是常数ca(a>c>0),求点P的轨迹。

(问题的解决过程要充分体现求曲线的方程时确定曲线类型的有效手段)结论:点P的轨迹是焦点为(-c,0),(c,0),长轴、短轴分别为2a,2b的椭圆。

这个椭圆的离心率e就是P到定点F的距离和它到定直线l(F不在l上)的距离的比。

变式:如果我们在例1中,将条件(a>c>0)改为(c>a>0),点P的轨迹又发生如何变化呢?(双曲线的类似命题由学生思考,发现,从而引导学生建立圆锥曲线的统一定义)下面,我们对上面三种情况总结归纳出圆锥曲线的一种统一定义.(教师引导学生共同来发现规律)结论:圆锥曲线统一定义:平面内到一个定点F和到一条定直线L(F不在L上)的距离的比等于常数e的点的轨迹.当0<e <1时,它表示椭圆;当e>1时,它表示双曲线;当e=1时,它表示抛物线.(其中e是圆锥曲线的离心率,定点F是圆锥曲线的焦点,定直线是圆锥曲线的准线)下面,我们对圆锥曲线的准线作一下探讨:(利用图形的对称性解决)对于上述问题中的椭圆或双曲线,我们发现其中心在原点,焦点在x轴上,那么我们可得到与之相对应的准线方程:如:焦点F(-c,0)与准线x=-2a对应,焦点F(c,0)c与准线x=2a对应.c思考一:想一想:焦点在x轴的抛物线的准线方程又如何?思考二:对于焦点在y轴上的椭圆,双曲线,抛物线(标准形式)的准线方程又如何呢?例2:求下列曲线的焦点坐标,准线方程(1)22-=(3)216y x=x y8322516400x y+=(2)22例3:已知动点M到A(2,0)的距离等于它到直线x=-1的距离的2倍,求点M的轨迹方程。

教学设计2:圆锥曲线的统一定义

教学设计2:圆锥曲线的统一定义

《圆锥曲线的统一定义》教学设计【教学手段】多媒体演示 【教学方法】讨论发现法 【教学过程】 一、知识回顾1、学生看课本P28《椭圆的标准方程》、P36《双曲线的标准方程》在推导椭圆的标准方程时,我们曾得到这样的一个式子:222)(y c x a cx a +-=-,将其变形为:ac x ca y c x =-+-222)(, 你能解释这个式子的意义吗?这个式子表示一个动点P (x ,y )到定点(c ,0)与到定直线c a x 2=的距离之比等于定值ac,那么具有这个关系的点的轨迹一定是椭圆吗?二、新课讲解已知点点P (x ,y )到定点F (c ,0)的距离与到定直线c a x l 2:=的距离之比是常数)0(>>c a ac,求点P 的轨迹.解:由题意可得ac x ca y c x =-+-222)( 化简得)()(22222222c a a y a x c a -=+-.令222b c a =-,则上式可以化为)0(12222>>=+b a by a x 这是椭圆的标准方程.所以点P 的轨迹是焦点为(c ,0),(-c ,0),长轴长、短轴长分别为2a 、2b 的椭圆.若将条件0>>c a 改为c a <<0呢?由上例知,椭圆上的点P 到定点F 的距离和它到一条定直线(F 不在上)的距离的比是一个常数,这个常数就是椭圆的离必率类似地,可以得到:双曲线上的点P 到定点F (c ,0)的距离和它到定直线c a x l 2:=(2220a c b a c -=>>,)的距离的比是一个常数,这个常数ac就是双曲线的离心率.F 和到一条定直线(F 不在定直线上)的距离之比是一个常数.F(1) 椭圆的离心率满足0<<1,双曲线的的离心率>1,抛物线的的离心率=1.(2) 根据图形的对称性知,椭圆和双曲线都有两条准线,对于中心在原点,焦点在x 轴上的椭圆或双曲线,准线方程都是c a x 2±=;对于中心在原点,焦点在y 轴上的椭圆或双曲线,准线方程都是ca y 2±=.(3) 圆锥曲线的定义深刻提示了三类曲线的内在联系,使焦点、离心率和准线等构成一个和谐的整体,当圆锥曲线上一点与一焦点和相应准线的距离需要建立联系时,常考虑第二定义;当圆锥曲线上一点与两焦点距离之和(或差)为常数时,常考虑第一定义.三、新知巩固:1、学生填表(见课本P47习题 1、填空)2、学生板演:(见课本P46 (1)-(4)) 四、知识拓展:椭圆的焦半径公式:若P (x ,y )是椭圆上任一点,F 1、F 2是椭圆)0(12222>>=+b a b y a x 的左焦点和右焦点,则ex a PF ex a PF -=+=21,;若P (x ,y )是椭圆上任一点,F 1、F 2是椭圆)0(12222>>=+b a bx a y 的下焦点和上焦点,则ey a PF ey a PF -=+=21,;例2 椭圆的中心为点(10)E -,,它的一个焦点为(30)F -,,相应于焦点的准线方程为72x =-,求这个椭圆的方程.解析:椭圆的中心为点(1,0),E -它的一个焦点为(3,0),F -∴ 半焦距,相应于焦点F 的准线方程为7.2x =-∴ 252a c =,225,1a b ==,则这个椭圆的方程是22(1)15x y ++= 例3 已知椭圆1361002=+yx 上有一点P ,到其左、右焦点距离之比为1:3, 求点P 到两准线的距离及点P 的坐标.。

《2.2.4圆锥曲线的统一定义》教学案1

《2.2.4圆锥曲线的统一定义》教学案1

《2.2.4圆锥曲线的统一定义》教学案教学目标:(1)了解圆锥曲线的共同特征.(2)熟练利用坐标法求解曲线方程.(3)培养类比、联想、归纳、总结的能力.教学重点、难点:重点:圆锥曲线统一定义的推导难点:对圆锥曲线统一定义的理解与运用.教学程序设计:(1)创设情境,引入新课:用平面截取圆锥面,得到椭圆、抛物线、双曲线,它们都是由平面截圆锥面所得,因此都称为圆锥曲线,这节课我们就一起来研究圆锥曲线的统一定义.(这个问题的设计:起了承上启下的作用,承上:前面的圆锥曲线第一定义,启下:本节所研究的圆锥曲线的统一定义,通过多媒体的演示,激发学习和探究知识的兴趣;通过图象说明问题.由“形”上共同特点类比得出“数”上的共同特点.)为了便于下面的探索活动,我设计知识回顾.复习回顾:1.平面内到两个定点F 1,F 2的距离的和等于常数(大于F 1F 2)的点的轨迹叫做____.表达式:2.平面内与两个定点F 1、F 2的距离的差的绝对值是常数(小于F 1F 2且不等于零)的点的轨迹叫做______.表达式:3.平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做______.表达式:(这个环节的设计:是引导学生复习回顾旧知,为新知的探究打好基础.)接下来,我设计了问题1:(2)提出问题,探究新知y )到定点F (2,0)的距离和它到定直线x =-2的距离的比是常数1,问题1:曲线上点M (x ,求曲线的方程.(这个问题学生可能会从两个角度求解:1.定义法,2.坐标法,肯定定义法,强化坐标法的运用,为问题2,3的解决做好铺垫,强调如何解决有关根式化简的问题.由学生通过实物投影仪展示他们的解题过程,由其他学生点评,培养学生叙述和书写的正规化,完善学生的知识结构.这个问题的设计:是为了进一步让学生熟悉用坐标法求动点轨迹方程的方法,掌握化简含根号等式的方法,提高运算能力,养成不怕困难的钻研精神)(在充分肯定学生回答后,依次提出)问题2:曲线上点M(x,y)到定点F(2,0)的距离和它到定线l:x=8的距离的比是常数曲线还是抛物线吗?如果不是,又会是什么呢?问题3:曲线上点M(x,y)到定点F(-4,0)的距离和它到定线l:x=-1的距离的比是常数2,求曲线的方程.曲线还是抛物线或者椭圆吗?如果不是,又会是什么呢?(学生同样采用分组讨论,通过实物投影仪展示解题过程,这样的设计:是让学生经历知识和方法产生和发现过程,进而得出解决同类问题的一般方法,同时也给学生渗透了探究问题的基本思路——由特殊到一般.)通过上面3个问题的研究,提出问题4:让学生们观察对比动点到定点和到定直线的距离的比值,与该动点轨迹图形有什么关联呢?分组讨论交流,最后由学生表述结论,老师最后给出标准的圆锥曲线的统一定义,结论:椭圆、抛物线、双曲线都可以看作到定点的距离与它到定直线的距离之比为常数e的点的集合.当0<e<1时,圆锥曲线是椭圆;当e >1时,圆锥曲线是双曲线;当e=1时,圆锥曲线是抛物线.其中常数e叫做圆锥曲线的离心率,定点F叫做圆锥曲线的焦点,定直线l就是该圆锥曲线的准线.(强调比值的顺序性)强调此定义中三个关键词:比值、定点、定直线,并分别给予定义.(这个环节的设计:突出了本节课的重点,圆锥曲线的统一定义,通过学生展示解决问题的方法,培养学生的语言表达能力和沟通能力,增强学生思维的严谨性,重点和难点初步突破.把学生学习数学的过程转变为学生对数学知识的“再创造”过程,体验数学发现和创造的历程,为学生形成积极探究的学习方式,创造有利条件,发展了学生的创新意识.培养学生的类比、联想、归纳、概括能力)通过课前的预习学生知道抛物线只有一个焦点和一条准线,而椭圆和双曲线都有两个焦点和两条准线,强调焦点准线对应关系.为了巩固圆锥曲线的统一定义,我设计如下的例题:(3)巩固新知,深化理解例求证:通过椭圆的两个焦点的直线垂直于椭圆的一条准线.证明:如图,已知圆锥面S.平面σ截S所得截线为一椭圆.圆锥面的两个内切球O1和O2分别与平面σ相切于点F1和F2.球O1的切点圆所在的平面记为平面δ,平面δ和平面σ相交于直线l,则l为椭圆的准线.1,2分别作球的半径O 1F 1和O 2F 2,则O 1F 1⊥平面σ,O 2F 2⊥平面δ因此O 1F 1//O 2F 2,O 1F 1和O 2F 2确定一平面O 1O 2F 1.平面σ的交点必在F 1F 2上,并且F 1F 2为O 1O 2在平面所以直线F 1F 2为平面O 1O 2F 1与平面σ的交线,O 1O 2与σ内的射影.又因为直线l 是平面σ和平面δ的交线,所以O 1O 2⊥l ,从而F 1F 2⊥l .(三垂线定理)即通过椭圆两个焦点的直线垂直于椭圆的准线.为了让学生与已经学过的圆锥曲线第一定义联系起来,我设计如下的变式训练:(4).变式探究,强化方法x 2y 2变式训练:已知双曲线-=1上一点P 到其左焦点的距离是10,求点P 到右准线的169距离.(此题是双曲线的两个定义的综合应用,强调焦点与准线的关系.)为了检查学生本节课对圆锥曲线的统一定义掌握情况,我设计了以下当堂检测.(5).知识应用【当堂检测】:1.动点P 到点(3,1)的距离与它到直线x =8的距离之比为3,则点P 的轨迹是;2.动点P 到点(-1,2)的距离与它到直线x =8的距离之比为0.8,则点P 的轨迹是;3.动点P 到点(6,0)的距离与它到直线x =-9的距离相等,则点P 的轨迹是;4.动点P 到直线x =6的距离与它到点(2,1)的距离之比为0.5,则点P 的轨迹是;5.已知双曲线4x 2-9y 2 =36,①若双曲线右支上的点P 到右焦点的距离为2,求它到左焦点的距离.②若双曲线右支上的点P 到右焦点的距离为2,求它到左准线的距离.③求双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比.(这5题由浅入深,符合学生的思维发展规律,目的是突出重点,突破难点.)(6).课堂小结(通过小结使学生理清本节知识的脉络和使用方法)。

圆锥曲线间的三个统一(统一定义、统一公式、统一方程)

圆锥曲线间的三个统一(统一定义、统一公式、统一方程)

2 12丄2(X ∙ a)a y_ 2b2 2.22b丄 b2・・讨=X — Xa a圆锥曲线间的三个统一内蒙古巴彦淖尔市奋斗中学0504班 高卓玮 指导老师:薛红梅世界之美在于和谐,圆锥曲线间也有其内在的和谐与统一,通过对圆锥曲 线图形和已知公式的变换,我们可以得出以下结论。

一、 四种圆锥曲线的统一定义动点P 到定点F 的距离到定直线L 的距离之比等于常数e,则当O ::: e ::: 1时, 动点P 的轨迹是椭圆:当e=1时,动点P 的轨迹是抛物线;当e 1时,动点P 的轨迹是双曲线;若e = O ,我们规定直线L 在无穷远处且P 与F 的距离为定值(非零),则此时动点P 的轨迹是圆,同时我们称e 为圆锥曲线的离心率,F 为 焦点,L 为准线。

二、 四种圆锥曲线的统一方程从第1点我们可以知道离心率影响着圆锥曲线的形状。

为了实现统一我们 把椭圆、双曲线进行平移,使椭圆、双曲线的右顶点与坐标原点重合,记它们2的半通径为P ,则P =L 。

a2 2如图1 ,将椭圆罕■笃=1(a b O)按向量(a,O )平移a b二椭圆的方程可写成 y 2 = 2 px ' (e 2 -1) χ2( O ::: e ::: 1 )2 2类似的,如图2,将双曲线 —--^2 -1(a - O, b - O)按向量(-a, O)平移得到a b得到2(X -a)2a2 2bb2…y = X ~ Xaa•••椭圆的半通径 b 2 IF I M I |= p =—,ab 2~ =1 —eT 双曲线的半通径IF 2M 2I = L , b y =e 2 一1a a∙°∙双曲线方程可写成y = 2 px ∙ (e? 一 1)χ2 (e . 1)对于抛物线y 2 =2px(x .0) P 为半通径,离心率e =1,它也可写成2 2 2y 2 px (e -1) X (e =1)对于圆心在(P ,0),半径为P 的圆,其方程为(X- p)2 + y 2 = p2,它也可 写成『=2 px 亠(e T)x?(^= 0)于是在同一坐标下,四种圆锥曲线有统一的方程y 2 =2px (e 2 -1)x 2 ,其中P 是曲线的半通径长,当e=0,0 ::: e ::: 1, e =1,e . 1时分别表示圆、椭圆、 抛物线、双曲线。

高考数学圆锥曲线的定义及应用

高考数学圆锥曲线的定义及应用

圆锥曲线的定义及应用一、圆锥曲线的定义1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。

即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。

2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。

即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。

3. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

二、圆锥曲线的方程。

1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)2.双曲线:-=1(a>0, b>0)或-=1(a>0, b>0)(其中,c2=a2+b2)3.抛物线:y2=±2px(p>0),x2=±2py(p>0)三、圆锥曲线的性质1.椭圆:+=1(a>b>0)(1)X围:|x|≤a,|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e=∈(0,1)(5)准线:x=±2.双曲线:-=1(a>0, b>0)(1)X围:|x|≥a, y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e=∈(1,+∞)(5)准线:x=±(6)渐近线:y=±x3.抛物线:y2=2px(p>0)(1)X围:x≥0, y∈R(2)顶点:(0,0)(3)焦点:(,0)(4)离心率:e=1(5)准线:x=-四、例题选讲:例1.椭圆短轴长为2,长轴是短轴的2倍,则椭圆中心到准线的距离是__________。

解:由题:2b=2,b=1,a=2,c==,则椭圆中心到准线的距离:==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一教材分析
1.教学内容
高级中学课本《数学》必修第八章--圆锥曲线方程。

本章主要研究圆锥曲线的定义
方程、几何性质,以及它们在实际生活中的简单应用。

2.教材的地位与作用
前一章中学习了直线和圆的方程,对曲线和方程的概念已经有一些了解,并且已学过求简单曲线方程和利用曲线方程研究曲线几何性质的初步知识。

本章是在这个基础上学习求圆锥曲线方程,研究它们的几何性质,进一步熟悉和掌握坐标法。

由于高考试卷中区分度较大的题目都涉及本章内容,所以难度不易把握。

考虑到本校学生的实际情况,设计例题时难度应适中。

本节课是学习完圆锥曲线几何性质之后的第二节复习课,上节课总结椭圆、双曲线、抛物线的几何条件,标准方程及性质,然后从中归纳它们的几个共同特征,使学生比较清楚的掌握这三种曲线的特点,以及它们之间的区别与联系。

这节课继续利用圆锥曲线的第二定义及方程形式上的共同点,进行多题一解的训练。

3.教学重点和难点
圆锥曲线统一定义及其应用。

突破方法:
(1)引导学生围绕思考题讨论,并对具体事例进行分析。

(2)引导学生通过类比联想已学知识,找到问题解决的方法。

4.教学目标
知识目标
圆锥曲线统一定义及其应用。

能力目标
(1)分析圆锥曲线之间的共同点,培养归纳总结的能力。

(2)利用圆锥曲线定义之间的联系,找到共同的解决问题的方法,培养类比联想的能力。

(3)解题过程中,培养学生运算与思维能力。

情感目标
(1)在寻求圆锥曲线定义与解题方法之间共同点的过程中,培养学生用“普遍联系”的观念分析事物。

(2)讨论的过程中,培养合作精神,树立严谨的科学态度。

二教法分析
高二学生已经具备一定的探索与研究问题的能力。

所以设计问题时应考虑灵活性。

采用启发探索式教学,师生共同探索,共同研究,充分发挥学生主题能动性,教师的主导作用。

在教学过程中采用讨论法,向学生提出具有启发性和思考性的讨论题,组织学生展开讨论。

通过讨论,提高学生的阅读、探索、推理、想象、分析和总结归纳等方面的能力。

在教学手段上,采用多媒体等电教手段,增加教学容量和直观性,通过演示,激发学生学习数学的兴趣。

三学法分析
1.指导读书
指导读书是培养学生自学能力以获得知识的一种非常好的方法,我在课堂上让学生带着
问题研究课本知识。

这不仅可以引导他们重视基础知识的作用,也可调动学生学习的积极性和主动性。

2.指导分析
从高考发展的趋势看,高考越来越重视学生分析问题解决问题的能力。

因此,要求学生在学习中遇到问题时,不要急于求解,而要根据问题提供的信息回忆所学知识,选择最佳方案加以解决,从而避免“瞎撞、乱撞”的不良解题习惯。

四教学过程
五板书设计
在数学解题过程中,当思维遇到障碍时,运用类比推理,往往能实现知识的迁移,将已
学过的知识(如例1与例2)或已掌握的解题方法(如例3、例4、例5)迁移过来,就有“柳暗花明又一村”的感觉了。

当然类比在解析几何的实际应用还有很多,例如新课学习焦半径,中点弦的应用等等都可以通过类比来进行学习。

通过类比,学生可以对所学知识形成一个完整的体系,前后知识
融会贯通后就能达到举一反三了。

研究数学的方法和手段越来越多,但类比方法仍然是我们数学教学中的一种重要的手段。

在强调素质教育的今天,类比的方法应该得到进一步的加强。

中学数学教材中可用来类比的素材很多,这就有待我们教师在教学中总结发现,把培养学生的类比联想思维的工作落到实处,那我们学生的思维就会上一个台阶。

相关文档
最新文档