结构化学基础知识点总结

合集下载

结构化学知识点汇总.doc

结构化学知识点汇总.doc

第一章:原子结构1. S能级有个原子轨道,P能级有个原子轨道,d能级有个原子轨道,同一能级的原子轨道能量,每个原子轨道最多可以排个自旋方向相反的电子。

当2P能级有2个未成对电子时,该原子可能是或者,当3d能级有2个未成对电子时,该原子可能是或者。

2. S轨道图形为,P轨道图形为沿三维坐标轴x y z 对称分布的纺锤形。

3. 主族元素的价电子就是电子,副族元素的价电子为与之和(Cu和Zn除外)。

4. 19∼36号元素符号是:它们的核外电子排布是:5. 元素周期表分,,,,五大区。

同周期元素原子半径从左到右逐渐,原子核对外层电子吸引力逐渐,电负性及第一电离能逐渐,(ⅡA,ⅤA 特殊);同主族元素原子半径从上到下逐渐,电负性及第一电离能逐渐。

6. 依照洪特规则,由于ⅡA族,ⅤA族元素原子价电子处于稳定状态,故其第一电离能比相邻同周期元素原子,如:N>O>C ; Mg>Al>Na ,但是电负性无此特殊情况。

7. 电负性最强的元素是,其电负值为4.0 ,其次是,电负值为3.5第二章化学键与分子间作用力1.根据共价键重叠方式的不同,可以分为键和键,一个N2分子中有个σ键个П键,电子式为。

根据共价键中共用电子对的偏移大小,可将共价键分为键和键,同种非金属原子之间是,不同原子之间形成。

2.共价键的稳定性与否主要看三个参数中的,越大,分子越稳定。

其次是看键长,键长越短,分子越(键长与原子半径有正比例关系)。

键角与分子的空间构型有关,CO2,C2H2分子为直线型,键角是1800;CH4和CCl4为正四面体型,键角为;NH3分子构型为, H2O分子构型为,它们的键角均小于。

3.美国科学家鲍林提出的杂化轨道理论认为:CH4是杂化;苯和乙烯分子为杂化;乙炔分子为杂化。

其他有机物分子中,全单键碳原子为杂化,双键碳原子为杂化,三键碳原子为杂化。

4. 价电子对互斥理论认为ABn型分子计算价电子对公式为,其中H 卤素原子做配位原子时,价电子为个;O,S做配位原子时,不提供电子;如果带有电荷,做相应加减;出现点五,四舍五入。

结构化学基础知识点总结

结构化学基础知识点总结

结构化学基础知识点总结结构化学是化学的一个重要分支,主要研究物质的分子结构及其性质与变化。

以下是结构化学的基础知识点总结:1.化学键:化学键是原子之间的连接。

常见的化学键包括共价键、离子键和金属键。

共价键是通过共享电子对连接原子的,离子键是通过正负离子之间的电荷吸引力连接的,金属键是由金属离子的正电荷和自由电子之间的相互作用连接的。

2.价电子:原子外层的电子称为价电子。

它们决定了原子的化学性质和与其他原子形成化学键的能力。

主族元素的价电子数等于元素的主族号减去10,而过渡金属的价电子数则根据元素的电子排布确定。

3.分子式与结构式:分子式表示化合物中原子的种类和数量,用化学符号和小标数表示,例如H2O表示水分子。

结构式更详细地表示了化合物中原子之间的连接关系,包括键的类型和数量。

常见的结构式表示方法有线条结构式、希尔伯特投影式和叠式结构式等。

4.共价键的构型理论:共价键的构型理论包括共价键构型、价层电子对斥力理论(VSEPR理论)和化学键混合理论。

共价键构型指的是取得最低能量的共价键构型,包括线性、三角形平面、四面体和八面体等几何形状。

VSEPR理论用于预测分子形状,可以通过电子云对中原子周围的电子对的排列关系来确定分子形状。

化学键混合理论解释了化学键形成的机制,通过重新配对原子的电子,可以形成不同数量和性质的化学键。

5.分子轨道理论:分子轨道理论用于描述分子中的电子分布和性质。

分子轨道是原子轨道的线性组合,可以用分子轨道能级图表示。

共价键形成时,原子轨道的重叠导致分子轨道的形成,其中有两种类型:σ(sigma)轨道和π(pi)轨道。

σ轨道沿化学键方向形成,π轨道则垂直于化学键方向形成。

分子轨道的填充遵循由低能级到高能级的原则,通过分析分子轨道能级可以预测化合物的性质。

6.杂化轨道理论:杂化轨道理论用于描述共价键的形成。

原子的轨道混合以形成杂化轨道,其形状和方向决定了化合物的几何形状。

sp轨道是最常见的杂化轨道,即包含一部分s轨道和一部分p轨道的混合轨道,类似地,sp2和sp3轨道也是常见的杂化轨道。

有关化学结构的知识点总结

有关化学结构的知识点总结

有关化学结构的知识点总结一、化学键化学键是指原子之间的相互作用力,是物质形成和分解的基本原因。

根据原子之间相互结合的方式和力的性质,化学键主要分为离子键、共价键和金属键三种。

1. 离子键离子键是由电荷相互吸引形成的,通常由金属和非金属元素之间形成。

在化学键形成过程中,金属原子失去电子成为正离子,非金属原子获得电子成为负离子,两种离子之间通过静电力相互吸引而形成离子键。

例如,氯化钠的化学式为NaCl,其中钠离子和氯离子通过离子键结合在一起。

2. 共价键共价键是由原子间电子的共享而形成的,通常由非金属元素之间形成。

在共价键形成过程中,原子间的价电子云重叠,形成了共用电子对,使得原子稳定下来。

例如,氧气的化学式为O2,其中两个氧原子之间形成了共价键。

3. 金属键金属键是在金属元素中形成的,其特点是金属原子之间通过自由电子云相互结合,形成金属键。

金属键的存在使得金属原子之间具有较强的结合力,形成了金属的特殊物理性质,如延展性和导电性。

二、分子结构分子是由原子通过化学键结合而成的,具有独立存在和一定的空间结构。

分子结构的特点决定了物质的性质和用途。

分子结构主要包括分子的形状和分子的极性两个方面。

1. 分子的形状分子的形状是指分子各个原子之间的空间排列方式。

分子的形状取决于原子之间的化学键类型和形成的方式。

分子的形状对物质的性质有重要影响。

例如,分子的极性对分子间的相互作用和物质的溶解性起到重要影响。

2. 分子的极性分子的极性是指分子内的正、负电荷中心不重合,呈现电荷分布不均匀的特性。

分子极性通常与分子的形状密切相关,通过极性分子间的相互作用力来影响物质的性质。

例如,极性分子具有较强的极性分子间相互作用力,使得溶解度和表面张力等性质有所不同。

三、晶体结构晶体是指由原子、分子或离子按照一定的空间规则排列而成的,通常具有规则的几何形状。

晶体结构的特点对物质的性质和用途有重要影响。

晶体结构分为简单晶体结构和复合晶体结构两种。

结构化学知识点归纳

结构化学知识点归纳

结构化学知识点归纳结构化学是研究分子及其化学性质的一门学科,旨在理解和预测化学反应、反应机理和分子结构与性质之间的关系。

下面是对结构化学常见的知识点进行的归纳。

1.分子结构与键-原子和分子的电子排布决定了它们的分子结构。

共价键形成时,原子通过共用电子对来相互结合,并形成分子的骨架。

-单、双、三键分别由1、2、3个电子对共享而成。

-极性键是由两个不同电负性的原子之间形成的键,其中一个原子更具电负性,吸引电子密度,形成部分正电荷;而另一个原子带有部分负电荷。

-非极性键是由两个电负性接近的原子相互作用形成的键。

2.分子构象-分子构象是分子在空间中可采取的不同形状和结构。

分子可以通过旋转化学键和自由旋转的化学键来改变其构象。

-分子内部的官能团之间的键角、键长和孤对电子的位置是决定分子构象的重要因素。

3.同分异构体-同分异构体是化学物质的两个或多个形式,它们有相同的分子式但具有不同的结构和化学性质。

-构造异构体是同分异构体的一种类型,它们在分子结构中的连接方式不同。

-空间异构体是同分异构体的另一种类型,它们的分子结构在空间中三维排列不同。

4.分子间力- Van der Waals力是分子间相互作用的一种类型。

它包括范德华力、氢键和离子-离子相互作用。

-范德华力是分子间由于电子的瞬时分布而产生的吸引力。

-氢键是分子间弱的相互作用力,它包括一个原子的氢原子与另一个原子上的具有独立电子对的原子之间的相互作用。

-离子-离子相互作用是由带正电荷的离子与带负电荷的离子之间的相互作用引起的。

5.分子轨道理论-分子轨道理论描述了分子中电子的行为。

它是通过将原子轨道线性组合来形成分子轨道。

-通过具有不同形状和能量的分子轨道,可以解释分子的化学性质,例如化学键的形成和分子的反应性。

-前线分子轨道是分子中电子占据的能量最低的、决定反应性的分子轨道。

以上是结构化学的一些常见知识点的归纳。

结构化学的学习可以更好地理解化学反应和物质的性质,进而应用于有机合成、药物研发和材料科学等领域。

结构化学知识点汇总

结构化学知识点汇总

结构化学知识点汇总关键信息项:1、原子结构原子轨道电子排布原子光谱2、分子结构化学键类型分子几何构型分子的极性3、晶体结构晶体类型晶格结构晶体的性质11 原子结构111 原子轨道原子轨道是描述原子中电子运动状态的数学函数。

主要包括s 轨道、p 轨道、d 轨道和 f 轨道。

s 轨道呈球形对称,p 轨道呈哑铃形,d 轨道和 f 轨道形状更为复杂。

112 电子排布遵循泡利不相容原理、能量最低原理和洪特规则。

电子按照一定的顺序填充在不同的原子轨道上,形成原子的电子构型。

113 原子光谱原子在不同能级间跃迁时吸收或发射的光子所形成的光谱。

包括发射光谱和吸收光谱,可用于分析原子的结构和成分。

12 分子结构121 化学键类型共价键:通过共用电子对形成,分为σ键和π键。

离子键:由正负离子之间的静电引力形成。

金属键:存在于金属晶体中,由自由电子和金属离子之间的相互作用形成。

氢键:一种特殊的分子间作用力,比一般的范德华力强。

122 分子几何构型通过价层电子对互斥理论(VSEPR)和杂化轨道理论来解释和预测。

常见的分子构型有直线型、平面三角形、四面体型、三角双锥型和八面体型等。

123 分子的极性取决于分子中正负电荷中心是否重合。

极性分子具有偶极矩,非极性分子则没有。

13 晶体结构131 晶体类型离子晶体:由离子键结合而成,具有较高的熔点和硬度。

原子晶体:通过共价键形成,硬度大、熔点高。

分子晶体:分子间以范德华力或氢键结合,熔点和硬度较低。

金属晶体:由金属键维系,具有良好的导电性和导热性。

132 晶格结构晶体中原子、离子或分子的排列方式。

常见的晶格有简单立方、体心立方、面心立方等。

133 晶体的性质各向异性:晶体在不同方向上的物理性质不同。

自范性:能够自发地呈现出多面体外形。

固定的熔点:在一定压力下,晶体具有固定的熔点。

21 量子力学基础211 薛定谔方程是描述微观粒子运动状态的基本方程,通过求解该方程可以得到粒子的能量和波函数。

结构化学知识点汇总

结构化学知识点汇总

结构化学知识点汇总结构化学是一门研究原子、分子和晶体结构以及结构与性能之间关系的学科。

它是化学领域的重要基础,对于理解化学反应、物质的性质和材料科学等方面具有关键作用。

以下是对结构化学一些重要知识点的汇总。

一、原子结构原子由原子核和核外电子组成。

原子核包含质子和中子,质子数决定了原子的元素种类。

电子在原子核外的分布遵循一定的规律。

玻尔模型提出了电子在特定轨道上运动,但其存在局限性。

量子力学的发展给出了更精确的描述,电子的运动状态用波函数来表示。

电子具有四个量子数:主量子数(n)决定电子所在的能层;角量子数(l)决定电子亚层;磁量子数(m)决定电子在亚层中的轨道取向;自旋量子数(ms)表示电子的自旋方向。

原子轨道是电子在核外空间出现概率密度分布的形象化描述。

s 轨道呈球形,p 轨道呈哑铃形。

电子填充原子轨道遵循能量最低原理、泡利不相容原理和洪特规则。

二、分子结构分子的化学键包括共价键、离子键和金属键。

共价键的形成是原子间通过共用电子对达到稳定结构。

价键理论认为共价键的形成是原子轨道重叠的结果。

杂化轨道理论解释了分子的空间构型,如 sp、sp2、sp3 杂化等。

价层电子对互斥理论可以预测分子的几何构型。

分子的极性取决于分子的正负电荷中心是否重合。

分子间作用力包括范德华力和氢键。

范德华力包括取向力、诱导力和色散力,它们对物质的物理性质有重要影响。

氢键的存在会使物质的熔点、沸点升高。

三、晶体结构晶体具有规则的几何外形和固定的熔点。

晶体分为离子晶体、原子晶体、分子晶体和金属晶体。

离子晶体由阴阳离子通过离子键结合而成,具有较高的熔点和硬度。

原子晶体中原子通过共价键形成空间网状结构,如金刚石。

分子晶体中分子间通过范德华力或氢键结合,熔点和硬度较低。

金属晶体由金属阳离子和自由电子通过金属键结合,具有良好的导电性和导热性。

晶体的空间点阵结构用晶胞来描述,通过晶胞参数可以计算晶体的密度等性质。

四、化学键的性质键能是指断开化学键所需的能量,键能越大,化学键越稳定。

结构化学知识点归纳

结构化学知识点归纳

结构化学知识点归纳结构化学知识点归纳根据北京大学出版社周公度编写的“结构化学”总结第一章量子力学基础知识一、微观粒子的运动特征h1. 波粒二象性:E =h ν, p =λ2. 测不准原理:∆x ∆p x ≥h , ∆y ∆p y ≥h , ∆z ∆p z ≥h , ∆t , ∆E ≥h 二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x , y , z , t ) 来描述,它包括体系的全部信息。

这一函数称为波函数或态函数,简称态。

不含时间的波函数ψ(x , y , z ) 称为定态波函数。

在本课程中主要讨论定态波函数。

由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。

在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψd τ为空间某点附近体积元d τ中电子出现的几率。

对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。

波函数ψ可以是复函数,2=ψ*⋅ψ合格(品优)波函数:单值、连续、平方可积。

2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。

算符:作用对象是函数,作用后函数变为新的函数。

线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算符。

ˆ(c ψ+c ψ) =c A ˆˆψ A 11221ψ1+c 2A 2*ˆˆψ) *d τ的算符。

(A ψ1)d τ=∫ψ2(A 自厄算符:满足∫ψ21自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正交。

ˆ作用于某一状态函数ψ,等于某一常数a 乘3. 假设3:若某一物理量A 的算符Aˆψ=a ψ,那么对ψ所描述的这个微观体系的状态,物理量A 具有确以ψ,即:Aˆ的本证值,ψ称为A ˆ的本证函数。

结构化学知识点归纳

结构化学知识点归纳

结构化学知识点归纳结构化学知识点归纳根据北京大学出版社周公度编写的“结构化学”总结第一章量子力学基础知识一、微观粒子的运动特征h1. 波粒二象性:E =h ν, p =λ2. 测不准原理:∆x ∆p x ≥h , ∆y ∆p y ≥h , ∆z ∆p z ≥h , ∆t , ∆E ≥h 二、量子力学基本假设1. 假设1:对于一个量子力学体系,可以用坐标和时间变量的函数ψ(x , y , z , t ) 来描述,它包括体系的全部信息。

这一函数称为波函数或态函数,简称态。

不含时间的波函数ψ(x , y , z ) 称为定态波函数。

在本课程中主要讨论定态波函数。

由于空间某点波的强度与波函数绝对值的平方成正比,即在该点附近找到粒子的几率正比于ψ*ψ,所以通常将用波函数ψ描述的波称为几率波。

在原子、分子等体系中,将ψ称为原子轨道或分子轨道;将ψ*ψ称为几率密度,它就是通常所说的电子云;ψ*ψd τ为空间某点附近体积元d τ中电子出现的几率。

对于波函数有不同的解释,现在被普遍接受的是玻恩(M. Born)统计解释,这一解释的基本思想是:粒子的波动性(即德布罗意波)表现在粒子在空间出现几率的分布的波动,这种波也称作“几率波”。

波函数ψ可以是复函数,2=ψ*⋅ψ合格(品优)波函数:单值、连续、平方可积。

2. 假设2:对一个微观体系的每一个可观测的物理量,都对应着一个线性自厄算符。

算符:作用对象是函数,作用后函数变为新的函数。

线性算符:作用到线性组合的函数等于对每个函数作用后的线性组合的算符。

ˆ(c ψ+c ψ) =c A ˆˆψ A 11221ψ1+c 2A 2*ˆˆψ) *d τ的算符。

(A ψ1)d τ=∫ψ2(A 自厄算符:满足∫ψ21自厄算符的性质:(1)本证值都是实数;(2)不同本证值的本证函数相互正交。

ˆ作用于某一状态函数ψ,等于某一常数a 乘3. 假设3:若某一物理量A 的算符Aˆψ=a ψ,那么对ψ所描述的这个微观体系的状态,物理量A 具有确以ψ,即:Aˆ的本证值,ψ称为A ˆ的本证函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构化学基础
第一章量子力学基础:
经典物理学是由Newton(牛顿)的力学,Maxwell(麦克斯韦)的电磁场理论,Gibbs(吉布斯)的热力学和Boltzmann(玻耳兹曼)的统计物理学等组成,而经典物理学却无法解释黑体辐射,光电效应,电子波性等微观的现象。

黑体:是一种可以全部吸收照射到它上面的各种波长辐射的物体,带一个微孔的空心金属球,非常接近黑体,进入金属球小孔的辐射,经多次吸收,反射使射入的辐射实际全被吸收,当空腔受热,空腔壁会发出辐射,极少数从小孔逸出,它是理想的吸收体也是理想的放射体,若把几种金属物体加热到同一温度,黑体放热最多,用棱镜把黑体发出的辐射分开就可测出指定狭窄的频率范围的黑体的能量。

规律:频率相同下黑体的能量随温度的升高而增大,
温度相同下黑体的能量呈峰型,峰植大致出现在频率范围是0.6-1.0/10-14S-1。

且随着温度的升高,能量最大值向高频移动.
加热金属块时,开始发红光,后依次为橙,白,蓝白。

黑体辐射频率为v的能量是hv的整数倍.
光电效应和光子学说:
Planck能量量子化提出标志量子理论的诞生。

光电效应是光照在金属表面上使金属放出电子的现象,实验证实:
1.只有当照射光的频率超过金属最小频率(临阈频率)时,金属才能发出电子,不同金属的最小频率不同,大多金属的最小频率位于紫外区。

2.增强光照而不改变照射光频率,则只能使发射的光电子数增多,不影响动能。

3.照射光的频率增强,逸出电子动能增强。

光是一束光子流,每一种频率的光的能量都有一个最小单位光子,其能量和光子的频率成正比,即E=hv
光子还有质量,但是光子的静止质量是0,按相对论质能定律光子的质量是
m=hv/c2
光子的动量:p=mc=hv/c=h/波长
光的强度取决于单位体积内光子的数目,即光子密度。

光电效应方程:hv(照射光频率)=W(逸出功)+E(逸出电子动能)
实物微粒的波粒二象性:
由de Broglie(德布罗意)提出:p=h/波长
电子具有粒性,在化合物中可以作为带电的微粒独立存在(电子自身独立存在,不是依附在其他原子或分子上的电子)
M.Born(玻恩)认为在空间任何一点上波的强度(即振幅绝对值平方)和粒子出现的概率成正比,电子的波性是和微粒的统计联系在一起,对大量的粒子而言衍射强度(波强)大的地方粒子出现的数目就多概率就大,反之则相反。

不确定度关系:
Schrodinger(薛定谔)方程的提出标志量子力学的诞生.
不确定关系又称测不准关系或测不准原理,它是微观粒子本质特性决定的物理量间相互关系原理,反映了微粒波特性。

而一个粒子不可能同时拥有确定坐标和动量(也不可以将时间和能量同时确定)[这是由W.Heisenberg(海森伯)提出的]
微观粒子与宏观粒子的比较:
1.宏观物体同时具有确定的坐标和动量可用牛顿力学描述(经典力学),微观粒子不同时具
有确定的坐标和动量,只能用量子力学描述。

2.宏观物体有连续可测的运动轨道,可追踪各个物体的运动轨迹加以分辨,微观粒子具有概率分布特性不可能分辨出各个粒子的轨迹。

3.宏观粒子可以处于任意的能量状态,体系的能量可以为任意的,连续变化的数值,微观粒子只能处于特定的能量状态,能量的改变量不可以取任意,连续变化的数值,只能是分立的,即量子化的。

4.不确定度关系对宏观物体没有实际意义,在不确定度关系式中Planck常数可以当作0,微观粒子遵循不确定度关系,h(Planck常数)不能看作0,所以可以用不确定度关系来分辨微观粒子和宏观粒子.
直径处于纳米量级的粒子常常出现既不同与宏观物体又不同于微观物体的特性,因此称为介光粒子。

量子力学的基本假设(这里牵涉到大学数学的知识,我不是很懂,希望有人可以为
我解释):
对与一个微观体系,它的状态一般可以用定态波函数(排除时间)(这也是体系中的粒子的坐标函数还有时间函数)表示,被表示的波称为概率波。

定态波函数一般是复数形式,可表示为
Ψ=f+ji,这个方程就是高中所学的复数,如果&的共轭复数&*,&&*则表示概率
密度,也就是通常所说的电子云,
由于空间某点波的强度与波函数的绝对值的平方成正比,即在该点附近找到的粒子的概率正比于ΨΨ*。

在分子或原子等体系中,&称为分子轨道或原子轨道。

波函数的简略式子是Ψ(x,y,z);其奇偶性表示式为:
奇函数:Ψ(x,y,z)=-Ψ(-x,-y,-z)
偶函数:Ψ(x,y,z)=Ψ(-x,-y,-z)
微粒波函数的奇偶性与微粒的一个状态跃迁到另一个状态的概率有关。

由于波函数描述的波是概率波,所以函数需满足下列条件:
1.波函数必须是单值的,即在空间的每一点Ψ只有唯一值。

2.波函数必须是连续的,即&值不出现突跃;Ψ对x,y,z的一级微商也是连续的;
3.波函数必须是平方可积的,即&在整个空间积分∫ΨΨ*dτ为一个有限数通常要求波
函数归一化,即
∫ΨΨ*dτ(τ是长得很像τ的字符,∫是积分的符号)
以下是牵涉到物理量和算符(这个是我最不了解的,我希望有人可以帮我):
对一个微观体系的可观测的物理量,都对应着一个线性自轭算符。

量子力学需要用线性自轭算符,是为了和算符对应的本征值能为实数,利用算符和
波函数能正确的描述微观体系的状态和性质。

本征态,本征值和Schrodinger方程:
如果某一个物理量A的算符[A](其实是A头上有个小箭号)作用于某一状态函数Ψ,
等于某一个常数a乘以Ψ,即[A] Ψ=aΨ
那么对Ψ所描述的这个微观体系的状态,物理量A具有特定的数值a,a称为物理量算符[A]的本征值,Ψ称为[A]的本征态或本征波函数,[A] Ψ=aΨ称为[A]的本征方程。

一个保守体系的总能量E在经典力学中用Hamilton(哈密顿)函数H表示(因为这个函数字母过度复杂我不会打所以...)
Schrodinger方程是决定体系能量算符的本征值和本征函数的方程,是量子力学的一个基本方程,式中的&不含时间,这种本征态给出的概率密度不随时间的改变而变化,称为定态,
这个本征态对应的本征值,就是该状态的能量。

下面牵涉到函数组的归一和正交我不懂就没做太多的分析。

态的叠加原理也是有关一些线性的函数组,我依然不懂得,也不明白...
Pauli(泡利)原理:在同一一个原子或分子轨道上有且只能有两个自旋方向相反的电子。

对于电子,质子,中子等自旋量子数S为半整数的体系(费米子),描述其状态的全波函数必须是反对称波函数(描述多电子体系轨道运动和自旋运动的全波函数的任意两个电子的坐标[空间和自旋坐标]进行交换,得到反对称波函数)
Pauli排斥原理:在一个多电子体系中,自旋相同的电子会尽可能地分开,远离。

Pauli不相容原理:在一个多电子体系中,两个自旋方向相同的电子不能占据同一个轨道(就是同一个原子中,两个电子的量子数不可以相同)。

但是玻色子不受Pauli不相容原理制约。

1.3箱中粒子的Schrodinger方程及其解:
对于这个我只知道(明白):在经典力学中箱中粒子的最小能量值是0,但是在量子力学中最小值大于0,最小的能量(基态能量)叫做零点能,它的存在是不确定关系的必然结果。

经典力学中箱中粒子在箱内的位置都一样,量子力学中箱中各处的粒子的概率密度是不均匀的,呈波形。

量子力学处理箱中粒子,获得有关受一定势能场束缚的粒子的共同特性:
1.粒子可存在多种状态
2.能量量子化
3.存在零能点
4.没有经典运动轨道,只有概率分布
5.存在节点,节点多,能量高。

上述的微观粒子的特性称为量子效应,在一维势体箱中,粒子的质量和势体箱的长度变大,量子效应减弱。

当其条件增大到宏观时,量子效应消失,体系变为宏观体系,其运动规律又可以用经典力学描述。

最后是介绍丁二烯的离域效应:
丁二烯的四个C原子都以Sp2杂化轨道形成3个单键(专业的字母不知道是哪个国家的我不会打)后,还有一个P Z轨道和一个π电子,假定有两种情况(A)四个π电子形成两个定域π键,(B)四个π电子形成π44(两个4一个上一个下)离域π键,设相邻两个C原子间距离是L,按一维势体箱中的粒子模型,A,B中π电子的能级和电子充填情况进行估计,可以得到结果:共轭分子(B)中离域效应使体系π电子的能量比定域双键分子(A)中电子能量要低,所以离域效应扩大了π电子的活动范围,即增加了一维势体箱的长度使分子能量降低,稳定性增加.离域效应降低的是分子的动能,分子中电子能否发生离域效应,需视体系的实际情况而定.。

相关文档
最新文档