多糖化学结构鉴定方案总结..-共22页

合集下载

多糖结构解析的方法

多糖结构解析的方法

多糖结构解析的方法一类是传统的化学方法,一类是波谱学方法。

2.1化学方法化学方法是用来对一些简单的单糖、二糖和寡糖进行分析的经典方法,同时亦可应用在多糖的结构解析上。

它是通过完全酸水解、部分酸水解、高碘酸氧化、Smith降解、甲基化分析和气质联用对多糖进行解析的。

2.1.1水解法水解法通过完全水解将多糖链分解成单糖,这是分析多糖链组成成分的主要手段。

水解法包括完全酸水解、部分酸水解、乙酰解和甲醇解等。

水解后的多糖经过中和、过滤可采用气相色谱、纸层析、薄层层析、高效液相色谱仪[8]和离子色谱法[9]进行分析。

2.1.2高碘酸氧化法高碘酸可以选择性的氧化断裂糖分子中的连二羟基或连三羟基处,生成相应的多糖醛、甲酸,反应定量进行,每裂开一个C—C键消耗一分子高碘酸,通过测定高碘酸消耗量及甲酸的释放量,可以判断糖苷键的位置、直链多糖的聚合度和支链多糖的分枝数[10]。

2.1.3Smith降解Smith降解是将高碘酸氧化产物还原后进行酸水解或部分水解。

由于糖残基之间以不同的位置缩合,用高碘酸氧化后则生成不同的产物。

根据降解产物可以推断糖苷键的位置。

在降解产物中若有赤藓糖生成,则提示多糖具有1→4结合的糖苷键;若有甘油生成,则提示有1→6、1→2结合的糖苷键或有还原末端葡萄糖残基;若能检出单糖,如葡萄糖、半乳糖、甘露糖等,则有1→3糖苷键结合的存在[11]。

2.1.4甲基化反应甲基化反应是用甲基化试剂将各种单糖残基中的游离羟基全部甲基化,进而将甲基化多糖水解后得到的化合物,其羟基所在的位置即为原来单糖残基的连接的位置。

甲基化反应的关键在于甲基化是否完全,通常采用红外光谱法检测3500㎝-1处有无吸收峰,以此来判断甲基化多糖中是否含有游离的羟基(-OH)。

甲基化的方法有Purdie法、Hamorth法、Menzie法和Hakomori法等[12]。

现在使用较多的是Ciucanu和Kerek[13]方法,它是将多糖样品溶解在DMSO中,加入NaOH粉末和碘甲烷,混合在密封瓶中25℃搅拌6min即可,方法简单,重复性好。

多糖的结构分析方法包括

多糖的结构分析方法包括

多糖的结构分析方法包括多糖的结构分析方法是确定多糖化合物的组成和连接方式的关键工具。

一般而言,多糖的结构分析可分为化学方法和生物方法两大类。

下面将对这些方法进行详细阐述。

一、化学方法:1. 水解分析法:多糖可通过水解反应将其分解为单糖组成部分。

常用的水解剂有酸、碱及酶等。

水解之后,通过测定生成的单糖或小分子产物的性质,如比旋光度、红外光谱等,可以了解多糖的结构。

2. 艳蓝法:多糖与一些特定的染料反应,形成稳定的染色复合物,从而测定多糖的含量。

例如,通过酚-硫酸法,可以用磺酸依托品氧化苄功酸钠抗络常数来定量多糖。

3. 光谱法:红外光谱、紫外光谱、核磁共振等技术可用于多糖的结构分析。

红外光谱可用来分析反映多糖内部结构的原理基团,紫外光谱用于分析多糖的存在和测定多糖的含量,核磁共振用于确定多糖的空间结构。

4. 色谱法:气相色谱、液相色谱和凝胶渗透色谱等方法可用于多糖的分离和定性。

例如,利用薄层色谱法,可分离多糖混合物,并通过染色剂的显色来判断多糖的组成。

二、生物方法:1. 酶降解法:通过加入特定酶,如淀粉酶、纤维素酶、葡萄糖酸酶等,可对多糖进行降解。

通过观察降解过程中生成的产物,可以了解多糖的结构。

此外,酶处理还可用于多糖的修饰。

2. 糖基转移酶法:多糖通过与糖基转移酶反应,可实现特定糖基的转移。

通过测定生成的产物,可以推测多糖的结构。

3. 色谱法:包括气相色谱、高效液相色谱等。

例如,通过细胞外多糖水解产生的单糖组成通过气相色谱或液相色谱分析,可以了解多糖的结构。

4. 核磁共振波谱法:包括质子核磁共振、碳13核磁共振等。

通过测量样品在强磁场下的核磁共振信号,可以获得丰富的结构信息。

此外,还有一些其他方法如质谱分析、电泳分析等都可用于多糖的结构分析。

总之,多糖的结构分析需要利用多种方法互相印证,综合分析,才能获得准确的结构信息。

以上介绍的方法只是常用的几种,请根据研究的具体需要选择合适的方法进行分析。

多糖结构分析

多糖结构分析

一:多糖中的单糖组分分析一般对多糖进行完全水解,水解条件:封管0.5~3M硫酸或1~6M盐酸,80℃~100℃水解2.5~8h 即可。

或控制水解条件,进行逐步水解,如封管0.025M硫酸,100℃水解15min,30min,45min 等,水解液用碳酸钡或氢氧化钡中和,滤液浓缩后可用纸层析、薄层层析、气相层析或高压液相层析等鉴定。

二:相邻单糖基连接方式分析将甲基化多糖水解得到甲基化的单糖,而此单糖上甲基化之羟基所在的碳原子就是连接键所在。

高碘酸氧化是定量反应,Smith降解是将高碘酸氧化产物进行还原,酸水解或部分水解,从高碘酸的消耗量和不同产物的生成,便可进行糖苷键位置的判断-产物中若有一分子比例的甲酸生成而消耗两分子比例的高碘酸根时,表明多糖的非还原末端或非末端部分有1-6苷键相连的单糖基存在;产物中若有赤藓醇生成,则提示有1-4结合苷键;若有甘油生成,有1-6、1-2结合的苷键或有还原性末端葡萄糖基等;若产物中能检出单糖,如葡萄糖、半乳糖、甘露糖等,则有1-3苷键存在。

结合¹³C-NMR确定连接位置。

三:端基碳苷键构型分析1:酶解实验:不被淀粉酶水解的多糖,无α-苷键,与纤维素酶有作用者,存在β-苷键。

2;IR:α-型差向异构体的C-H键在844±8cm‾¹处有一个吸收峰;β-型的C-H键在891±7cm‾处有一个吸收峰。

但是,海藻糖、阿洛糖和异阿洛糖的α-型和β-型同时存在的情况下,就不能以次来判断。

3:¹H-NMR:端基碳的δ值大于5.00ppm者,糖苷键为α-型,小于5.00ppm者,则为β-型。

4;¹³C-NMR:α-型连接的C₁化学位移在97-101ppm,β-型的在103~105ppm。

对甘露聚糖不能用化学位移判断α-型或β-型。

可用裂分常数决定,一般¹Jc-h=170HZ,为α-型,160HZ 者为β-型。

多糖结构分析

多糖结构分析

多糖结构研究方法多糖及其复合物是来自于高等动、植物细胞膜和微生物细胞壁中的天然大分子物质之一,自然界含量丰富,与人类生活紧密相关,对维持生命活动起至关重要的作用。

多糖和核酸、蛋白质、脂类构成了最基本的4类生命物质。

由于多糖的生物活性与多糖的结构关系密切,因此清楚认识多糖的结构是进行多糖研究和利用的基础。

多糖结构比蛋白质和核酸的结构更加复杂,可以说是自然界中最复杂的生物大分子。

从化学观点来看,多糖结构解析最大的难点就在于其结构的复杂性。

糖的结构分类可沿用蛋白质和核酸的分类方法,即多糖的结构也可分为一级、二级、三级和四级结构。

与蛋白质或核酸大分子相比,糖链的一级结构“含义”要十分丰富。

测定糖链的一级结构,要解决以下几个问题:(1)相对分子质量;(2)糖链的糖基组成,各种单糖组成的摩尔比;(3)有无糖醛酸及具体的糖醛酸类型和比例;(4)各单糖残基的D-或L.构型,毗喃环或呋喃环形式;(5)各个单糖残基之间的连接顺序;(6)每个糖苷键所取的a-或B.异头异构形式;(7)每个糖残基上羟基被取代情况:(8)糖链和非糖部分连接情况;(9)主链和支链连接位点:(10)糖残基可能连接硫酸酯基、乙酰基、磷酸基、甲基的类型等。

多糖的二级结构是指多糖主链间以氢键为主要次级键而形成的有规则的构象,与分子主链的构象有关,不涉及侧链的空间排布;多糖的三级结构和四级结构是指以二级结构为基础,由于糖单位之间的非共价相互作用,导致二级结构在有序的空间里产生的有规则的构象四。

多糖结构的分析手段很多。

不仅有仪器分析法,如红外、核磁共振、质谱等,还有化学方法,如完全酸水解、部分酸水解、高碘酸氧化、Smith降解、甲基化反应等,以及生物学方法,如特异性糖苷酶酶切、免疫学方法等。

1质谱(MS)由于MS法在糖链结构分析中具有快速灵敏,样品用量少、结构信息直观的特点而得到越来越广泛的应用。

近年来各种软电离技术的诞生,如快原子轰击质谱(FAB—MS),电喷雾质谱(ESI—MS),基质辅助激光解析离子化质谱(MALDI-MS)等,使得糖结构分析的研究取得了日新月异的发展。

多糖的定性实验报告

多糖的定性实验报告

一、实验目的1. 掌握多糖的定性分析方法。

2. 了解多糖的化学性质及其与特定试剂的反应。

3. 学会使用苯酚-硫酸法、蒽酮-硫酸法和DNS法对多糖进行定性检测。

二、实验原理多糖是一类由多个单糖分子通过糖苷键连接而成的大分子碳水化合物,广泛存在于自然界中。

多糖具有多种生物学功能,如储存能量、提供结构支持和调节免疫反应等。

本实验通过苯酚-硫酸法、蒽酮-硫酸法和DNS法对多糖进行定性检测,分别利用多糖与特定试剂反应产生的颜色变化来判断多糖的存在。

1. 苯酚-硫酸法:多糖在浓硫酸水合产生的高温下迅速水解,产生单糖,单糖在强酸条件下与苯酚反应生成橙色衍生物。

在波长490nm左右处,该衍生物的吸收值与单糖浓度呈线性关系,从而可用比色法测定其含量。

2. 蒽酮-硫酸法:多糖在浓硫酸水合产生的高温下迅速水解,产生单糖,单糖在强酸条件下与蒽酮反应生成紫色衍生物。

在波长590nm左右处,该衍生物的吸收值与单糖浓度呈线性关系,从而可用比色法测定其含量。

3. DNS法:在碱性条件下,DNS试剂与还原糖发生显色反应,生成橙红色复合物。

在540nm波长处,该复合物的吸收值与还原糖浓度呈线性关系,从而可用比色法测定还原糖的含量。

三、实验材料及试剂1. 实验材料:小麦面粉、玉米淀粉、海藻糖、葡萄糖、果糖等。

2. 实验试剂:苯酚、浓硫酸、蒽酮、硫酸、DNS试剂、氢氧化钠、无水乙醇等。

3. 仪器:分光光度计、移液器、容量瓶、试管等。

四、实验步骤1. 苯酚-硫酸法(1)取一定量的多糖样品,用蒸馏水溶解,配制成一定浓度的溶液。

(2)取1mL样品溶液,加入5mL苯酚和7mL浓硫酸,混匀,放置5min。

(3)在490nm波长处,用分光光度计测定吸光度。

2. 蒽酮-硫酸法(1)取一定量的多糖样品,用蒸馏水溶解,配制成一定浓度的溶液。

(2)取1mL样品溶液,加入5mL蒽酮和7mL浓硫酸,混匀,放置5min。

(3)在590nm波长处,用分光光度计测定吸光度。

多糖化学结构鉴定方案总结

多糖化学结构鉴定方案总结

经过分级纯化的多糖在测定结构前须检查其纯度及测定分子量。

检查纯度最常用的判断方法:(1)用G C 、HPLC测定组成多糖的单糖的摩尔比是否恒定。

用不同的柱型测定结果更为可靠。

(2)电泳只出现一条带。

如可用聚丙烯酰胺凝胶电泳、乙酸纤维素薄膜电泳及玻璃纤维纸电泳。

对于中性多糖可采用高压电泳,以硼酸盐为缓冲液,可增大其迁移速度。

(3)凝胶柱层析图呈现对称的单峰。

若有“拖尾”现象,说明其均一性不够好。

阴离子交换层析纯化用DEAE一纤维素52(2.6x100cm)柱层析,0.lmol/LNaCl洗脱,流速6ml/h,按2ml一管分部收集,苯酚一硫酸法逐管检测,绘制收集体积与糖含量之间的关系曲线。

看是否有单一对称峰。

按照Ye等报道,采用DEAE一52一纤维素交换柱层析法(2.6x30cm)对鲍氏层孔菌菌丝体粗多糖进行初步分离。

DEAE一纤维素凝胶预处理:称取DEAE一52一纤维素凝胶干粉,加入约10倍体积质量比(ml/g)的0.5mol/LNa0H溶液浸泡30分钟,倒出上清液,用大量去离子水反复浸洗至pH值近中性;再用相同体积的0.5mol/LHCI溶液浸泡30分钟,倒出上清液,用大量去离子水反复浸洗至pH值近中性;最后用相同体积的0.5mol/lNaOH溶液再浸泡30分钟,用大量去离子水反复浸洗至pH值中性。

处理完毕后,进行湿法装柱,用去离子水0.5mol/LNaCl溶液,去离子水依次分别平衡(流速1.0ml/min)2一3个柱体积备用.糖样100mg溶于5ml的去离子水中,离心除去不溶物,上样于DEAE一52一纤维素阴离子层析柱(2.6x30cm,Cl-1型),分别采用去离子水0.1和0.3mol/LNaCI溶液进行分段梯度洗脱,流速1.0ml/min,自动收集器分部收集(10ml/管),每梯度20管。

用硫酸一苯酚法跟踪检测各管多糖含量(490nm处吸收值),以收集的管数为横坐标。

吸光值(490nm)为纵坐标绘制DEAE 一52一纤维素色谱柱洗脱曲线。

多糖结构解析的方法

多糖结构解析的方法

多糖结构解析的方法多糖化合物的结构解析是糖化学和生物化学领域的中心问题之一、因为多糖的结构决定着它们的功能和生物活性。

多糖结构解析的方法可以分为物理方法和化学方法。

一、物理方法:1.光谱学方法:光谱学方法是多糖结构解析中常用的一种方法。

包括紫外光谱、红外光谱、荧光光谱和核磁共振等方法。

(1)紫外光谱:多糖在紫外光谱上表现出特有的吸收峰,可以确定它们的环状结构。

(2)红外光谱:红外光谱是解析多糖结构的重要手段,通过测定多糖分子中的官能团振动频率和强度,可以得到多糖分子的化学结构和键合特性。

(3)荧光光谱:荧光光谱可用于表征多糖的发光行为和其与其他生物分子的结合情况,从而推测其结构和功能。

(4)核磁共振:核磁共振是解析多糖结构的重要手段之一,通过测定多糖中氢、碳、氮等元素的核磁共振信号,可以确定多糖的类型和键合方式。

2.比色法:比色法是通过观察多糖与一些特殊试剂产生的颜色变化来判断多糖的结构。

比如,酚硫酸法可以用于检测多糖的含量和环状结构。

3.色谱法:色谱法是多糖结构解析的重要方法之一、包括薄层色谱、柱层析、气相色谱和高效液相色谱等方法。

通过对多糖的分离和分析,可以得到多糖的组成和分子量信息。

二、化学方法:1.普通化学方法:多糖的碳水化合物性质决定了其一些基本反应,比如酸水解、酶降解、氧化还原等反应。

利用这些反应可以推测多糖的结构。

2.酶法:酶法是多糖结构解析的重要方法之一、不同酶对多糖的酶解反应具有特异性,通过观察酶解产物,可以推测多糖链的连接方式和单糖的种类。

3.质谱法:质谱法是近年来发展起来的一种多糖结构解析方法,主要有质谱分析和质谱成像两种方法。

通过质谱技术可以得到多糖的精确分子量和分子结构,尤其适用于大分子多糖的分析。

综上所述,多糖结构解析的方法多种多样,可以从不同的角度揭示多糖的化学成分和结构特征。

尽管目前多糖结构解析仍然是一个具有挑战性的问题,但随着新技术的发展,相信将能更加准确和全面地揭示多糖的结构和功能。

多糖的测定

多糖的测定

多糖的测定是一种常见的生物化学实验,旨在确定样品中多糖的含量。

多糖是由许多单糖单元组成的碳水化合物,包括淀粉、糖原、纤维素等。

以下是多糖测定的常见方法和步骤:
1.碘滴定法:这是测定淀粉含量的常用方法。

它利用碘对淀粉蓝色复合物形
成的特征进行测量。

样品首先与碘溶液反应,形成蓝色化合物,然后根据颜
色的深浅来测量淀粉的含量。

2.酚-硫酸法:该方法用于测定糖原的含量。

它涉及将样品与酚和硫酸混合,
形成特定颜色的复合物。

这种复合物的颜色可以通过光度计或比色计来测量,以确定糖原的含量。

3.酚硫酸法:这是一种用于测定纤维素含量的常见方法。

它包括将样品与酚
硫酸混合,生成一种具有特定吸光度的化合物。

吸光度可以用光度计或比色
计测量,从而确定纤维素的含量。

4.酚-硫酸-苯酚法:这是测定葡萄糖聚合物含量的方法。

它涉及将样品与酚、
硫酸和苯酚混合,产生特定颜色的复合物。

这种复合物的颜色可以通过光度
计或比色计来测量,以确定葡萄糖聚合物的含量。

这些方法提供了测定不同类型多糖含量的有效手段,可以通过定量分析来确定样品中多糖的含量。

在实际操作中,严格遵循实验室安全操作规程以及特定的实验步骤非常重要,以确保准确和可重复的测定结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经过分级纯化的多糖在测定结构前须检查其纯度及测定分子量。

检查纯度最常用的判断方法:(1)用G C 、HPLC测定组成多糖的单糖的摩尔比是否恒定。

用不同的柱型测定结果更为可靠。

(2)电泳只出现一条带。

如可用聚丙烯酰胺凝胶电泳、乙酸纤维素薄膜电泳及玻璃纤维纸电泳。

对于中性多糖可采用高压电泳,以硼酸盐为缓冲液,可增大其迁移速度。

(3)凝胶柱层析图呈现对称的单峰。

若有“拖尾”现象,说明其均一性不够好。

阴离子交换层析纯化用DEAE一纤维素52(2.6x100cm)柱层析,0.lmol/LNaCl洗脱,流速6ml/h,按2ml一管分部收集,苯酚一硫酸法逐管检测,绘制收集体积与糖含量之间的关系曲线。

看是否有单一对称峰。

按照Ye等报道,采用DEAE一52一纤维素交换柱层析法(2.6x30cm)对鲍氏层孔菌菌丝体粗多糖进行初步分离。

DEAE一纤维素凝胶预处理:称取DEAE一52一纤维素凝胶干粉,加入约10倍体积质量比(ml/g)的0.5mol/LNa0H溶液浸泡30分钟,倒出上清液,用大量去离子水反复浸洗至pH值近中性;再用相同体积的0.5mol/LHCI溶液浸泡30分钟,倒出上清液,用大量去离子水反复浸洗至pH值近中性;最后用相同体积的0.5mol/lNaOH溶液再浸泡30分钟,用大量去离子水反复浸洗至pH值中性。

处理完毕后,进行湿法装柱,用去离子水0.5mol/LNaCl溶液,去离子水依次分别平衡(流速1.0ml/min)2一3个柱体积备用.糖样100mg溶于5ml的去离子水中,离心除去不溶物,上样于DEAE一52一纤维素阴离子层析柱(2.6x30cm,Cl-1型),分别采用去离子水0.1和0.3mol/LNaCI溶液进行分段梯度洗脱,流速1.0ml/min,自动收集器分部收集(10ml/管),每梯度20管。

用硫酸一苯酚法跟踪检测各管多糖含量(490nm处吸收值),以收集的管数为横坐标。

吸光值(490nm)为纵坐标绘制DEAE 一52一纤维素色谱柱洗脱曲线。

依据洗脱峰型,合并相同组分,50℃旋转蒸发浓缩,对去离子水透析48h以去除NaCI及小分子杂质,最后将透析内液冷冻干燥,得初步纯化产品。

初步纯化多糖得率计算公式:多糖得率(%)=纯化多糖质量/粗多糖质量x100%葡聚糖凝胶层析纯化采用Sephadex G-100凝胶层析法对DEAE-52一纤维素初步纯化的不同组分的多糖样品进一步纯化。

葡聚糖凝胶(sephadexG一100)的预处理:称取sephadexG一100凝胶干粉,加入30倍体积质量比(ml/g )的去离子水,沸水浴5小时使其溶胀。

冷却后用去离子水反复浸洗,减压脱气后进行湿法装柱,用0.1MNa2SO4;溶液平衡(流速0.25ml/min)2一3个柱体积备用。

分别称取经DEAE一纤维素一52初步纯化的各多糖组分样品20mg,溶于2 ml 0.1 M Na2SO4溶液中,上样于SephadexG一100层析柱(2.6x60cm)用0.1MNa2SO4溶液溶液洗脱,流速0.25 ml/min,分步收集(5ml/管)。

用硫酸一苯酚法跟踪检测各管多糖含量(490nm处吸收值),以收集的管数为横坐标。

吸光值(490nm)为纵坐标绘制sePhadexG一100色谱柱洗脱曲线。

依据洗脱峰型,合并相同组分,50℃旋转蒸发浓缩,对去离子水透析48h以去除Na2SO4;及小分子杂质,最后将透析内液冷冻干燥,得不同纯化产品。

纯化多糖得率计算公式:纯化多糖得率(%)=纯化多糖质量/粗多糖质量x100%(鲍氏层孔菌菌丝体粗多糖)(4)纸层析法呈单一集中斑点。

取0.5%的多糖样品溶液50ul,点样于新华中速滤纸(3cmx20cm)距端点1cm处的中部,以正丁醇:浓氨水:水(4O:50:5)为展开剂,饱和2小时以上,在室温下展开6h,取出吹干,用0.5%甲苯胺蓝液染色,立即用95%乙醇漂洗至背景褪色,看是否只有一个清晰的斑点。

(5)琼脂糖(Agarose)凝胶电泳法在琼脂糖板(厚度为0.2cm)上点样3一5ul采用浓度为0.075mol/L,pH8.6的巴比妥缓冲液,电泳1-1.5h,电压为64一80V,甲苯胺蓝(浓度为1%)染色,醋酸乙醇混合溶液(醋酸:乙醇:水=0.1:5:5)脱色。

多糖纯品经电泳展开后,看是否呈现单一斑点,斑点是否清晰。

(6)紫外分光光度法将多糖PWZ加0.9%NaCI溶液溶解,配成浓度为1mg/ml的溶液,采用UV一16OA紫外可见光谱仪扫描(200nm一30Onm)观察260nm、280nm处是否有吸收峰。

多糖的分子量测定:过去用超速离心沉降法、光散射法、渗透压法、粘度法等,这些方法操作复杂且误差较大,现已少用。

现在较常用的方法有凝胶过滤法和高效凝胶液相色谱法,这两种方法须先用已知分子量的标准多糖对照测定样品的分子量。

一般来说,多糖结构分析包括以下几点:(1)单糖组成分析:研究确定单糖的种类及摩尔比;完全酸水解后用高效液相色谱方法(HPLC)或气相色谱方法测定。

(2)糖苷键类型:研究确定糖苷键及支链点连接位置;甲基化分析方法高碘酸氧化法与Smith降解法(3)糖环大小:研究确定糖苷键为呋喃糖或吡喃糖;红外光谱(4)异头碳构型:研究确定糖苷残基的a-或P-构型;2D NMR.(Two dimensional Nuclear Magnetic Resonance)光谱分析方法测(5)确定单糖残基和重复单元的序列甲基化分析方法与磁共振光谱分析方法结合分析,一般会参考多糖的单糖组成及摩尔比信息以利于解析多糖结构。

高碘酸氧化法薄层层析(TLc)——定性,气相色谱法(6)取代基团位点:研究0H-修饰基团的种类和取代位点,如0-磷酸化,乙醜基取代,0-硫酷化等;比色分析方法(7)多糖分子量分布的研究。

紫外光谱定性与定量方法薄层层析:残基定性气相色谱:残基定量气质联用:残基定量高效阴离子色谱法:残基定量鉴定结构常用物理化学方法:高效液相色谱:确定单糖组分和相对分子量红外光谱分析:测定多糖的官能团,不仅可以检测酮糖、酵糖的耻喃糖环或呋喃糖环的构象和糖苷键的构型核磁共振:α-构型与β-构型残基的比例;判断异头碳构型;推断主链和支链连接键型鉴定结构复合方法:甲基化分析:推断出多糖样品中糖基的连接方式及各种连接键型的比例高碘酸氧化法与Smith降解法:判断糖苷键的位置、直链多糖的聚合度及支链多糖的分支数目糖睛乙酸酷衍生物的气相色谱法:单糖组成和摩尔比各种多糖化学结构鉴定方法的具体实施方案1、酸水解(1)完全酸水解称取 20mg 样品 , 加入 2mL 2mol·L-1的H2SO4于安培管中沸水浴水解 8h, 水解液用BaCO3中和至pH =7 , 离心 , 取上清夜置冰箱冷藏备测。

(阿魏侧耳子实体多糖分离纯化及其化学结构的初步研究)(2)部分酸水解称取糖样 70mg,80℃条件下,0.05M 三氟乙酸水解 2h。

降至室温后,离心(4000r/min,10min),将沉淀干燥,留做 GC 分析。

上清用无水乙醇除酸至中性(pH 为 6∼7),蒸馏水透析 48h:将袋外透析液浓缩,真空干燥,留做 GC 分析;袋内液浓缩至 5ml 左右,加 10 倍体积无水乙醇,醇沉过夜,离心(4000r/min,10min),沉淀常规干燥,作 GC 分析;上清浓缩,真空干燥,留做 GC 分析。

2、高效液相色谱确定样品的单糖组成色谱条件为 :色谱柱为Shodex KS804 Sugar(300mm ×7.8mm)柱温40度流动相为水流速0.8mL·min-1检测用 410RⅠ示差检测器,数据处理用810GPC软件进行。

同时用鼠李糖、阿拉伯糖、甘露糖、半乳糖、木糖、果糖、葡萄糖、岩藻糖8种单糖进行对照, 根据峰值确定样品的单糖组成。

分子量的测定以标准分子量的葡聚糖 Pulluan 作分子量测定标准。

让其通过高压液相色谱柱, 条件同上, 先以分子量对数与对应的保留时间作标准曲线, 从标准葡聚糖Pulluan 的工作曲线上可以求得该成分分子量。

例如:(阿魏侧耳子实体多糖分离纯化及其化学结构的初步研究)将水解后的多糖样品PW2进行HPLC分析,结果如表所示:阿魏侧耳子实体多糖PW2经过酸水解后,得到2种单糖:葡萄糖和半乳糖,摩尔比例1.77∶1。

例如:经HPLC测定后对照标准曲线得多糖PW2的分子量为3.18×104。

(阿魏侧耳子实体多糖分离纯化及其化学结构的初步研究)4、甲基化分析(1)基本原理先将多糖中各种单糖残基中的游离羟基全部甲基化,然后将多糖中的糖苷键进行完全酸水解,水解后得到的化合物,其羟基所在的位置,即为原来单糖残基的连接点。

同时根据不同甲基化单糖的比例,可以推测出此种连接键型在多糖重复结构中所占的比例。

用此种方法得到的羟基及NaBH4还原醛基后产生的羟基,经乙酰化可得到甲基化的糖醇乙酸酯(此产物易挥发,可进行GC分析),再经GC与GC-MS分析,通过气相色谱的出峰顺序和对质谱谱图的主要离子碎片的分析便可以较准确地确定糖的连接键型。

反应通式如下:(2)甲基化反应取充分干燥的多糖样品10 mg,溶解在2.0 ml的二甲基亚矾(DMSO)中。

在N2保护下快速加入干燥的NaOH粉50 mg,用N2排出空气,加盖密封,室温反应1.0 h并间歇振荡。

在N2保护下缓慢滴加碘甲烷1.0 ml,用N2排出空气,加盖密封,室温继续反应1.0 h并间歇振荡,反应完成后加0.5 ml水终止反应。

反应液先用自来水流水透析48 h,再用蒸馏水透析24 h,透析液冷冻干燥得第一次甲基化样品。

第一次甲基化样品继续甲基化,反应步骤同上,得第二次甲基化样品。

如此重复甲基化三次。

甲基化后的样品用红外光谱检测,3700cm-1—3100 cm-1,附近无羟基的特征吸收峰,表明甲基化反应完全。

(3)甲基化样品的衍生化上述完全甲基化多糖样品加入2 mol/1的三氟乙酸(TFA ) 3.0 ml, 120℃密闭水解2.0 h。

冷却后50℃减压蒸发干,加2.0 ml甲醇再蒸发干,重复三次,最后蒸发干得完全甲基化多糖的水解产物。

加蒸馏水2.0 ml使其溶解,再加硼氢化钠25 mg,振荡后室温还原反应2.0 h。

反应完后滴加0.1 mol/1醋酸分解过量的硼氢化钠并调pH值至5.5~7.0弱酸性。

反应液50℃减压蒸发蒸干,加2.0 ml甲醇再蒸干,重复三次,最后蒸发干。

上述蒸发干样品加入1.0 ml醋酸酐和1.0 ml吡啶,封管后在沸水浴中反应1.0 h。

反应液50℃减压蒸发干,加2.0 ml甲醇再蒸发干,重复三次,最后蒸发干。

加入丙酮1.0 ml,用0.45ul尼龙微孔滤膜过滤,取样进行GC/MS分析。

相关文档
最新文档