第十一章 曲线积分与曲面积分_斯托克斯公式

合集下载

(完整版)曲线积分与曲面积分(解题方法归纳)

(完整版)曲线积分与曲面积分(解题方法归纳)

1 / 13第十一章解题方法归纳一、曲线积分与曲面积分的计算方法1.曲线积分与曲面积分的计算方法归纳如下:(1) 利用性质计算曲线积分和曲面积分利用性质计算曲线积分和曲面积分. .(2) 直接化为定积分或二重积分计算曲线或曲面积分直接化为定积分或二重积分计算曲线或曲面积分 (3) 利用积分与路径无关计算对坐标的曲线积分. (4) 利用格林公式计算平面闭曲线上的曲线积分利用格林公式计算平面闭曲线上的曲线积分. . (5) 利用斯托克斯公式计算空间闭曲线上的曲线积分利用斯托克斯公式计算空间闭曲线上的曲线积分. . (6) 利用高斯公式计算闭曲面上的曲面积分利用高斯公式计算闭曲面上的曲面积分. . 2. 在具体计算时,常用到如下一些结论: (1)若积分曲线L 关于y 轴对称,则轴对称,则10 (,)2(,)L L f x f x y ds f x y dsf x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P x P x y dx P x y dy P x ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数10 (,)2(,)LL Q x Q x y dy Q x y dy Q x ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数 其中1L 是L 在右半平面部分.若积分曲线L 关于x 轴对称,则轴对称,则10 (,)2(,)L L f y f x y ds f x y dsf y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数 10 (,)2(,)L L P y P x y dx P x y dy P y ⎧⎪=⎨⎪⎩⎰⎰对为偶函数对为奇函数10 (,)2(,)L L Q y Q x y dy Q x y dy Q y ⎧⎪=⎨⎪⎩⎰⎰对为奇函数对为偶函数其中1L 是L 在上半平面部分.(2)若空间积分曲线L 关于平面=y x 对称,则对称,则 ()()=⎰⎰L L f x ds f y ds .(3)若积分曲面∑关于xOy 面对称,则面对称,则10 (,,)2(,,)f z f x y z dS R x y z dS f z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数 10 (,,)2(,,)R z R x y z dxdy R x y z dxdy R z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在xOy 面上方部分.若积分曲面∑关于yOz 面对称,则面对称,则10 (,,)2(,,)f x f x y z dS R x y z dS f x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数 10 (,,)2(,,)P x P x y z dydz P x y z dydz P x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数 其中1∑是∑在yOz 面前方部分.若积分曲面∑关于zOx 面对称,则面对称,则10 (,,)2(,,)f y f x y z dS R x y z dS f y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为奇函数对为偶函数 10 (,,)2(,,)Q y Q x y z dzdx Q x y z dzdx Q y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰对为偶函数对为奇函数其中1∑是∑在zOx 面右方部分.(4)若曲线弧():()()αβ=⎧≤≤⎨=⎩x x t L t y y t ,则,则 []22(,)(),()()()()βααβ''=+<⎰⎰Lf x y ds f x t y t x t y t dt若曲线弧:()()θαθβ=≤≤L r r (极坐标),则,则[]22(,)()cos ,()sin ()()βαθθθθθθθ'=+⎰⎰Lf x y ds f r r r r d若空间曲线弧():()()()αβ=⎧⎪Γ=≤≤⎨⎪=⎩x x t y y t t z z t ,则,则[]222(,,)(),(),()()()()()βααβΓ'''=++<⎰⎰f x y z ds f x t y t z t x t y t z t dt (5)若有向曲线弧():(:)()αβ=⎧→⎨=⎩x x t L t y y t ,则,则[][]{}(,)(,)(),()()(),()()βα''+=+⎰⎰LP x y dx Q x y dy P x t y t x t Q x t y t y t dt若空间有向曲线弧():()(:)()αβ=⎧⎪Γ=→⎨⎪=⎩x x t y y t t z z t ,则,则(,,)(,,)(,,)Γ++⎰P x y z dx Q x y z dy R x y z dz[][][]{}(),(),()()(),(),()()(),(),()()βα'''=++⎰P x t y t z t x t Q x t y t z t y t R x t y t z t z t dt(6)若曲面:(,)((,))xy z z x y x y D ∑=∈,则,则[]22(,,),,(,)1(,)(,)xyx y D f x y z dS f x y z x y z x y z x y dxdy ∑''=++⎰⎰⎰⎰ 其中xy D 为曲面∑在xOy 面上的投影域.若曲面:(,)((,))yz x x y z y z D ∑=∈,则,则[]22(,,)(,),,1(,)(,)yzy z D f x y z dS f x y z y z x y z x y z dydz ∑''=++⎰⎰⎰⎰其中yz D 为曲面∑在yOz 面上的投影域.若曲面:(,)((,))zx y y x z x z D ∑=∈,则,则[]22(,,),(,),1(,)(,)zxz x D f x y z dS f x y x z z y y z y y z dzdx ∑''=++⎰⎰⎰⎰其中zx D 为曲面∑在zOx 面上的投影域.(7)若有向曲面:(,)z z x y ∑=,则,则(,,)[,,(,)]xyD R x y z dxdy R x y z x y dxdy ∑=±⎰⎰⎰⎰(上“+”下“-”) 其中xy D 为∑在xOy 面上的投影区域.若有向曲面:(,)x x y z ∑=,则,则(,,)[(,),,]yzD P x y z dydz P x y z y z dydz ∑=±⎰⎰⎰⎰(前“+”后“-”) 其中yz D 为∑在yOz 面上的投影区域.若有向曲面:(,)y y x z ∑=,则,则(,,)[,(,),]zxD Q x y z dzdx Q x y x z z dzdx ∑=±⎰⎰⎰⎰(右“+”左“-”) 其中zx D 为∑在zOx 面上的投影区域.(8)d d +⎰⎰L P x Q y 与路径无关d d 0⇔+=⎰⎰Ñc P x Q y (c 为D 内任一闭曲线)内任一闭曲线)(,)⇔=+du x y Pdx Qdy (存在(,)u x y ) ∂∂⇔=∂∂P Q y x其中D 是单连通区域,(,),(,)P x y Q x y 在D 内有一阶连续偏导数.(9)格林公式)格林公式(,)(,)⎛⎫∂∂+=- ⎪∂∂⎝⎭⎰⎰⎰ÑL DQ P P x y dx Q x y dy dxdy x y 其中L 为有界闭区域D 的边界曲线的正向,(,),(,)P x y Q x y 在D 上具有一阶连续偏导数.(10)高斯公式)高斯公式(,,)(,,)(,,)P Q R P x y z dydz Q x y z dzdx R x y z dxdydv x y z ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰Ò 或 (cos cos cos )P Q R P Q R dS dv x y z αβγ∑Ω⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰Ò 其中∑为空间有界闭区域Ω的边界曲面的外侧,(,,),(,,),(,,)P x y z Q x y z R x y z 在Ω上具有一阶连续偏导数,cos ,cos ,cos αβγ为曲面∑在点(,,)x y z 处的法向量的方向余弦.(11)斯托克斯公式)斯托克斯公式dydz dzdx dxdyPdx Qdy Rdz x y z P Q RΓ∑∂∂∂++=∂∂∂⎰⎰⎰Ñ 其中Γ为曲面∑的边界曲线,且Γ的方向与∑的侧(法向量的指向)符合右手螺旋法则,,,P Q R 在包含∑在内的空间区域内有一阶连续偏导数.1.计算曲线积分或曲面积分的步骤:(1)计算曲线积分的步骤:)计算曲线积分的步骤: 1)判定所求曲线积分的类型(对弧长的曲线积分或对坐标的曲线积分); 2)对弧长的曲线积分,一般将其化为定积分直接计算;)对弧长的曲线积分,一般将其化为定积分直接计算;对坐标的曲线积分:对坐标的曲线积分:① 判断积分是否与路径无关,若积分与路径无关,重新选取特殊路径积分; ② 判断是否满足或添加辅助线后满足格林公式的条件,判断是否满足或添加辅助线后满足格林公式的条件,若满足条件,若满足条件,利用格林公式计算(添加的辅助线要减掉);③ 将其化为定积分直接计算.④ 对空间曲线上的曲线积分,判断是否满足斯托克斯公式的条件,若满足条件,利用斯托克斯公式计算;若不满足,将其化为定积分直接计算.(2)计算曲面积分的步骤:)计算曲面积分的步骤:1)判定所求曲线积分的类型(对面积的曲面积分或对坐标的曲面积分); 2)对面积的曲面积分,一般将其化为二重积分直接计算;)对面积的曲面积分,一般将其化为二重积分直接计算;对坐标的曲面积分:对坐标的曲面积分:① 判断是否满足或添加辅助面后满足高斯公式的条件,若满足条件,利用高斯公式计算(添加的辅助面要减掉);② 将其投影到相应的坐标面上,化为二重积分直接计算. 例1 计算曲线积分2+=++⎰Ldx dyI x y x,其中L 为1+=x y 取逆时针方向. 解 2222111++===++++++⎰⎰⎰⎰LL L L dx dy dx dy dx dy I x y x x x x由于积分曲线L 关于x 轴、y 轴均对称,被积函数211==+P Q x对x 、y 均为偶函数,因此函数,因此220,011==++⎰⎰LLdx dy xx故 20+==++⎰L dx dyI x y x 『方法技巧』『方法技巧』 对坐标的曲线积分的对称性与对弧长的曲线积分对称性不对坐标的曲线积分的对称性与对弧长的曲线积分对称性不同,记清楚后再使用同,记清楚后再使用..事实上,本题还可应用格林公式计算事实上,本题还可应用格林公式计算..例 2 计算曲面积分2()∑=+++⎰⎰I ax by cz n dS ,其中∑为球面2222++=x y z R .解 2()∑=+++⎰⎰I ax by cz n dS 2222222(222222)∑=+++++++++⎰⎰a x b y c z n abxy acxz bcyz anx bny cnz dS由积分曲面的对称性及被积函数的奇偶性知由积分曲面的对称性及被积函数的奇偶性知0∑∑∑∑∑∑======⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰xydS xzdS yzdS xdS ydS zdS又由轮换对称性知又由轮换对称性知222∑∑∑==⎰⎰⎰⎰⎰⎰x dS y dS z dS故2222222∑∑∑∑=+++⎰⎰⎰⎰⎰⎰⎰⎰I a x dS by dS cz dS ndS22222()∑∑=+++⎰⎰⎰⎰a b c x dS ndS22222222()43π∑++=+++⎰⎰a b c x y z dS R n 22222222222244[()]33ππ∑++=+=+++⎰⎰a b c R R dS R n R a b c n 『方法技巧』 对面积的曲面积分的对称性与对坐标的曲面积分的对称性不对面积的曲面积分的对称性与对坐标的曲面积分的对称性不同,理解起来更容易些同,理解起来更容易些..若碰到积分曲面是对称曲面,做题时可先考虑一下对称性.例3 计算曲面积分222()∑++⎰⎰Òx y z dS ,其中∑为球面2222++=x y z ax .解 2222()22()2∑∑∑∑++==-+⎰⎰⎰⎰⎰⎰⎰⎰乙乙x y z dS axdS a x a dS a dS222402248ππ∑=+==⎰⎰g Òa dS a a a 『方法技巧』 积分曲面积分曲面∑是关于0-=x a 对称的,被积函数-x a 是-x a 的奇函数,因此()0∑-=⎰⎰Òx a dS例4 计算曲线积分2222-+⎰ÑLxy dy x ydxx y,其中L 为圆周222(0)+=>x y a a 的逆时针方向 解法1 直接计算. 将积分曲线L 表示为参数方程形式表示为参数方程形式cos :(:02)sin θθπθ=⎧→⎨=⎩x a L y a 代入被积函数中得代入被积函数中得22232222[cos sin cos cos sin (sin )]πθθθθθθθ-=--+⎰⎰ÑLxy dy x ydxad x y2232232202sin cos 2sin (1sin )ππθθθθθθ==-⎰⎰a d ad324332013118(sinsin )8224222πππθθθπ⎛⎫=-=-= ⎪⎝⎭⎰g g g ad a a解法2 利用格林公式利用格林公式2222222211()-=-=++⎰⎰⎰⎰蜒L L Dxy dy x ydx xy dy x ydx x y dxdy aa x y 其中222:+≤D x y a ,故,故2222322112πθρρρπ-==+⎰⎰⎰g ÑaLxy dy x ydxd d a ax y『方法技巧』『方法技巧』 本题解法本题解法1用到了定积分的积分公式:用到了定积分的积分公式:213223sin 13312422πθθπ--⎧⎪⎪-=⎨--⎪⎪-⎩⎰g g Lg g g Lg g g n n n n n n d n n n n n 为奇数为偶数 解法2中,一定要先将积分曲线222+=x y a 代入被积函数的分母中,才能应用格林公式,否则不满足,P Q 在D 内有一阶连续偏导数的条件.例5 计算曲线积分22()()+--+⎰Lx y dx x y dyx y ,其中L 为沿cos π=y x 由点由点(,)ππ-A 到点(,)ππ--B 的曲线弧.解 直接计算比较困难. 由于由于 2222,+-+==++x yx y P Q x y x y ,222222()∂--∂==∂+∂P x y xy Q y x y x 因此在不包含原点(0,0)O 的单连通区域内,积分与路径无关.取圆周2222π+=x y 上从(,)ππ-A 到点(,)ππ--B 的弧段'L 代替原弧段L ,其参数方程为:2cos 5:(:)442sin πθππθπθ⎧=⎪'-→⎨=⎪⎩x L y ,代入被积函数中得,代入被积函数中得222()()1()()2π'+--=+--+⎰⎰L L x y dx x y dy x y dx x y dy x y544[(cos sin )(sin )(cos sin )cos ]ππθθθθθθθ-=+---⎰d54432ππθπ-=-=-⎰d『方法技巧』『方法技巧』 本题的关键是选取积分弧段本题的关键是选取积分弧段'L ,既要保证'L 简单,又要保证不经过坐标原点.例6 计算曲面积分∑++⎰⎰xdydz ydzdx zdxdy ,其中∑为1++=x y z 的法向量与各坐标轴正向夹锐角的侧面解 由于曲面∑具有轮换对称性,∑∑∑==⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy ,∑投影到xOy 面的区域{}(,)1=+≤xy D x y x y ,故,故233(1)∑∑∑++==--⎰⎰⎰⎰⎰⎰xdydz ydzdx zdxdy zdxdy x y dxdy21(1)22003(1)3(1)-=--=--⎰⎰⎰⎰xyx D x y dxdy dx x y dy 1401(1)2=-⎰x dx 04111(1)30=---=⎰t x t t dt『方法技巧』『方法技巧』 由于积分曲面由于积分曲面∑具有轮换对称性,因此可以将,dydz dzdx 直接转换为dxdy ,∑只要投影到xOy 面即可.例7 计算曲面积分222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy ,其中∑为锥面222=+z x y 在0≤≤z h 部分的上侧.解 利用高斯公式. 添加辅助面2221:()∑=+≤z h x y h ,取下侧,则,取下侧,则222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy1222()()()∑+∑=-+-+-⎰⎰x ydydz y z dzdx z x dxdy1222()()()∑--+-+-⎰⎰x y dydz y z dzdx z x dxdy 123()Ω∑=---⎰⎰⎰⎰⎰dxdydz h x dxdy 23()Ω=-+-⎰⎰⎰⎰⎰xyD dxdydz h x dxdy其中Ω为∑和1∑围成的空间圆锥区域,xy D 为∑投影到xOy 面的区域,即{}222(,)=+≤xy D x y x y h ,由xy D 的轮换对称性,有的轮换对称性,有2221()2=+⎰⎰⎰⎰xyxyD D x dxdy x y dxdy 故 222()()()∑-+-+-⎰⎰x y dydz y z dzdx z x dxdy222113()32π=-+-+⎰⎰⎰⎰g g xyxyD D h h h dxdy x y dxdy23234001124πππθρρπ=-+-=-⎰⎰g hh h h d d h『方法技巧』『方法技巧』 添加辅助面时,既要满足封闭性,又要满足对侧的要求添加辅助面时,既要满足封闭性,又要满足对侧的要求添加辅助面时,既要满足封闭性,又要满足对侧的要求..本题由于积分锥面取上侧(内侧),因此添加的平面要取下侧,这样才能保证封闭曲面取内侧,使用高斯公式转化为三重积分时,前面要添加负号例8 计算曲线积分()()()-+-+-⎰ÑLz y dx x z dy x y dz ,其中221:2⎧+=⎨-+=⎩x y L x y z 从z 轴的正向往负向看,L 的方向是顺时针方向.解 应用斯托克斯公式计算. 令22:2(1)∑-+=+≤x y z x y 取下侧,∑在xOy 面的投影区域为{}22(,)1=+≤xy D x y x y ,则,则()()()∑∂∂∂-+-+-=∂∂∂---⎰⎰⎰ÑL dydzdzdx dxdy z y dx x z dy x y dz x y z z yx zx y222π∑==-=-⎰⎰⎰⎰xyD dxdy dxdy『方法技巧』 本题用斯托克斯公式计算比直接写出曲线本题用斯托克斯公式计算比直接写出曲线L 的参数方程代入要简单,所有应用斯托克斯公式的题目,曲面∑的选取都是关键,∑既要简单,又要满足斯托克斯的条件,需要大家多加练习.二、曲线积分与曲面积分的物理应用1.曲线积分与曲面积分的物理应用归纳如下: (1) 曲线或曲面形物体的质量曲线或曲面形物体的质量. . (2) 曲线或曲面的质心(形心)曲线或曲面的质心(形心). . (3) 曲线或曲面的转动惯量. (4) 变力沿曲线所作的功. (5) 矢量场沿有向曲面的通量. (6) 散度和旋度.2. 在具体计算时,常用到如下一些结论:(1)平面曲线形物体)平面曲线形物体 (,)ρ=⎰LM x y ds空间曲线形物体空间曲线形物体 (,,)ρ=⎰LM x y z ds 曲面形构件曲面形构件 (,,)ρ∑=⎰⎰M x y z dS(2) 质心坐标质心坐标平面曲线形物体的质心坐标:平面曲线形物体的质心坐标: (,)(,),(,)(,)ρρρρ==⎰⎰⎰⎰LLLLx x y dsy x y dsx y x y dsx y ds空间曲线形物体的质心坐标:空间曲线形物体的质心坐标:(,,)(,,)(,,),,(,)(,)(,)ρρρρρρ===⎰⎰⎰⎰⎰⎰LLLLLLx x y z dsy x y z dsz x y z dsx y z x y dsx y dsx y ds曲面形物体的质心坐标:曲面形物体的质心坐标:(,,)(,,)(,,),,(,,)(,,)(,,)ρρρρρρ∑∑∑∑∑∑===⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰x x y z dSy x y z dSz x y z dSx y z x y z dSx y z dSx y z dS当密度均匀时,质心也称为形心.(3) 转动惯量转动惯量平面曲线形物体的转动惯量:22(,),(,)ρρ==⎰⎰x y L L I y x y ds I x x y ds 空间曲线形物体的转动惯量:空间曲线形物体的转动惯量:2222()(,,),()(,,)ρρ=+=+⎰⎰x y L LI y z x y z ds I z x x y z ds22()(,,)ρ=+⎰z LI x y x y z ds11 / 13曲面形物体的转动惯量:曲面形物体的转动惯量: 2222()(,,),()(,,)ρρ∑∑=+=+⎰⎰⎰⎰x y I y z x y z dS I z x x y z dS22()(,,)ρ∑=+⎰⎰zI x y x y z dS其中(,)ρx y 和(,,)ρx y z 分别为平面物体的密度和空间物体的密度.(4) 变力沿曲线所作的功变力沿曲线所作的功平面上质点在力F (,)=P x y i +(,)Q x y j 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功所做的功»(,)(,)=+⎰ABW P x y dx Q x y dy 空间质点在力F (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 作用下,沿有向曲线弧L 从A 点运动到B 点,F 所做的功所做的功»(,,)(,,)(,,)=++⎰ABW P x y z dx Q x y z dy R x y z dz (2) 矢量场沿有向曲面的通量矢量场沿有向曲面的通量矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 通过有向曲面∑指定侧的通量(,,)(,,)(,,)∑Φ=++⎰⎰P x y z dydz Q x y z dzdx R x y z dxdy(3) 散度和旋度散度和旋度矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的散度的散度div A ∂∂∂=++∂∂∂P Q R x y z 矢量场A (,,)=P x y z i +(,,)Q x y z j +(,,)R x y z k 的旋度的旋度rot A ()∂∂=-∂∂R Q y z i ()∂∂+-∂∂P R z xj +()∂∂-∂∂Q P x y k xy z P Q R∂∂∂=∂∂∂ 1.曲线积分或曲面积分应用题的计算步骤: i j k12 / 13 (1)根据所求物理量,代入相应的公式中;)根据所求物理量,代入相应的公式中;(2)计算曲线积分或曲面积分)计算曲线积分或曲面积分. .例9 设质点在场力F {}2,=-k y x r 的作用下,沿曲线π:cos 2=L y x 由(0,)2πA 移动到(,0)2πB ,求场力所做的功(其中22,=+r x y k 为常数)为常数) 解 积分曲线积分曲线L 如图11.7所示. 场力所做的功为场力所做的功为»(,)(,)=+⎰ABW P x y dx Q x y dy »22=-⎰AB y xk dx dy r r 令22,==-y x P Q r r ,则22224()(0)∂-∂==+≠∂∂P k x y Q x y y r x 即在不含原点的单连通区域内,积分与路径无关. 另取由A 到B 的路径:的路径:1πππ:cos ,sin (:0)222θθθ==→L x y 1022222π(sin cos )d 2πθθθ=-=-+=⎰⎰L y xW k dx dy kk r r 『方法技巧』 本题的关键是另取路径本题的关键是另取路径1L ,一般而言,最简单的路径为折线路径,比如U AO OB ,但不可以选取此路径,,但不可以选取此路径,因为因为,P Q 在原点处不连续. 换句话说,所取路径不能经过坐标原点,当然路径1L 的取法不是唯一的.例10 设密度为1的流体的流速v 2=xz i sin +x k ,曲面∑是由曲线21(12)0⎧⎪=+≤≤⎨=⎪⎩y z z x 饶z 轴旋转而成的旋转曲面,其法向量与z 轴正向的夹角为锐角,求单位时间内流体流向曲面∑正侧的流量Q .解 旋转曲面为旋转曲面为222:1(12)∑+-=≤≤x y z z ,令1∑为平面1=z 在∑内的部分取上侧,2∑为平面2=z 在∑内的部分取下侧,则12∑+∑+∑为封闭曲面的内侧,故(,,)(,,)(,,)∑=++⎰⎰Q P x y z dydz Q x y z dzdx R x y z dxdy 2sin ∑=+⎰⎰xz dydz xdxdy1L A B o y L x 图11.713 / 13 1212222sin sin sin ∑+∑+∑∑∑=+-+-+⎰⎰⎰⎰⎰⎰xz dydz xdxdy xz dydz xdxdy xz dydz xdxdy122sin sin Ω∑∑=---⎰⎰⎰⎰⎰⎰⎰z dxdydz xdxdy xdxdy2222222221125sin sin +≤++≤+≤=--+⎰⎰⎰⎰⎰⎰⎰x y z x y x y z dz dxdy xdxdy xdxdy2221128(1)0015ππ=-+-+=-⎰z z dz 『方法技巧』 本题的关键是写出旋转曲面本题的关键是写出旋转曲面∑的方程,其次考虑封闭曲面的侧,以便应用高斯公式,最后用截痕法计算三重积分,用对称性计算二重积分侧,以便应用高斯公式,最后用截痕法计算三重积分,用对称性计算二重积分. .。

斯托克斯(stokes)公式

斯托克斯(stokes)公式
相交不多于一点 , 并Σ 取 上侧,有向曲线 C 为Σ 的正 向边界曲线 在 xoy 的投 影.且所围区域D xy .
x
:z

f ( x, y )
o
y
D xy
C
思路 曲面积分
1
二重积分
2
曲线积分
P P P P dzdx dxdy ( cos cos )ds y z y z
dydz dzdx dxdy

0
D xy
1
x
1
由于的法向量的三个方向余弦都为正,
再由对称性知:
dydz dzdx dxdy
3 d
Dxy
y
1
Dxy如图
3 zdx xdy ydz 2
D xy
o
1
x
例 2 计算曲线积分


( y 2 z 2 )dx ( z 2 x 2 )dy ( x 2 y 2 )dz
环流量 rotA ds At ds

A 向量场 沿有向闭曲线 的环流量等于向量场 所张的曲面的通量.( 的正 A 的旋度场通过 向与 的侧符合右手法则)
Stokes公式的物理解释:
例 3 设一刚体绕过原点 O 的某个 轴转动,其角速度 ( 1 , 2 , 3 ) , 刚体上每一点处的线速度构成一个 线速场,则向量r OM x , y , z在点 M 处的线速度
i j k 环流量 A ds ds C x y z P Q R
利用stokes公式, 有
2. 旋度的定义: i j k 称向量 为向量场的旋度 ( rotA) . x y z P Q R

经典高等数学课件D11-7斯托克斯公式

经典高等数学课件D11-7斯托克斯公式
19
斯托克斯公式的又一种形式:
R Q P R Q P [( y z )cos ( z x )cos ( x y )cos ]dS
( P cos Q cos R cos )ds 其中: 的单位法向量为:n cos i cos j cos k , 的单位切向量为: cos i cos j cos k .
D D
14
*三、 环流量与旋度
1. 环流量的定义: 设向量场A( x, y, z) P( x, y, z)i Q( x, y, z ) j R( x, y, z )k 则沿场A中某一封闭的有向曲线上的曲线积分
称为向量场A沿有向闭曲线的环流量.


A ds Pdx Qdy Rdz
复 习
1.高斯公式 (条件:封闭性,有向性,连续性)
P Q R ( x y z )dv Pdydz Qdzdx Rdxdy. 外
2.高斯公式的应用 (1)简化计算面积分 (2)物理意义 通量
Pdydz Qdzdx Rdxdy
Q P 即 dxdy P ( x , y )dx Q( x , y )dy ---格林公式 x y D
故格林公式是斯托克斯公式的特殊情况.
8
3.记忆方法:
dydz dzdx dxdy

Pdx Qdy Rdz

4.另一种形式:
z R
o
1
x
Dx y


3 dydz dzdx dxdy (1,1,1) n dxdy 3 d .

第十一章_曲线积分与曲面积分习_[1]...

第十一章_曲线积分与曲面积分习_[1]...
x y z x y z S1 xdydz z 2dxdy xdydz z 2dxdy 2 2 2 2 2 2 x y z x y z x S2 S3
S
xdydz z 2dxdy 例12 计算曲面积分 2 2 2 , 其中S是由曲面 x y z S

4 a3 . 3
2 3
0 ( x 2 y 2 z 2 )ds

( x2 z 2 )ds
L关于xOz轴平面对称, y是L上关于y 的奇函数
2 1 2 2 2 ( x y z )ds ( x y z)ds 3 3
4 a3 3
(二) 曲线面积分的计算法 1. 基本方法 第一类( 对面积 ) 曲面积分 第二类( 对坐标 )
转化
二重积分
(1) 统一积分变量 — 代入曲面方程
第一类: 始终非负 (2) 积分元素投影 第二类: 有向投影
(3) 确定二重积分域 — 把曲面积分域投影到相关坐标面 P, Q, R以及它们的一阶偏导数不连续的情 况下,考虑通过投影化为二重积分处理.

z
2 1
1
2z dxdydz 4dxdy dxdy 2 2 zdz dxdy 4 dxdy dxdy 1 2 2 x2+y24
1 2
+ +
1 2
Dz
2
x
O
n
y
1+2
2 z
1
2
所以
BA
(x2y)dx+(y 2x)dy x2 dx
2 3 a . 3
a
a
例4 计算曲线积分 , 其中 且取正向 . y 2 2 Q y x P 1 2 2 L 2 解 当 x +y 0 时 , x ( x y 2 )2 y D x 在D内作圆周l: x2+y2=1, 取逆时针方向, l O D1 2 由格林公式, 有

高等数学电子教案:第11章 曲线积分与曲面积分

高等数学电子教案:第11章 曲线积分与曲面积分

)i x ,)i LQ y ⎰以上这两个积分称为第二类曲线积分。

第二类曲线积分的定义可以类似地推广到积分弧段为空间有向曲线弧的情形。

第二类曲线积分的物理意义:当质点受到力F(x,y)=P(x,y)作用,在xoy 平面内从点A沿光滑曲线L 移动到点B时,变力F所做的功,即(,)L F ds P x dy ⋅=⎰ ,其中类似地可以推广到空间情形。

第二类曲线积分的性质:]Pdx Qdy k +=L Pdx Qdy Pdx +=⎰LPdx Qdy +⎰成立,其中平面上曲线积分与路径无关的条件:P(x,y)及Q(x,y)在G 内具有一阶连续偏导数,则下面四个命题等价:内积分与路径无关;LPdx Qdy +=⎰,L 为G 内任一闭曲线;,(,)Q P x y G xy∂∂=∈∂∂;)存在可微函数u(x,y)且当上述四个等价命题之一成立时有:00(,)(,))x y x y y Pdx =+⎰0(,)yy Q x y dy +⎰对于一个第二类曲线积分的计算题目,先分析其是否满足格林公式:LPdx Qdy +⎰,若成为取正向的封闭曲线,进而采用格林公式,然后再减去L 1与L 所围成区域内计算二重积分,又要有利用所围成区域满足格林公式条件。

若L 为闭区线,但连续偏导数,则可采用“挖洞’法来利用格林公式。

且区域为单连通区域时,积分与路径无关,因而我们可选取一条最简单的路经计算。

一般轴的折线,如果曲线本身是封闭的,可寻找一条更简单的封闭同向曲线,只要两条曲线不象Q P∂∂)S存在,则称这个极限iS,亦称它为第一型曲面积分。

其物理意义是面密度)i,∑叫做积分曲面曲面面积元素。

可以得知它具有以下性质(假定下面的曲面积分都存在)=⎰⎰)]dS k1∑2{1{,,}{x F n dS z F dxdy z P Q R dxdy⋅-⋅'+⋅ “+”, “-”的确定:若题设中曲面∑的侧与-”。

)()i xy S 存在,x,y 的曲面积分,记作)()i xy S 。

高等数学下册第十一章习题答案详解

高等数学下册第十一章习题答案详解

高等数学下册第十一章习题答案详解1.设L 为xOy 面内直线x a =上的一段,证明:(,)d 0LP x y x =⎰,其中(),P x y 在L 上连续.证:设L 是直线x =a 上由(a ,b 1)到(a ,b 2)这一段,则 L :12x ab t b y t =⎧≤≤⎨=⎩,始点参数为t =b 1,终点参数为t =b 2故 ()()()221d ,d d 0d 0d b b L b b a P x y x P a,t t P a,t t t ⎛⎫=⋅=⋅= ⎪⎝⎭⎰⎰⎰2.设L 为xOy 面内x 轴上从点(,0)a 到点(,0)b 的一段直线,证明:(,)d (,0)d bLaP x y x P x x =⎰⎰,其中(),P x y 在L 上连续.证:L :0x xa xb y =⎧≤≤⎨=⎩,起点参数为x =a ,终点参数为x =b . 故()(),d ,0d bLaP x y x P x x =⎰⎰3.计算下列对坐标的曲线积分: (1)22()d Lxy x -⎰,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧;(2)d Lxy x ⎰,其中L 为圆周()222x a y a -+=(0)a >及x 轴所围成的在第一象限内的区域的整个边界(按逆时针方向绕行);(3)d d Ly x x y +⎰,其中L 为圆周cos ,sin x R t y R t ==上对应t 从0到π2的一段弧; (4)22()d ()d Lx y x x y y x y+--+⎰,其中L 为圆周222x y a +=(按逆时针方向绕行); (5)2d d d x x z y y z +-⎰Γ,其中Γ为曲线,,x k y acos z asin θθθ===上对应θ从0到π的一段弧;(6) 322d 3d ()d x x zy y xy z ++-⎰Γ,其中Γ是从点3,2,1()到点0,0,0()的一段直线;(7)d d d x y y z -+⎰Γ,其中Γ为有向闭折线ABCA ,这里AB C 、、依次为点1,0,0()、010(,,)、(001),,;(8)22(2)d (2)d Lx xy x y xy y -+-⎰,其中L 是抛物线2y x =上从点(1,1)-到点(1,1)的一段弧.解:(1)L :y =x 2,x 从0变到2,()()22222435001156d d 3515L x y x x x x x x ⎡⎤-=-=-=-⎢⎥⎣⎦⎰⎰ (2)如图11-1所示,L =L 1+L 2.其中L 1的参数方程为图11-1cos 0πsin x a a tt y a t =+⎧≤≤⎨=⎩L 2的方程为y =0(0≤x ≤2a ) 故()()()()()12π20π320ππ32203d d d 1+cost sin cos d 0d sin 1cos d sin d sin dsin π2LL L axy x xy x xy xa a t a a t t x a t t ta t t t ta =+'=⋅++=-+=-+=-⎰⎰⎰⎰⎰⎰⎰⎰(3)()π20π220π220d d sin sin cos cos d cos 2d 1sin 220Ly x x y R t R t R tR t t Rt tR t +=-+⎡⎤⎣⎦=⎡⎤=⎢⎥⎣⎦=⎰⎰⎰(4)圆周的参数方程为:x =a cos t ,y =a sin t ,t :0→2π. 故()()()()()()222π202π220d d 1cos sin sin cos sin cos d 1d 2πLx y x x y yx y a t a t a t a t a t a t t a a t a +--+=+---⎡⎤⎣⎦=-=-⎰⎰⎰(5)()()()2π220π3220π3320332d d d sin sin cos cos d d 131ππ3x xz y y zk k a a a a k a k a k a Γθθθθθθθθθθ+-=⋅+⋅--=-⎡⎤=-⎢⎥⎣⎦=-⎰⎰⎰(6)直线Γ的参数方程是32=⎧⎪=⎨⎪=⎩x t y t z t t 从1→0.故()()322322103141d 3d d 27334292d 87d 1874874x x zy y x y z t t t t t tt tt Γ++-⎡⎤=⋅+⋅⋅+-⋅⎣⎦==⋅=-⎰⎰⎰(7)AB BC CA Γ=++(如图11-2所示)图11-21:0y x AB z =-⎧⎨=⎩,x 从0→1()01d d d 112AB x y y z dx -+=--=-⎡⎤⎣⎦⎰⎰. 0:1x BC y z =⎧⎨=-⎩,z 从0→1()()()1010120d d d 112d 12232BC x y y z z dz z zz z -+=--+-⎡⎤⎣⎦=-⎡⎤=-⎢⎥⎣⎦=⎰⎰⎰0:1y CA z x =⎧⎨=-⎩,x 从0→1[]1d d d 1001CAx y y z dx -+=-+=⎰⎰.故()()d d d d d d 312122LABBCCAx y y zx y y z-+=++-+=-++=⎰⎰⎰⎰(8)()()()()()221224211235412d 2d 222d 224d 1415L x xy x y xy yx x x x x x x xxx x x x---+-⎡⎤=-⋅+-⋅⋅⎣⎦=-+-=-⎰⎰⎰4. 计算()d ()d Lx y x y x y ++-⎰,其中L 分别是:(1)抛物线2y x =上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段;(3)先沿直线从点(1,1)到点(1,2),然后再沿直线到点(4,2)的折线; (4)曲线2221,1x t t y t =++=+上从点(1,1)到点(4,2)的一段弧. 解:(1)L :2x y y y ⎧=⎨=⎩,y :1→2,故()()()()()2221232124321d d 21d 2d 111232343L x y x y x yy y y y y yy y y yy y y ++-⎡⎤=+⋅+-⋅⎣⎦=++⎡⎤=++⎢⎥⎣⎦=⎰⎰⎰ (2)从(1,1)到(4,2)的直线段方程为x =3y -2,y :1→2 故()()()()()2121221d d 32332d 104d 5411L x y x y x yy y y y y y yy y ++-=-+⋅+-+⎡⎤⎣⎦=-⎡⎤=-⎣⎦=⎰⎰⎰ (3)设从点(1,1) 到点(1,2)的线段为L 1,从点(1,2)到(4,2)的线段为L 2,则L =L 1+L 2.且 L 1:1x y y=⎧⎨=⎩,y :1→2;L 2:2x x y =⎧⎨=⎩,x :1→4;故()()()()()12122211d d 101d 1d 212L x y x y x yy y y y y y y ++-=+⋅+-⎡⎤⎣⎦⎡⎤=-=-⎢⎥⎣⎦=⎰⎰⎰()()()()()()24144211d d 220d 12d 22272L x y x y x yx x x x x x ++-=++-⋅⎡⎤⎣⎦⎡⎤=+=+⎢⎥⎣⎦=⎰⎰⎰从而()()()()()12d d d d 1271422LL L x y x y x yx y x y x y++-=+++-=+=⎰⎰⎰(4)易得起点(1,1)对应的参数t 1=0,终点(4,2)对应的参数t 2=1,故()()()()()()122132014320d d 32412d 10592d 10592432323L x y x y x y t t t tt t tt t t tt t t t ++-⎡⎤=++++--⋅⎣⎦=+++⎡⎤=+++⎢⎥⎣⎦=⎰⎰⎰5. 设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比.若质点由(,0)a 沿椭圆移动到0,Bb (),求力所做的功. 解:依题意知 F =kxi +kyj ,且L :cos sin x a t y a t=⎧⎨=⎩,t :0→π2()()()()π2022π20π222022d d cos sin sin cos d sin 2d 2cos 2222LW kx x ky yka t t kb t b t t k b a t tk b a t k b a =+=-+⋅⎡⎤⎣⎦-=--⎡⎤=⎢⎥⎣⎦-=⎰⎰⎰(其中k 为比例系数)6. 计算对坐标的曲线积分:(1)d xyz z ⎰Γ,Γ为2221x y z ++=与z y =相交的圆,方向按曲线依次经过第Ⅰ、Ⅱ、Ⅶ、Ⅷ卦限;(2)222222(-)d ()d ()d y z x z x y x y z +-+-⎰Γ,Γ为2221x y z ++=在第Ⅰ卦限部分的边界曲线,方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 方向按曲线依次经过xOy 平面部分,yOz 平面部分和zOx 平面部分. 解:(1)Γ:2221x y z y z ⎧++=⎨=⎩ 即2221x z y z ⎧+=⎨=⎩其参数方程为:cos x ty tz t =⎧⎪⎪⎪=⎨⎪⎪=⎪⎩ t :0→2π 故:2π2π2202π202π0222d cos sin sin cos d 2sin cos d 2sin 2d 21cos 4d 22πxyz z t t t t t t t t t t ttΓ=⋅⋅⋅==-==⎰⎰⎰⎰⎰(2)如图11-3所示.图11-3Γ=Γ1+Γ2+Γ3.Γ1:cos sin 0x ty t z =⎧⎪=⎨⎪=⎩t :0→π2,故()()()()()1222222π2220π3320π320d d d sin sin cos cos d sincos d 2sin d 24233yz x z x y x y zt t t t tt t tt t Γ-+-+-⎡⎤=--⋅⎣⎦=-+=-=-⋅=-⎰⎰⎰⎰又根据轮换对称性知()()()()()()1222222222222d d d 3d d d 4334y z x z x y x y z y z x z x y x y zΓΓ-+-+-=-+-+-⎛⎫=⨯- ⎪⎝⎭=-⎰⎰ 习题11-31. 应用格林公式计算下列积分:(1)(24)d (356)d Lx y x x y y -+++-⎰,其中L 为三顶点分别为()()0,0,3,0和(32),的三角形正向边界;(2)222(cos 2sin e )d (sin 2e )d x x Lx y x xy x y x x x y y +-+-⎰,其中L 为正向星形线222333x y a +=0a >();(3)3222(2cos )d (12sin 3)d Lxy y x x y x x y y -+-+⎰,其中L 为抛物线22πx y =上由点0,0()到点π,12⎛⎫⎪⎝⎭的一段弧; (4)22()d (sin )d Lxy x x y y --+⎰,其中L 是圆周22y x x =-上由点0,0()到()1,1的一段弧;(5)(e sin )d (e cos )d x x Ly my x y m y -+-⎰,其中m 为常数,L 为由点(),0a 到0,0()经过圆22x y ax +=上半部分的路线(a 为正数).图11-4解:(1)L 所围区域D 如图11-4所示,P =2x -y +4,Q =3x +5y -6,3Qx∂=∂,1P y ∂=-∂,由格林公式得 ()()d d 24356d d 4d d 4d d 1432212LD DDx yx y x y Q P x y x y x yx y+-++-∂∂⎛⎫-= ⎪∂∂⎝⎭===⨯⨯⨯=⎰⎰⎰⎰⎰⎰⎰(2)P =x 2y cos x +2xy sin x -y 2e x ,Q =x 2sin x -2y e x , 则2cos 2sin 2e x P x x x x y y∂=+-∂,2cos 2sin 2e x Qx x x x y x∂=+-∂.从而P Qy x∂∂=∂∂,由格林公式得.()()222d dcos2sin e sin2ed d++--∂∂⎛⎫-= ⎪∂∂⎝⎭=⎰⎰⎰x xLDx yx y x xy x y x x yQ Px yx y(3)如图11-5所示,记OA,AB,BO围成的区域为D.(其中BO=-L)图11-5P=2xy3-y2cos x,Q=1-2y sin x+3x2y2262cosPxy y xy∂=-∂,262cosQxy y xx∂=-∂由格林公式有:d d d d0L OA AB DQ PP x Q y x yx y-++∂∂⎛⎫-+==⎪∂∂⎝⎭⎰⎰⎰故π2122001222d d d dd d d dππd d12sin3243d12π4π4++=+=+++⎛⎫=+-+⋅⋅⎪⎝⎭⎛⎫=-+⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰L OA ABOA ABP x Q y P x Q yP x Q y P x Q yO x yy yyy y(4)L、AB、BO及D如图11-6所示.图11-6由格林公式有d d d d++∂∂⎛⎫-+=- ⎪∂∂⎝⎭⎰⎰⎰L AB BO DQ PP x Q y x yx y而P=x2-y,Q=-(x+sin2y).1∂=-∂Py ,1∂=-∂Q x,即,0∂∂-=∂∂Q P x y 于是()d d d d 0+++++=+=⎰⎰⎰⎰LABBOL AB BOP x Q y P x Q y从而()()()()()()()22222211220011300d d d d sin d d d d sin sin d d 1sin 131sin 232471sin 264LLBA OB P x Q y x yx y x y x y x yx y x y x y x y y x x y x y y +=--+=-+--+-+=-++⎡⎤⎡⎤=+-+⎢⎥⎢⎥⎣⎦⎣⎦=-+⎰⎰⎰⎰⎰⎰(5)L ,OA 如图11-7所示.图11-7P =e x sin y -my , Q =e x cos y -m , e cos x P y m y ∂=-∂,e cos x Q y x ∂=∂ 由格林公式得:22d d d d d d d d 1π22π8L OA D DDQ P P x Q y x y x y m x ym x ya m m a +∂∂⎛⎫-+= ⎪∂∂⎝⎭==⎛⎫=⋅⋅ ⎪⎝⎭=⎰⎰⎰⎰⎰⎰⎰ 于是:()()[]220202πd d d d 8πd 0e sin 00e cos08π0d 8π8+=-+=-+⋅⋅-⋅⋅-=-=⎰⎰⎰⎰L OA a x x a m a P x Q y P x Q y m a xm m m a xm a2. 设a 为正常数,利用曲线积分,求下列曲线所围成的图形的面积:(1) 星形线 33cos ,sin ;x a t y a t == (2) 双纽线 22cos2;r a θ= (3) 圆 22x y ax ++=解:(1) ()()()()()2π3202π2π242222002π202π202π202d sin 3cos d sin 33sin cos d sin 2sin d 43d 1cos 41cos 2163d 1cos 2cos 4cos 2cos 416312π+d cos 2cos 61623π8LA y x a t a t tt a t t t a t t t a t t t a tt t t t a t t t a =-=-⋅-==⋅=--=--+⎡⎤=+⎢⎥⎣⎦=⎰⎰⎰⎰⎰⎰⎰(2)利用极坐标与直角坐标的关系x =r cos θ,y =r sin θ得 cos cos 2x a θ=sin cos 2y a θ=从而x d y -y d x =a 2cos2θd θ. 于是面积为:[]π24π4π24π4212d d 2cos 2d sin 22LA x y y x a a a θθθ--=⋅-===⎰⎰(3)圆x 2+y 2=2ax 的参数方程为 cos 02πsin x a a y a θθθ=+⎧≤≤⎨=⎩故()()[]()2π022π021d d 21d a+acos sin 2d 1cos 2πcos sin L A x y y xa a a a a θθθθθθθ=-=-=+=⋅-⎰⎰⎰ 3. 证明下列曲线积分与路径无关,并计算积分值: (1)(1,1)(0,0)()(d d )x y x y --⎰;(2)(3,4)2322(1,2)(6)d (63)d xy y x x y xy y -+-⎰;(3)(1,2)2(1,1)d d y x x yx +⎰沿在右半平面的路径; (4)(6,8)(1,0)⎰.证:(1)P =x -y ,Q =y -x .显然P ,Q 在xOy 面内有连续偏导数,且1P Q y x∂∂==-∂∂,故积分与路径无关.取L 为从(0,0)到(1,1)的直线段,则L 的方程为:y =x ,x :0→1.于是()()()()11,100,00d 0d d x x y x y ==--⎰⎰(2) P =6xy 2-y 3,Q =6x 2y -3xy 2.显然P ,Q 在xOy 面内有连续偏导数,且2123Pxy y y∂=-∂,2123Qxy y x∂=-∂,有P Q y x ∂∂=∂∂,所以积分与路径无关. 取L 为从(1,2)→(1,4)→(3,4)的折线,则()()()()()()[]3,423221,2432214323212d d 663d d 63966434864236x y xyy x y xy y x y y x y y x x +--=+--=+⎡⎤--⎣⎦=⎰⎰⎰(3)2y P x =,1Q x =-,P ,Q 在右半平面内有连续偏导数,且21P y x ∂=∂,21Q x x ∂=∂,在右半平面内恒有P Qy x∂∂=∂∂,故在右半平面内积分与路径无关. 取L 为从(1,1)到(1,2)的直线段,则()()()21,2211,1d d d 11x y x x y y -==--⎰⎰(4) P =,Q ,且P Qy x∂∂==∂∂分在不含原点的区域内与路径无关, 取L 为从(1,0)→(6,0)→(6,8)的折线,则()()686,811,0801529x y =+⎡=+⎣=⎰⎰⎰4.验证下列()(),d ,d P x y x Q x y y +在整个xOy 平面内是某一函数(),u x y 的全微分,并求这样的一个函数(),u x y :(1)()()2d 2d x y x x y y +++;(2)22d d xy x x y +;(3)223238d 812e d yx y xy x x x y y y ++++()(); (4)222cos cos d 2sin sin d x y y x x y x x y y ++-()(). 解:证:(1)P =x +2y ,Q =2x +y .2P Q y x ∂∂==∂∂,所以(x +2y )d x +(2x +y )d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分. ()()()()()(),0,0022022d d ,22d d 2222222x y xy yu x y x y x y x y x x yx y x y xy x y xy =+++=++⎡⎤=++⎢⎥⎣⎦=++⎰⎰⎰(2)P =2xy ,Q =x 2, 2P Qx y x∂∂==∂∂,故2xy d x +x 2d y 是某个定义在整个xOy 面内的函数u (x ,y )的全微分. ()()(),20,02022d d ,0d d x y xy u xy x x y x y x x yx y=+=+=⎰⎰⎰(3)P =3x 2y +8xy 2,Q =x 3+8x 2y +12y e y ,2316∂∂=+=∂∂P Qx xy y x,故(3x 2y +8xy 2)d x +(x 3+8x 2y +12y e y )d y 是某个定义在整个xOy 面内函数u (x ,y )的全微分, ()()()()()(),22320,03200322d ,38812e 0d d 812e 412e 12e 12x y y xyyy y u x x y x y x y x x y y x y x x y y x y x y y =++++=+++=++-+⎰⎰⎰(4)P =2x cos y +y 2cos x ,Q =2y sin x -x 2sin y ,2sin 2cos P x y y x y ∂=-+∂,2cos 2sin Qy x x y x∂=-∂, 有P Qy x∂∂=∂∂,故(2x cos y +y 2cos x )d x +(2y sin x -x 2sin y )d y 是某一个定义在整个xOy 面内的函数u (x ,y )的全微分,()()()()()(),220,020022d d ,2cos cos 2sin sin 2d d 2sin sin sin cos x y xyu x y x y x y y x y x x y x x yy x x y y x x y=++-=+-=+⎰⎰⎰5.证明:22xdx ydyx y ++在整个xOy 平面内除y 轴的负半轴及原点外的开区域G 内是某个二元函数的全微分,并求出这样的一个二元函数。

第十一章 曲线积分与曲面积分

第十一章 曲线积分与曲面积分

5考研专题解析第十一章 曲线积分与曲面积分1.(98年数一)设L 为椭圆,13422=+y x 其周长为a ,则._______)432(22=++⎰ds y x xy L179解析 L 关于x 轴(y 轴)对称,2xy 关于y (关于x )为奇函数20Lxyds ⇒=⎰.又在L 上22222213412(34)121243LLx y x y x y ds ds a +=⇒+=⇒+==⎰⎰.因此,原式=222(34)12LLxyds x y ds a ++=⎰⎰.2.(09年数一)已知曲线2:(0L y x x =≤,则_______L xds =⎰180解析 直接代公式化第一类平面曲线积分为定积分得Lxds ==⎰1222014)(14)8x d x =++ 32212113(14)(271)83126x =⋅+=-=.1.(00年数一) 计算曲线积分,422⎰+-=L y x ydxxdy I 其中L 是以点(1,0)为中心,R 为半径的圆周(1>R ),取逆时针方向.181解析 记2222,44y xP Q x y x y-==++,则L I Pdx Qdy =+⎰直接计算较繁琐,想借助格林公式.当220x y +≠时,222224(4)Q P y x x y x y ∂∂-==∂∂+, 记L 围成的圆域为D ,因D 内含原点(0,0),而P Q 、在(0,0)无意义,所以不能直接在D 上用格林公式.现作一小椭圆C ε(取逆时针方向):2224x y ε+=,0ε>充分小,使C ε位于D 内,记L 与C ε围成区域D ε,在D ε上用格林公式得()0LC D Q PPdx Qdy Pdx Qdy dxdy x yεε∂∂+-+=-=∂∂⎰⎰⎰⎰, 即222222222241122442L C C x y xdy ydx xdy ydx ydx xdy dxdy x y x y εεεεπεπεεε+≤--==-+===++⎰⎰⎰⎰⎰. 2.(04年数一) 设L 为正向圆周222x y +=在一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为_______182解析 已知L的参数方程,x t y t =,t 从0到2π.直接代公式得202)()]Lxdy ydx t t t t dt π-=-⎰⎰,2220322sin 242dt tdt πππππ=+=+⋅=⎰⎰. 3.(08年数一)计算曲线积分2sin 22(1)LI xdx x ydy =+-⎰,其中L 是曲线sin y x =上从点(0,0)到点(,0)π的一段.183解析 将曲线L 的方程代入直接计算2sin 222LLI xdx ydy x ydy =-+⎰⎰(,0)220(0,0)1(cos 2)2sin cos 2x y x x xdx ππ=--+⎰221sin 2cos 22x xdx x d x ππ==-⎰⎰2001cos 2cos 22x x x xdx ππ=-+⎰201sin 222xd x ππ=-+⎰ 220011sin 2sin 22222x x xdx ππππ=-+-=-⎰.1.(97年数一)计算积分⎰-+-+-Cdz y x dy z x dx y z )()()(,其中C 是曲线⎩⎨⎧=+-=+,2,122z y x y x 从z 轴正向往z 轴负向看C 的方向是顺时针的.184 解析 用斯托克斯公式来计算.记S 为平面2x y z -+=上C 所围成有限部分,由L 的定向,按右手法则S 取下侧.()()()2CS dydz dzdx dxdy z y dx x z dy x y dz dxdy x y z z y x z x y∂∂∂-+-+-==∂∂∂---⎰⎰⎰, S 在xoy 平面上的投影区域22{(,)1}xy D x y x y =+≤.将第二类曲面积分化为二重积分得22Sdxdy π==-⎰⎰原积分.这里S 取下侧,故公式取负号. 2.(01年数一)计算222222()(2)(3)LI y z dx z x dy x y dz =-+-+-⎰,其中L 为平面2x y z ++=与柱面1=+y x 的交线,从z 轴正向看去,L 为逆时针方向.185解析 用斯托克斯公式来计算,记S 为平面2xy z ++=上L 所围部分.由L 的定向,按右手法则S==S 的单位法向量(cos ,cos ,cos )n a r β==,于是由斯托克斯公式得222222cos cos cos 23Sa r I ds x y z y z z x x y β∂∂∂=∂∂∂---⎰⎰([(24(2622Sy z z x x y ds =----+--⎰⎰(423)2(6)S Sx y z dS x y z x y dS =++++=+-⎰⎰. 将第一类曲面积分化为二重积分得(62(6)S SI x y x y dxdy =+-=-+-⎰⎰, 其中D 为S 在xoy 平面上的投影区域1x y +≤.由D 关于,x y 轴的对称性及被积函数的奇偶性得()0Dx y dxdy -=⎰⎰,所以21224DI dxdy =-=-=-⎰⎰.专题二、求曲面积分与高斯公式∑体222x y x +≤内的部分.179解析 将曲面积分I 化为二重积分(,)xyD I f x y dxdy =⎰⎰首先确定被积函数(,)f x y==, 对锥面z =而言,==, 其次确定积分区域即∑在xOy 平面的投影区域22{(,)(1)1}xy D x y x y =-+≤xyD I =⎰⎰作极坐标变换cos ,sin x r y r θθ==,则{(,)02cos ,}22r D r r θππθθθ=≤≤-≤≤. 2cos 2cos 322000213I d r rdr r d θππθπθθ-=⋅==⎰2.(07年数一)设曲面:1x y z ∑++=,则()______x y dS ∑+=⎰⎰187 解析 ∑关于yoz 平面对称,x 对x 为奇函数⇒0xdS ∑=⎰⎰,由变量的轮换对称性⇒x dS y dS z dS ∑∑∑==⎰⎰⎰⎰⎰⎰,⇒()111()1333I x y dS y dS x y z dS dS ∑∑∑∑=+==++==⋅∑⎰⎰⎰⎰⎰⎰⎰⎰曲面的面积 记∑在第一卦限部分的面积为111cos ,2r σσ==即,因此118833I σ=⋅==1.(05年数一) 设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则______xdydz ydzdx zdxdy ∑++=⎰⎰192解析 在Ω上用高斯公式得(111)31I dV dV ΩΩ=++=⎰⎰⎰⎰⎰⎰作球坐标变换:sin cos ,sin sin ,cos x y z ρϕθρϕθρϕ===,{(,,)0,0,02}4RπρϕθρϕθπΩ=≤≤≤≤≤≤,所以22240003sin (2RI d d d R ππθϕρϕρπ==⎰⎰⎰.2.(06年数一) 设∑是锥面1)z z =≤≤的下侧,则23(1)_____x d y d z y d z d x z d x d y ∑++-=⎰⎰192解析 添加辅助面221:1(1)z x y ∑=+≤,法向量朝上,123(1)0000xdydz ydzdx z dxdy ∑++-=++=⎰⎰,∑与1∑围成区域Ω,用高斯公式得123(1)(123)623xdydz ydzdx z dxdy dV ππ∑∑Ω++-=++=⋅=⎰⎰⎰⎰⎰,原式202ππ=-=. 3.(08年数一)设曲面∑是z =的上侧,则2_________xydydz xdzdx x dxdy ∑++=⎰⎰193解析 直接代入公式将第二类曲面积分化为二重积分,曲面∑的方程是,)z x y D =∈,其中22{(,)4}D x y x y =+≤,z z x y ∂∂==∂∂所以22()()00D D z zxy x x dxdy x dxdy x y ⎡⎤∂∂-+-+=++⎢⎥∂∂⎣⎦⎰⎰⎰⎰221()42Dx y dxdy π=+=⎰⎰.1.(01年数一)设222z y x r ++=则(1,2,2)()______div gradr -=195解析 先求(,,)x y zgradr r r r =,再求()()()()x y zdiv gradr x r x r x r∂∂∂=++∂∂∂.2223331112()()()x y z r r r r r r r=-+-+-=.所以(1,2,2)2()3div gradr -=.When you are old and grey and full of sleep, And nodding by the fire, take down this book, And slowly read, and dream of the soft look Your eyes had once, and of their shadows deep; How many loved your moments of glad grace, And loved your beauty with love false or true, But one man loved the pilgrim soul in you, And loved the sorrows of your changing face; And bending down beside the glowing bars, Murmur, a little sadly, how love fled And paced upon the mountains overhead And hid his face amid a crowd of stars.The furthest distance in the world Is not between life and death But when I stand in front of you Yet you don't know thatI love you.The furthest distance in the worldIs not when I stand in front of youYet you can't see my loveBut when undoubtedly knowing the love from both Yet cannot be together.The furthest distance in the worldIs not being apart while being in loveBut when I plainly cannot resist the yearningYet pretending you have never been in my heart. The furthest distance in the worldIs not struggling against the tidesBut using one's indifferent heartTo dig an uncrossable riverFor the one who loves you.。

曲线积分与曲面积分知识题目解析

曲线积分与曲面积分知识题目解析

第十一章 曲线积分与曲面积分第三节 Green 公式及其应用1.利用Green 公式,计算下列曲线积分: (1)⎰-Lydx x dy xy22,其中L 为正向圆周922=+y x ;解:由Green 公式,得2322223081()22LDxy dy x ydx x y dxdy d r dr ππθ-=+==⎰⎰⎰⎰⎰, 其中D 为229x y +≤。

(2)⎰-++Ly y dy y xe dx y e )2()(,其中L 为以)2,1(),0,0(A O 及)0,1(B 为顶点的三角形负向边界; 解:由Green 公式,得()(2)(1)1yy y y LDDey dx xe y dy e e dxdy dxdy ++-=---==⎰⎰⎰⎰⎰。

*(3)⎰+-Ldy xy ydx x 22,其中L 为x y x 622=+的上半圆周从点)0,6(A 到点)0,0(O 及x y x 322=+的上半圆周从点)0,0(O 到点)0,3(B 连成的弧AOB ;解:连直线段AB ,使L 与BA 围成的区域为D ,由Green 公式,得6cos 222222323cos 444620()01515353cos 334442264LDBAxydx xy dy y x dxdy xydx xy dy d r dr d πθθπθπθθπ-+=+--+=-==⨯⨯⨯=⨯⨯⎰⎰⎰⎰⎰⎰⎰*(4)⎰+-Lyx xdy ydx 22,其中L 为正向圆周4)1(22=++y x . 解:因为22222()x y P Q y x x y -∂∂==∂∂+,(,)(0,0)x y ≠。

作足够小的圆周l :222x y r +=,取逆时针方向,记L 与l 围成的闭区域为D ,由Green 公式,得220L lydx xdyx y+-=+⎰,故 22222222222sin cos 2Lllydx xdy ydx xdyydx xdyx y x y r r r d r πθθθπ---+=-=++--==-⎰⎰⎰⎰2.计算下列对坐标的曲线积分:⎰+-Lx xydy e dx y esin 2)cos 21(,其中L 为曲线x y sin =上由点)0,(πA 到点)0,0(O 的一段弧;解:(12cos ),2sin xxP e y Q e y =-=,2sin x P Q e y y x∂∂==∂∂, 故积分与路径无关,取)0,(πA 经x 轴到点)0,0(O 的一条路径, 从而 原式=(12cos )2sin 1x x x AOe y dx e ydy e dx e ππ-+=-=-⎰⎰。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档