混频器仿真实验报告
模拟乘法混频实验报告

模拟乘法混频实验报告一、引言在电子通信领域,乘法混频是一种常见的信号处理技术,用于将不同频率的信号进行混频、放大和解调。
乘法混频器是乘法混频技术的核心组件,它可以将输入信号与局部振荡器的频率相乘,产生混频输出。
本实验旨在模拟乘法混频的原理和过程,通过实际操作验证乘法混频器的性能和效果。
二、实验设备与方法1. 实验设备:本实验使用的设备包括信号源、乘法混频器、示波器、频谱分析仪等。
2. 实验方法:(1)连接实验设备:将信号源的输出端与乘法混频器的输入端相连,将乘法混频器的输出端与示波器的输入端相连。
(2)设置实验参数:根据实验需要,设置信号源的频率和幅度,调整乘法混频器的局部振荡器频率。
(3)观察实验结果:通过示波器显示的波形和频谱,观察乘法混频的效果和输出信号的特点。
三、实验步骤与结果1. 设置实验参数:将信号源的频率设置为100 kHz,幅度为1 V;乘法混频器的局部振荡器频率设置为10 MHz。
2. 观察示波器波形:在示波器上观察到了输入信号和混频输出信号的波形。
输入信号为100 kHz的正弦波,混频输出信号为频率为10 MHz和100 kHz 的乘积信号。
3. 分析频谱:通过频谱分析仪对混频输出信号进行频谱分析。
观察到频谱图上出现了频率为10 MHz和100 kHz的峰值,验证了乘法混频的效果。
四、实验结果分析通过观察示波器的波形和频谱分析仪的频谱图,可以得出以下结论:1. 输入信号与局部振荡器的频率相乘,产生混频输出信号。
2. 混频输出信号的频率为输入信号频率与局部振荡器频率的乘积。
3. 混频输出信号的频谱中出现了频率为输入信号和局部振荡器频率的峰值。
五、实验总结通过本实验,我们模拟了乘法混频的原理和过程,并验证了乘法混频器的性能和效果。
乘法混频技术在电子通信中具有广泛的应用,可以实现频率变换、信号放大和解调等功能。
掌握乘法混频技术对于理解和应用现代通信系统至关重要。
通过实验,我们深入理解了乘法混频的原理,对乘法混频器的性能和输出信号特点有了更清晰的认识。
实验报告模版13(混频器)

华南理工大学实验报告课程名称射频电路与天线实验电信学院信息工程专业 4 班姓名学号实验名称混频器实验日期2013.12.10 指导教师王云一.实验目的1.了解混频器的工作原理及主要特性2.掌握混频器测试的原理3.学习使用频谱仪进行混频器测试二.实验内容1.混频器基本功能的测试2.本振电压幅度与混频增益关系的测试三.实验步骤1.把AT5010设置为最大衰减量(40dB衰减器全部按下)和最宽扫频范围(1000MHZ),将直流电源的2个电压输出均调至5V以下。
2.如图13-4连接实验设备,用AT-810D频率合成信号发生器输出本振信号,用压控振荡器产生射频信号,分别连接混频器的LO和RF端,进行下变频变换。
混频器的中频输出端IF接频谱分析仪的测量端。
3.调节信号发生器使之输出800MHz,衰减0dB的正弦信号,调节直流电源,试I输出电压为12V,分布调节电压Ⅱ输出为7~12V,观察频谱分析仪的信号显示,看是否完成了混频功能,并观察混频器输出中出现干扰信号(由于实际的混频器都是非理想的,因此仍会在频谱分析仪上观察到800MHz的本振信号和压控振荡器提供的射频信号)。
记录RF信号的频率和混频后的IF输出频率。
由于频谱分析仪的测量范围是150MHz~1050MHz,因此在频谱分析仪上只能观察到下变频信号。
4.调节直流电源Ⅱ输出电压9V,改变AT-810D频率合成信号发生器(本振)输出幅度,观察混频输出功率的变化。
四.实验数据记录VCO Vtune为7-12V,实验结果录入下表:表13-1当直流电源I输出电压为9V时,实验结果录入下表:表 13-2五.实验总结。
【免费下载】模拟乘法混频实验报告

模拟乘法混频实验报告姓名:学号:班级:日期:模拟乘法混频一、实验目的1.进一步了解集成混频器的工作原理2.了解混频器中的寄生干扰二、实验原理及实验电路说明混频器的功能是将载波为vs(高频)的已调波信号不失真地变换为另一载频(固定中频)的已调波信号,而保持原调制规律不变。
例如在调幅广播接收机中,混频器将中心频率为535~1605KHz的已调波信号变换为中心频率为465KHz的中频已调波信号。
此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器、外差频率计等。
混频器的电路模型如图1所示。
VsV图1 混频器电路模型混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。
本振用于产生一个等幅的高频信号VL,并与输入信号VS经混频器后所产生的差频信号经带通滤波器滤出。
目前,高质量的通信接收机广泛采用二极管环形混频器和由双差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器。
本实验采用集成模拟相乘器作混频电路实验。
图2为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。
五、实验注意事项1、测量时应用双踪同时观察本振-载波,载波-中频,以便比较。
2、本实验用到晶振输出信号。
因此,在进行本实验前必须调整好晶振的输出,使之满足本实验的要求。
六、思考题1、除乘法器外,还有哪些器件可组成混频器?试举例说明。
混频器常用的非线性器件还有二极管、三极管、场效应管等。
2、分析寄生干涉的原因,并讨论预防措施。
原因:干扰频率通过寄生通道形成。
混频器件工作在非线性状态,不可避免地存在干扰和噪声作用在混频器上。
它们和输入信号电压VS、本振电压VL之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号的接收。
预防措施:减少非线性失真的各种组合频率干扰,选择器件特性接近平方律或近似理想相乘器。
混频器实验

实验二混频器仿真实验一.无源混频器仿真实验二极管环形混频电路载频是f L=1kHz,调制频率为f R=100Hz,因此混频后会出现f L f Rf L- f R==900Hz ,f L+ f R=1100Hz,如图所示前两个峰值。
由于二级管的开关作用,还会产生组合频率,不过幅度会随次数的增加而减小,如图所示后两个峰值。
二.有源混频器仿真实验1.三极管单平衡混频电路直流分析傅里叶分析差模输出将直流分量抵消,组合频率分量也被抵消了,本振不会馈通。
但是由于射频信号是非平衡的,所以射频信号带入的直流分量与本振信号相乘后产生了较大幅值的本振频率分量,并且在频谱中还是会出现少量本振信号的奇次谐波与射频相混频的频率分量,单平衡混频电路有效地抑制了高频率分量,单节点输出存在低频分量过大的问题,但使用差分放大器的双点输出能够很好地解决这个缺陷。
但与无源混频器相比,出现了大量的杂波。
2.加入有源滤波器后混频后得到上下变频分量,通过一个带通滤波器,滤除上变频以及本振频率分量,只剩下下变频。
3.吉尔伯特单元混频电路由于射频信号差分输入,因此在输出的时候射频直流分量被抵消,本振不会馈通。
由于是双差分输入,频谱较为纯净。
但是由于吉尔伯特电路也是通过本振大信号作为开断信号对输出信号采样,因此也产生了本振信号的奇次谐波的分量与射频信号相混频产生的组合频率分量。
加入有源滤波器后本电路将作为接收机电路的前端。
与单平衡电路的频谱比较起来更加纯净,无用的频率分量更少,幅值更小。
思考题:1. 吉尔伯特电路是双平衡电路,而三极管是单平衡电路,它们的区别体现在射频信号是否是平衡的,吉尔伯特电路射频信号是平衡的,射频信号中蕴含的直流分量在输出时被抵消,因此不会产生本振信号馈通。
而三极管单平衡电路产生馈通和许多组合频率分量。
当频率增加后会更加明显,因为各个频点上的幅值都会降低,区别显得更加突出。
2.如图,该二阶带通有源滤波器的截止频率在1k 与1.4k 附近正好可以滤去不需要的分量。
实验七混频器的仿真设计

混频器电路旳主要技术指标 • 变频损耗 • 噪声系数 • 端口隔离度 • 驻波比 • 动态范围 • 三阶交调系数 • 镜频克制度 • 交调失真
电流在工作点用泰勒级数展开:
i f (E0 UL cosLt US cosSt)
f (E0 UL cosLt) f '(E0 UL cosLt)US cosSt
Байду номын сангаас
1 2!
f
''(E0
UL
cos Lt )(U S
cos St )2
…
定义二极管旳时变电导g(t)为
g
t
= di dv
= v=E0 +ULcosLt
i2 gnVs cos(nL s )t
i1 gnVs cos(nL s )t n
输出: i i2 i1 2gnVs cos 2i 1L s t
n为偶数旳高次谐波电流被完全抵消,只剩余奇次谐波电 流(n=2i+1),所以电路本身抵消了二分之一高次谐波电流 分量。
3、镜像回收混频器 (a)给出了分支线电桥旳信号和本振输入端都放置了平行耦合 镜像带阻滤波器,在该处它们镜像开路。因为该处距二极管 约为λSg/4, 因而在两个二极管输入接点处镜像信号被短路到 地。(b) 在接近连接二极管端口处有一耦合微带线作带阻滤波 器,该滤波器由两段1/4镜频波长旳短线构成,一段终端开路, 另一段与主传播线平行,形成平行耦合微带线。位置要调整 到刚好使镜频和本振二次混频后旳中频和一次混频旳中频同 相叠加,可回收镜频能量,提升混频器性能。
射频实验报告: 混频器(单平衡)

课程实验报告
《集成电路设计实验》
2010- 2011学年第 1 学期
班级:
混频器(单平衡)实验名称:
指导教师:
姓名学号:
实验时间:2011年5月23日
一、实验目的:
1、了解基本射频电路的原理。
2、理解基本混频器的工作原理并设计参数。
3、掌握Cadence的运用,仿真。
二、实验内容:
1、画出混频器的原理图。
2、仿真电路:仿真出混频器的的输入、输出频谱,输出增益,1dB压缩点。
Gain=8dB,NF<8dB,IIp3=0dBm,IP1dB=-10dBm。
三、实验结果
1、混频器原理图为:
2、仿真平台的建立
3、混频管参数
设置差分管参数如下,漏端电阻R=600,隔直电容1pF,晶体管W=32u,L=400n,nr=4,m=2
4、仿真参数
设置端口初始化仿真参数frf=800MHz,prf=-40dBm,flo=850MHz,plo=20dBm,Vbias=1.5V,采用PSS和Pac仿真:
3、仿真结果
(1)增益
运行spacture,得到电压转换增益为8.8dB,在输入功率-8dBm以下保持不变,如下:
(2)线性度
1、查看PSS结果,得到输入1dB压缩点IP-1=-6.5dBm,
2、得到IIP3=3.8dBm
3、噪声
仿真Pnoise,得到输出变频DSB噪声在50MHz约为12.5dB,
4、心得体会
这次实验让我可以开始熟练的使用PSS、pnoise等仿真,同时也更为深刻的了解到了Cadence的运用。
在以后的实验中我会更努力的做好实验的。
模拟乘法混频实验报告

模拟乘法混频实验报告姓名:学号:班级:日期:模拟乘法混频一、实验目的1. 进一步了解集成混频器的工作原理2. 了解混频器中的寄生干扰二、实验原理及实验电路说明混频器的功能是将载波为vs (高频)的已调波信号不失真地变换为另一载频(固定中频)的已调波信号,而保持原调制规律不变。
例如在调幅广播接收机中,混频器将中心频率为535~1605KHz 的已调波信号变换为中心频率为465KHz 的中频已调波信号。
此外,混频器还广泛用于需要进行频率变换的电子系统及仪器中,如频率合成器、外差频率计等。
混频器的电路模型如图1所示。
图1 混频器电路模型混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。
本振用于产生一个等幅的高频信号VL ,并与输入信号 VS 经混频器后所产生的差频信号经带通滤波器滤出。
目前,高质量的通信接收机广泛采用二极管环形混频器和由双差分对管平衡调制器构成的混频器,而在一般接收机(例如广播收音机)中,为了简化电路,还是采用简单的三极管混频器。
本实验采用集成模拟相乘器作混频电路实验。
图2为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。
V sV图2 MC1496构成的混频电路MC1496可以采用单电源供电,也可采用双电源供电。
本实验电路中采用+12V,-8V供电。
R12(820Ω)、R13(820Ω)组成平衡电路,F2为4.5MHz选频回路。
本实验中输入信号频率为fs=4.2MHz,本振频率fL=8.7MHz。
为了实现混频功能,混频器件必须工作在非线性状态,而作用在混频器上的除了输入信号电压VS和本振电压VL外,不可避免地还存在干扰和噪声。
它们之间任意两者都有可能产生组合频率,这些组合信号频率如果等于或接近中频,将与输入信号一起通过中频放大器、解调器,对输出级产生干涉,影响输入信号的接收。
干扰是由于混频器不满足线性时变工作条件而形成的,因此干扰不可避免,其中影响最大的是中频干扰和镜象干扰。
PSpice仿真实验报告

实验七:使用PSpice软件对混频电路仿真一.实验目的1. 掌握PSpice软件的基本操作(包括设计绘制电路、仿真调测、时域频域分析)。
2.掌握如何使用PSpice仿真软件研究分析三极管混频器和乘法器混频器工作原理。
3.通过实验中波形和频谱,研究三极管混频与乘法器混频的区别。
二.实验仪器1.计算机2.PSpice8.0软件三.实验内容1.在PSpice原理图编辑环境下分别完成三极管混频和乘法器混频的电路绘制;2.对以上两种电路分别进行仿真,显示时域波形图(参与混频的两个频率为1kHz和10kHz);3.对以上两种电路的输出波形分别进行FFT(频域分析),指出二者的频谱差别。
四.实验步骤1.实验准备在计算机上安装PSpice8.0软件包(安装过程中如有提示,选默认即可)。
2.原理图的绘制方法安装成功后,选择Windows程序->DesignLab Eval 8->Schematics即可打开原理图编辑界面。
然后按如下操作:(1)选择与布放元器件:菜单 -> Draw -> Get New Part…选择所需电路元器件 -> Place&Close(2)连接元器件:把所需元器件布放完毕后,可点击菜单栏下方的快捷图标按钮“”将各元器件按照下图提示连接起来。
图1 三极管混频原理图图1提示:图中Vcc与VBB选择元件库中的“VDC”元件,分别双击它们,按照图中标记设定好直流电压(DC)参数。
V1与V2选择元件库中的“VSIN”元件。
双击这些元件可以改变这些电压的参数,将V1和V2的振幅(VAMPL)参数都设置为0.01V,频率(FREQ)参数按上图标记设定好。
“地”选择库中的“AGND”元件。
图2 乘法器混频原理图图2提示:图中的乘法器直接使用库中的“MULT”元件。
V1与V2选择元件库中的“VSIN”元件。
振幅都设为0.01V,频率分别为1kHz和10kHz。
3.时域仿真及频域分析⑴实验步骤①在电脑D:\盘上创建pspice目录。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混频器实验(虚拟实验)
姓名:郭佩学号:04008307
(一)二极管环形混频电路
傅里叶分析
得到的频谱图为
分析:可以看出信号在900Hz和1100Hz有分量,与理论相符
(二)三极管单平衡混频电路
直流分析
傅里叶分析
一个节点的傅里叶分析的频谱图为
两个节点输出电压的差值的傅里叶分析的频谱图为:
分析:同样在1K的两侧有两个频率分量,900Hz和1100Hz
有源滤波器加入电路后
U IF的傅里叶分析的频谱图为:
U out节点的傅里叶分析的频谱图为:
分析:加入滤波器后,会增加有2k和3k附近的频率分量
(三)吉尔伯特单元混频电路
直流分析
傅里叶分析
一个节点的输出电压的傅里叶分析的参数结果与相应变量的频谱图如下:
两个节点输出电压的差值的傅里叶分析的参数结果与相应变量的频谱图为:
分析:1k和3k两侧都有频率分量,有IP3失真
将有源滤波器加入电路
U IF的傅里叶分析的参数结果与相应变量的频谱图为:
U out节点的傅里叶分析的参数结果与相应变量的频谱图为:
分析:有源滤波器Uout节点的傅里叶分析的频谱相对于Uif的傅里叶分析的频谱来说,其他频率分量的影响更小,而且Uout节点的输出下混频的频谱明显减小了。
输出的电压幅度有一定程度的下降。
思考题:
(1)比较在输入相同的本振信号与射频信号的情况下,三极管单平衡混频电路与吉尔伯特混频器两种混频器的仿真结果尤其是傅里叶分析结果的差异,分析其中的原因。
若将本振信号都设为1MHz,射频频率设为200kHz,结果有何变化,分析原因。
答:没有改变信号频率时
三极管
吉尔伯特
吉尔伯特混频器没有1k、2k、3k处的频率分量,即没有本振信号的频率分量,只有混频后的频率分量。
因为吉尔伯特混频器是双平衡对称电路结果,有差分平衡。
将本振信号频率和射频频率改变后:
三极管
吉尔伯特
本振信号输入频率增大后,经过混频器后的IP3也有增加,即混频器的线性范围也会加宽。
(2)对图18中加入的有源滤波器的特性进行分析,对其幅频特性、相频特性进行仿真。
若要使得滤波器的带宽减小20%,应对滤波器元件参数如何调整。
将调整带宽后的滤波器与混频器相连,比较前后傅里叶分析的结果异同,分析原因。
答:对有源滤波器进行仿真结果如下
根据增益带宽积不变原则,弱带宽减少20%,则增益变为原先的125%,故可将运放处的反馈电阻由76K变为95K。
改变后傅里叶分析结果如下:
改变前傅里叶分析结果如下:。