重磅-八种经典线性规划例题最全总结(经典)

合集下载

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品A和B,每一个单位产品A的利润为100元,每一个单位产品B的利润为150元。

公司有两个车间可用于生产这两种产品,每一个车间每天的工作时间为8小时。

产品A在车间1生产需要1小时,产品B在车间1生产需要2小时;产品A在车间2生产需要2小时,产品B在车间2生产需要1小时。

每天车间1的生产能力为400个单位产品A或者200个单位产品B,车间2的生产能力为300个单位产品A或者150个单位产品B。

公司的目标是在满足车间生产能力的前提下,最大化利润。

二、数学建模设x1为在车间1生产的产品A的数量,x2为在车间1生产的产品B的数量,x3为在车间2生产的产品A的数量,x4为在车间2生产的产品B的数量。

目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:车间1的生产能力:x1 + x2 ≤ 4002x1 + x2 ≤ 800车间2的生产能力:x3 + x4 ≤ 300x3 + 2x4 ≤ 300非负约束:x1, x2, x3, x4 ≥ 0三、求解过程使用线性规划的求解方法,可以得到最优解。

1. 将目标函数和约束条件转化为标准形式:目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:x1 + x2 + 0x3 + 0x4 ≤ 4002x1 + x2 + 0x3 + 0x4 ≤ 8000x1 + 0x2 + x3 + x4 ≤ 3000x1 + 0x2 + x3 + 2x4 ≤ 300x1, x2, x3, x4 ≥ 02. 使用线性规划求解器求解得到最优解:最优解为:x1 = 200, x2 = 200, x3 = 0, x4 = 100最大利润为:Z = 100(200) + 150(200) + 100(0) + 150(100) = 50000元四、结果分析根据求解结果,最优解是在车间1生产200个单位产品A,200个单位产品B,在车间2生产100个单位产品B,不需要在车间2生产产品A。

线性规划例题和知识点总结

线性规划例题和知识点总结

线性规划例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在实际生活中,有很多问题都可以通过线性规划来解决,比如资源分配、生产计划、运输调度等。

下面我们通过一些具体的例题来深入理解线性规划,并对相关知识点进行总结。

一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值。

线性规划的数学模型通常可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_i$是约束条件的右端项。

二、线性规划的解题步骤1、建立数学模型:根据实际问题,确定决策变量、目标函数和约束条件。

2、画出可行域:将约束条件在直角坐标系中表示出来,得到可行域。

3、求出最优解:在可行域内,通过寻找目标函数的等值线与可行域边界的交点,求出最优解。

三、例题分析例 1:某工厂生产甲、乙两种产品,已知生产 1 单位甲产品需要消耗 A 资源 2 单位,B 资源 3 单位,可获利 5 万元;生产 1 单位乙产品需要消耗 A 资源 3 单位,B 资源 2 单位,可获利 4 万元。

现有 A 资源12 单位,B 资源 10 单位,问如何安排生产,才能使工厂获得最大利润?解:设生产甲产品$x_1$单位,生产乙产品$x_2$单位。

八种经典线性规划例题(超实用)

八种经典线性规划例题(超实用)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、 若x 、y 满足约束条件222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值 2,过点B (2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC的面积减去梯形OMAC 的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y x y +≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x 、y 满足以下约束条件5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay (a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x 、y 满足以下约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x 2+y 2的最大值和最小值分别是( )A 、13,1B 、13,2C 、13,45D 、5解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为45,选 C 六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( ) A 、(-3,6) B 、(0,6) C 、(0,3) D 、(-3,3)解:|2x -y +m|<3等价于230230x y m x y m -++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述假设某公司生产两种产品:A和B。

产品A每单位售价为10元,每单位成本为5元;产品B每单位售价为8元,每单位成本为3元。

公司有两个部门进行生产,分别是部门X和部门Y。

部门X每天生产产品A需要2小时,生产产品B需要1小时;部门Y每天生产产品A需要1小时,生产产品B需要3小时。

公司每天有8小时的生产时间。

现在的问题是,如何安排生产使得公司的利润最大化?二、数学建模1. 定义变量:设部门X生产的产品A的数量为x,部门X生产的产品B的数量为y,部门Y生产的产品A的数量为z,部门Y生产的产品B的数量为w。

2. 建立目标函数:公司的利润为销售收入减去成本,即利润=10x + 8y - 5x - 3y = 5x + 5y。

3. 建立约束条件:a) 部门X每天生产产品A需要2小时,生产产品B需要1小时,部门Y每天生产产品A需要1小时,生产产品B需要3小时,公司每天有8小时的生产时间,因此有约束条件:2x + y ≤ 8,x + 3w ≤ 8。

b) 产品的数量不能为负数,因此有约束条件:x ≥ 0,y ≥ 0,z ≥ 0,w ≥ 0。

三、线性规划模型最大化目标函数:maximize 5x + 5y满足约束条件:2x + y ≤ 8x + 3w ≤ 8x ≥ 0, y ≥ 0, z ≥ 0, w ≥ 0四、求解线性规划问题可以使用线性规划求解器进行求解,例如使用MATLAB的linprog函数或者Python的scipy.optimize.linprog函数。

五、求解结果分析假设求解结果为x = 2,y = 4,z = 1,w = 1。

根据求解结果可知,部门X生产2个产品A和4个产品B,部门Y生产1个产品A和1个产品B,公司的利润最大化为5*2 + 5*4 = 30元。

六、结论通过合理安排生产,部门X生产2个产品A和4个产品B,部门Y生产1个产品A和1个产品B,公司的利润最大化为30元。

以上是关于线性规划经典例题的详细解答,希翼能对您有所匡助。

八种经典线性规划例题最全总结(经典)

八种经典线性规划例题最全总结(经典)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x 、y 满足约束条件,则z=x+2y 的取值范围是 ( )A 、[2,6]B 、[2,5]C 、[3,6]D 、(3,5]解:如图,作出可行域,作直线l :x+2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故选A二、求可行域的面积例2、不等式组表示的平面区域的面积为 ( )A 、4B 、1C 、5D 、无穷大解:如图,作出可行域,△ABC 的面积即为所求,由梯形OMBC的面积减去梯形OMAC 的面积即可,选B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x ,y )中整点(横纵坐标都是整数)有( ) A 、9个 B 、10个 C 、13个 D 、14个解:|x|+|y|≤2等价于作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D222x y x y ≤⎧⎪≤⎨⎪+≥⎩260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩2(0,0)2(0,0)2(0,0)2(0,0)x y x y x y x y x y x y x y x y +≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩四、求线性目标函数中参数的取值范围例4、已知x 、y 满足以下约束条件,使z=x+ay(a>0)取得最小值的最优解有无数个,则a 的值为 ( ) A 、-3 B 、3 C 、-1 D 、1解:如图,作出可行域,作直线l :x+ay =0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D五、求非线性目标函数的最值例5、已知x 、y 满足以下约束条件 ,则z=x 2+y 2的最大值和最小值分别是( )A 、13,1B 、13,2C 、13,D 、,解:如图,作出可行域,x 2+y 2是点(x ,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,即为,选C 六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( )A 、(-3,6)B 、(0,6)C 、(0,3)D 、(-3,3)解:|2x -y +m|<3等价于由右图可知 ,故0<m <3,选C5503x y x y x +≥⎧⎪-+≤⎨⎪≤⎩220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩4545230230x y m x y m -++>⎧⎨-+-<⎩3330m m +>⎧⎨-<⎩七、比值问题当目标函数形如时,可把z 看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

线性规划经典例题

线性规划经典例题

线性规划经典例题一、问题描述某工厂生产两种产品A和B,产品A每单位利润为10元,产品B每单位利润为8元。

工厂有两个车间,分别是车间1和车间2。

每天车间1生产A产品需要2小时,B产品需要1小时;车间2生产A产品需要1小时,B产品需要3小时。

每天车间1的工作时间为8小时,车间2的工作时间为10小时。

工厂需要决定每天在两个车间分别生产多少单位的A和B产品,以最大化利润。

二、数学模型设每天在车间1生产的A产品单位数为x1,B产品单位数为y1;车间2生产的A产品单位数为x2,B产品单位数为y2。

根据题目要求,可以得到以下约束条件:车间1的工作时间约束:2x1 + 1y1 ≤ 8车间2的工作时间约束:1x2 + 3y2 ≤ 10产品A的产量约束:x1 + x2 ≤ A总产量产品B的产量约束:y1 + y2 ≤ B总产量非负约束:x1, y1, x2, y2 ≥ 0目标函数为利润的最大化:10x1 + 8y1 + 10x2 + 8y2三、求解过程1. 确定决策变量和目标函数决策变量:x1, y1, x2, y2目标函数:10x1 + 8y1 + 10x2 + 8y22. 确定约束条件车间1的工作时间约束:2x1 + 1y1 ≤ 8车间2的工作时间约束:1x2 + 3y2 ≤ 10产品A的产量约束:x1 + x2 ≤ A总产量产品B的产量约束:y1 + y2 ≤ B总产量非负约束:x1, y1, x2, y2 ≥ 03. 求解最优解利用线性规划求解方法,将目标函数和约束条件输入线性规划求解器,得到最优解。

四、数值计算与结果分析假设A总产量为100单位,B总产量为80单位。

将上述条件带入线性规划求解器,得到最优解如下:x1 = 20,y1 = 0,x2 = 60,y2 = 20根据最优解,工厂每天在车间1生产20单位的A产品,不生产B产品;在车间2生产60单位的A产品和20单位的B产品。

此时,工厂的利润最大化为:10 * 20 + 8 * 0 + 10 * 60 + 8 * 20 = 1160 元。

线性规划经典例题

线性规划经典例题

线性规划经典例题引言概述:线性规划是一种数学优化方法,用于求解线性约束条件下的最优解。

它在实际问题中有着广泛的应用,如生产计划、资源分配、运输问题等。

本文将介绍几个经典的线性规划例题,并详细阐述每个例题的解题思路和步骤。

一、最大化利润问题1.1 目标函数的建立首先,我们需要确定目标函数。

假设有两种产品A和B,每个单位的利润分别为x和y。

令x表示产品A的产量,y表示产品B的产量,我们的目标是最大化总利润。

1.2 约束条件的建立其次,我们需要确定约束条件。

假设产品A和B的生产所需的资源有限,分别为资源1和资源2。

我们需要考虑资源的限制以及产品的需求量。

1.3 求解最优解根据目标函数和约束条件,我们可以建立线性规划模型。

通过线性规划求解器,我们可以得到最优解,即产量x和y的数值,以及最大化的利润。

二、最小化成本问题2.1 目标函数的建立假设有n种原材料,每种原材料的价格为c1、c2、...、cn。

我们需要确定购买每种原材料的数量,以最小化总成本。

2.2 约束条件的建立每种原材料的数量要满足一定的约束条件,如总量限制、质量要求等。

此外,我们还需要考虑生产过程中的限制条件,如生产能力、工时等。

2.3 求解最优解根据目标函数和约束条件,我们可以建立线性规划模型。

通过线性规划求解器,我们可以得到最优解,即每种原材料的购买数量,以及最小化的成本。

三、资源分配问题3.1 目标函数的建立假设有m个任务需要分配给n个人员,每个人员的效率不同。

我们需要确定每个任务分配给哪个人员,以最大化总效率。

3.2 约束条件的建立每个任务只能由一个人员完成,每个人员只能执行一个任务。

此外,我们还需要考虑人员的可用时间、技能匹配等约束条件。

3.3 求解最优解根据目标函数和约束条件,我们可以建立线性规划模型。

通过线性规划求解器,我们可以得到最优解,即每个任务分配给哪个人员,以及最大化的总效率。

四、运输问题4.1 目标函数的建立假设有m个供应地和n个需求地,每个供应地的供应量和每个需求地的需求量已知。

最新八种 经典线性规划例题(超实用)

最新八种 经典线性规划例题(超实用)

线性规划常见题型及解法由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选 A二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC 的面积减去梯形OMAC的面积即可,选 B三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个解:|x|+|y|≤2等价于2(0,0)2(0,0)2(0,0)2(0,0) x y x yx y x yx y x yx y x y+≤≥≥⎧⎪-≤≥⎪⎨-+≤≥⎪⎪--≤⎩作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选 D四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1解:如图,作出可行域,作直线l:x+ay=0,要使目标函数z=x+ay(a>0)取得最小值的最优解有无数个,则将l向右上方平移后与直线x+y=5重合,故a=1,选 D五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,45D、解:如图,作出可行域,x2+y2是点(x,y)到原点的距离的平方,故最大值为点A(2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x+y-2=0的距离的平方,即为45,选 C六、求约束条件中参数的取值范围例6、已知|2x-y+m|<3表示的平面区域包含点(0,0)和(-1,1),则m的取值范围是()A、(-3,6)B、(0,6)C、(0,3)D、(-3,3)解:|2x-y+m|<3等价于230 230x y mx y m-++>⎧⎨-+-<⎩由右图可知3330m m +>⎧⎨-<⎩ ,故0<m <3,选 C七·比值问题当目标函数形如y az x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划常见题型及解法
由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。

一、求线性目标函数的取值范围
例1、若G、P满足约束条件,则z=G+2P的取值范围是()
A、[2,6]
B、[2,5]
C、[3,6]
D、(3,5]
解:如图,作出可行域,作直线l:G+2P=0,将
l向右上方平移,过点A(2,0)时,有最小值
2,过点B(2,2)时,有最大值6,故选A
二、求可行域的面积
例2、不等式组表示的平面区域的面积为()
A、4
B、1
C、5
D、无穷大
解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选B
三、求可行域中整点个数
例3、满足|G|+|P|≤2的点(G,P)中整点(横纵坐标都是整数)有()
A、9个
B、10个
C、13个
D、14个
解:|G|+|P|≤2等价于
作出可行域如右图,是正方形内部(包括边界),容易得到整点个数为13个,选D
四、求线性目标函数中参数的取值范围
取得最小值的最优解有无数个,则a的值为
()
A 、-3
B 、3
C 、-1
D 、1
解:如图,作出可行域,作直线l :G+aP =0,要使目标函数z=G+aP(a>0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线G+P =5重合,故a=1,选D
五、求非线性目标函数的最值
例5、已知G 、P 满足以下约束条件 ,则z=G 2+P 2的最大值和最小值分别是( )
A 、13,1
B 、13,2
C 、13,
D 、,
解:如图,作出可行域,G 2+P 2是点(G ,P )到原点
的距离的平方,故最大值为点A (2,3)到原点的距
离的平方,即|AO|2=13,最小值为原点到直线2G +P -2=0的距离的平方,即为,选C
六、求约束条件中参数的取值范围
例6、已知|2G -P +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( )
A 、(-3,6)
B 、(0,6)
C 、(0,3)
D 、(-3,3) 解:|2G -P +m|<3等价于
由右图可知,故0<m <3,选C
七、比值问题
当目标函数形如时,可把z 看作是动点与定点连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。

例已知变量G ,P 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0,则y x 的取值范围是(). (A )[95,6](B )(-∞,95
]∪[6,+∞) (C )(-∞,3]∪[6,+∞)(D )[3,6]
解析y x
是可行域内的点M (G ,P )与原点O
(0,0)连线的斜率,当直线OM 过点(52,92
)时,y x 取得 最小值95;当直线OM 过点(1,6)时,y x
取得最大值6.答案A 八、线性规划应用
例1、某工厂利用两种燃料生产三种不同的产品、、,每消耗一吨燃料与产品、、有下列关系:
现知每吨燃料甲与燃料乙的价格之比为,现需要三种产品、、各50吨、63吨、65吨.问如何使用两种燃料,才能使该厂成本最低?
分析:由于该厂成本与两种燃料使用量有关,而产品、、又与这两种燃料有关,且这三种产品的产量也有限制,因此这是一道求线性目标函数在线性约束条件下的最小值问题,这类简单的线性规划问题一般都可以利用二元一次不等式求在可行域上的最优解.
解:设该厂使用燃料甲吨,燃料乙吨,甲每吨元,
则成本为.因此只须求的最小值即可.
又由题意可得、满足条件
作出不等式组所表示的平面区域(如图)
由得
由得
作直线,把直线向右上方平移至可行域中的点时,

∴最小成本为.
答:应用燃料甲吨,燃料乙吨,才能使成本最低.
说明:本题中燃料的使用不需要是整数吨,若有些实际应用问题中的解是整数解,又该如何来考虑呢?
例2、咖啡馆配制两种饮料,甲种饮料每杯含奶粉9克、咖啡4克、糖3克,乙种饮料每杯含奶粉4克、咖啡5克、糖10克.已知每天原料的使用限额为奶粉3600克、咖啡20GG 克、糖3000克.如果甲种饮料每杯能获利0.7
元,乙种饮料每杯能获利1.2元,每天在原料的使用限额内饮料能全部售出,每天应配制两种饮料各多少杯能获利最大?
分析:这是一道线性规划的应用题,求解的困难在于从实际问题中抽象出不等式组.只要能正确地抽象出不等式组,即可得到正确的答案.
解:设每天配制甲各饮料杯、乙种饮料杯可获得最大利润,利润总额为元.由条件知:.变量、满足
作出不等式组所表示的可行域(如图)
作直线,把直线向右上方平移至经过点的位置时,取最大值.
由方程组:
得点坐标.
答:应每天配制甲种饮料200杯,乙种饮料240杯方可获利最大.
高考真题练习
1.(20GG年浙江理7)若实数,满足不等式组且的最大值为9,则实数(A)(B)(C)1(D)2
解析:将最大值转化为P轴上的截距,将m等价为斜率的倒数,数形结合可知答案选C,本题主要考察了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题
2.(20GG年陕西理11)若G,P满足约束条件,目标函数仅在点(1,0)处取得最小值,则a的取值范围是w.w.w.k.s.5.u.c.o.mw.w.w.k.s.5.u.c.o.m
(A)(,2)(B)(,2)(C)(D)
答案:B解析:根据图像判断,目标函数需要和,平行,
由图像知函数a的取值范围是(,2)
3.(20GG年山东理12)设G,P满足约束条件,
若目标函数z=aG+bP(a>0,b>0)的值是最大值为12,
则的最小值为().
A.B.C.D.4
【解析】:不等式表示的平面区域如图所示阴影部分,当直线aG+bP=z(a>0,b>0)
过直线G-P+2=0与直线3G-P-6=0的交点(4,6)时,
目标函数z=aG+bP(a>0,b>0)取得最大12,
即4a+6b=12,即2a+3b=6,而=,故选A.
【命题立意】:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值,对于形如已知2a+3b=6,求的最小值常用乘积进而用基本不等式解答
4.(20GG年安徽理7)若不等式组所表示的平面区域被直线分为面积相等的两
部分,则的值是
(A)(B)(C)(D)高.考.资.源.网
[解析]:不等式表示的平面区域如图所示阴影部分△ABC
由得A(1,1),又B(0,4),C(0,)
∴△ABC=,设与的
交点为D,则由知,∴
∴选A。

5.(20GG年山东理12)设二元一次不等式组所表示的平面区域为,
使函数的图象过区域的的取
值范围是()
A.B.C.D.
解:C,区域是三条直线相交构成的三角形(如图)
显然,只需研究过、两种情形,且即
6.(20GG年安徽理13)设满足约束条件,若目标函数的最大值为8,
则的最小值为________。

【答案】4【解析】不等式表示的区域是一个四边形,4个顶点是
,易见目标函数在取最大值8,
所以,所以,在时是等号成立。

所以的最小值为
4.
【规律总结】线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则区域端点的值是目标函数取得最大或最小值,求出直线交点坐标代入得,要想求的最小值,显然要利用基本不等式.
7.(20GG年陕西理14)铁矿石和的含铁率,冶炼每万吨铁矿石的的排放量及每万
某冶炼厂至少要生产1.9(万吨)铁,若要求的排放量不超过(万吨),则购买铁矿石的最少费用为(百万元).
【解析】设铁矿石购买了万吨,铁矿石购买了万吨,购买铁矿石的费用为百万元,则由题设知,本题即求实数满足约束条件,即(G)时,的最小值.作不等式组(G)对应的平面区域,如图阴影部分所示.现让直线,即平移分析即知,当直线经过点时,取得最小值.又解方程组得点坐标为.故.。

相关文档
最新文档