六种经典线性规划例题
1、线性规划经典例题

线性规划题型一:已知可行域问题()()()()()20,1218,12.16,14.16,14.52),),2,4(),4,3(),2,1(1-----=--C B A y x z ABCD y x P C B A ABCD 的取值范围是的内部,则行四边形在平(点的三个顶点为、已知平行四边形()的最大值等于则动点,设内(含边界)的为,点且的正方形,是边长为、如图,四边形βαβαβα+∈+=∆=,,212R BCD P OD OABC (注意:P 在三角形ABC 内,实际上描述的就是可行域问题。
)题型二:最优解是否唯一(含参)的取值范围是)取得最小值,则,在点(仅若目标函数满足约束条件已知实数省联考)年、(a ay x z y x y x y x y x 432,1122,2620161+=⎪⎩⎪⎨⎧≥+-≥-≤-()1-2.12.212.1-21.,02202202,20152或或或或的值为唯一,则实数取得最大值的最优解不若满足约束条件武汉调研)、(D C B A a ax y z y x y x y x y x -=⎪⎩⎪⎨⎧≥+-≤--≤-+题型三:目标函数含参=⎪⎩⎪⎨⎧≤--≥+-≥-++=k z y x y x y x y x y kx z ,则实数的最大值为若满足,其中实数浙江卷)设、(12,04204202,20131 ()3.2.2.3.4,020,20152--=+=⎪⎩⎪⎨⎧≥≤+≥-D C B A a y ax z y y x y x y x ,则为的最大值若满足约束条件,山东高考)已知、(题型四:可行域含参()()()2.1.21.41.12,331,0.20131D C B A a y x z x a y y x x y x a =+=⎪⎩⎪⎨⎧-≥≤+≥>,则的最小值是若满足约束条件,已知高等学校全国统一考试、()3.25.2.1.42,02,2015(2D C B A b y x z b x y x y y x y x 的值为,则实数为的最小值且满足实数河南省郑州市二模)若、+=⎪⎩⎪⎨⎧+-≥≥≥- 题型五:一个很容出错的问题(多解检验)()3-5.35.3.5.7,1,,2014(1或或,则的最小值为且满足全国文科卷)设、D C B A a ay x z y x a y x y x --=+=⎩⎨⎧-≤-≥+ 题型六:快速确定可行域()[]()⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡--=++23,21.23,21.3,1.3,1.1321100212D C B A a b b ax x 的取值范围是)上,则,)上,另一个根在(,的一个根在(、已知一元二次方程。
线性规划典型例题

例1:生产计划问题某工厂明年根据合同,每个季度末向销售公司提供产品,有关信息如下表。
若当季生产的产品过多,季末有积余,则一个季度每积压一吨产品需支付存贮费O.2万元。
现该厂考虑明年的最佳生产方案,使该厂在完成合同的情况下,全年的生产费用最低。
试建立模型。
解:法1 设每个季度分别生产x1,x2,x3,x4则要满足每个季度的需求x4≥26x1+ x2≥40x1+ x2+ x3≥70x1+ x2+ x3+ x4=80考虑到每个季度的生产能力 0≤x1≤300≤x2≤400≤x3≤200≤x4≤10每个季度的费用为:此季度生产费用+上季度储存费用第一季度15.0x1第二季度14 x2 0.2(x1-20)第三季度15.3x3+0.2(x1+ x2-40)第四季度14.8x4+0.2(x1+ x2+ x3-70)工厂一年的费用即为这四个季度费用之和,得目标函数;minf=15.6 x1+14.4 x2+15.5 x3+14.8 x4-26s.t.x1+ x2≥40x1+ x2+ x3≥70x1+ x2+ x3+ x4=8020≤x1≤30 0≤x2≤40 0≤x3≤20 0≤x4≤10。
法2:设第i季度生产而用于第j季度末交货的产品数量为xij吨根据合同要求有:xll=20x12+x22=20x13+x23+x33=30x14+x24+x34+x44=10又根据每季度的生产能力有:xll+x12+x13+x14≤30x22+x23+x24≤40x33+x34≤20x44≤10第i季度生产的用于第j季度交货的每吨产品的费用cij=dj+0.2(j-i),于是,有线性规划模型。
minf=15.Oxll+15.2x12+15.4xl3+15.6xl4+14x22+14.2x23+14.4x24+15.3 x33+15.5x34+14.8x44s.t. xll=20,x12+x22=20,x13+x23+x13=30,x14+x24+x34+x44=10,x1l+x12+x13+x14≤30,x22+x23+x24≤40,x33+x34≤20,x44≤10,xij≥0, i=1,…,4;j=1,…,4,j≥i。
线性规划经典例题

线性规划经典例题一、问题描述我们考虑一个典型的线性规划问题,假设有一个工厂需要生产两种产品:产品A和产品B。
工厂有两个生产车间:车间1和车间2。
生产产品A需要在车间1和车间2进行加工,而生产产品B只需要在车间2进行加工。
每一个车间的加工时间和加工费用都是不同的。
我们的目标是找到最佳的生产计划,使得总的加工时间和加工费用最小。
二、问题分析1. 定义变量:- x1:在车间1生产产品A的数量- x2:在车间2生产产品A的数量- y:在车间2生产产品B的数量2. 定义目标函数:目标函数是最小化总的加工时间和加工费用。
假设车间1生产产品A的加工时间为t1,车间2生产产品A的加工时间为t2,车间2生产产品B的加工时间为t3,车间1生产产品A的加工费用为c1,车间2生产产品A的加工费用为c2,车间2生产产品B的加工费用为c3,则目标函数可以表示为:Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y3. 约束条件:- 车间1生产产品A的数量不能超过车间1的生产能力:x1 <= capacity1- 车间2生产产品A的数量不能超过车间2的生产能力:x2 <= capacity2- 车间2生产产品B的数量不能超过车间2的生产能力:y <= capacity2 - 产品A的总需求量必须满足:x1 + x2 >= demandA- 产品B的总需求量必须满足:y >= demandB4. 线性规划模型:综上所述,我们可以建立如下的线性规划模型:最小化 Z = t1 * x1 + t2 * x2 + t3 * y + c1 * x1 + c2 * x2 + c3 * y满足约束条件:- x1 <= capacity1- x2 <= capacity2- y <= capacity2- x1 + x2 >= demandA- y >= demandB- x1, x2, y >= 0三、数据和解决方案为了展示如何求解该线性规划问题,我们假设以下数据:- 车间1的生产能力为100个产品A- 车间2的生产能力为150个产品A和100个产品B- 产品A的总需求量为200个- 产品B的总需求量为80个- 车间1生产产品A的加工时间为2小时,加工费用为10元/个- 车间2生产产品A的加工时间为1小时,加工费用为8元/个- 车间2生产产品B的加工时间为3小时,加工费用为15元/个根据以上数据,我们可以得到线性规划模型如下:最小化 Z = 2 * x1 + 1 * x2 + 3 * y + 10 * x1 + 8 * x2 + 15 * y满足约束条件:- x1 <= 100- x2 <= 150- y <= 100- x1 + x2 >= 200- y >= 80- x1, x2, y >= 0接下来,我们可以使用线性规划求解器来求解该问题。
线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品A和B,每一个单位产品A的利润为100元,每一个单位产品B的利润为150元。
公司有两个车间可用于生产这两种产品,每一个车间每天的工作时间为8小时。
产品A在车间1生产需要1小时,产品B在车间1生产需要2小时;产品A在车间2生产需要2小时,产品B在车间2生产需要1小时。
每天车间1的生产能力为400个单位产品A或者200个单位产品B,车间2的生产能力为300个单位产品A或者150个单位产品B。
公司的目标是在满足车间生产能力的前提下,最大化利润。
二、数学建模设x1为在车间1生产的产品A的数量,x2为在车间1生产的产品B的数量,x3为在车间2生产的产品A的数量,x4为在车间2生产的产品B的数量。
目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:车间1的生产能力:x1 + x2 ≤ 4002x1 + x2 ≤ 800车间2的生产能力:x3 + x4 ≤ 300x3 + 2x4 ≤ 300非负约束:x1, x2, x3, x4 ≥ 0三、求解过程使用线性规划的求解方法,可以得到最优解。
1. 将目标函数和约束条件转化为标准形式:目标函数:max Z = 100x1 + 150x2 + 100x3 + 150x4约束条件:x1 + x2 + 0x3 + 0x4 ≤ 4002x1 + x2 + 0x3 + 0x4 ≤ 8000x1 + 0x2 + x3 + x4 ≤ 3000x1 + 0x2 + x3 + 2x4 ≤ 300x1, x2, x3, x4 ≥ 02. 使用线性规划求解器求解得到最优解:最优解为:x1 = 200, x2 = 200, x3 = 0, x4 = 100最大利润为:Z = 100(200) + 150(200) + 100(0) + 150(100) = 50000元四、结果分析根据求解结果,最优解是在车间1生产200个单位产品A,200个单位产品B,在车间2生产100个单位产品B,不需要在车间2生产产品A。
线性规划题及答案

线性规划题及答案引言概述:线性规划是运筹学中的一种数学方法,用于寻觅最优解决方案。
在实际生活和工作中,线性规划问题时常浮现,通过对问题进行建模和求解,可以得到最优的决策方案。
本文将介绍一些常见的线性规划题目,并给出详细的答案解析。
一、生产规划问题1.1 生产规划问题描述:某工厂生产两种产品A和B,产品A每单位利润为100元,产品B每单位利润为150元。
每天工厂有8小时的生产时间,产品A每单位需要2小时,产品B每单位需要3小时。
问工厂每天应该生产多少单位的产品A 和产品B,才干使利润最大化?1.2 生产规划问题答案:设产品A的生产单位为x,产品B的生产单位为y,则目标函数为Max Z=100x+150y,约束条件为2x+3y≤8,x≥0,y≥0。
通过线性规划方法求解,得出最优解为x=2,y=2,最大利润为400元。
二、资源分配问题2.1 资源分配问题描述:某公司有两个项目需要投资,项目A每万元投资可获得利润2万元,项目B每万元投资可获得利润3万元。
公司总共有100万元的投资额度,问如何分配投资额度才干使利润最大化?2.2 资源分配问题答案:设投资项目A的金额为x万元,投资项目B的金额为y万元,则目标函数为Max Z=2x+3y,约束条件为x+y≤100,x≥0,y≥0。
通过线性规划方法求解,得出最优解为x=40,y=60,最大利润为240万元。
三、运输问题3.1 运输问题描述:某公司有两个仓库和三个销售点,每一个销售点的需求量分别为100、150、200,每一个仓库的库存量分别为80、120。
仓库到销售点的运输成本如下表所示,问如何安排运输方案使得总成本最小?3.2 运输问题答案:设从仓库i到销售点j的运输量为xij,则目标函数为Min Z=∑(i,j) cij*xij,约束条件为每一个销售点的需求量得到满足,每一个仓库的库存量不超出。
通过线性规划方法求解,得出最优的运输方案,使得总成本最小。
四、投资组合问题4.1 投资组合问题描述:某投资者有三种投资标的可选择,预期收益率和风险如下表所示。
线性规划经典例题

线性规划经典例题一、问题描述某公司生产两种产品A和B,每种产品的生产需要消耗不同的资源,且每种产品的利润也不同。
公司希望通过线性规划来确定生产计划,以最大化利润。
二、数据分析1. 资源消耗情况:- 产品A每单位需要消耗3个资源1和2个资源2;- 产品B每单位需要消耗2个资源1和4个资源2。
2. 利润情况:- 产品A每单位利润为10;- 产品B每单位利润为15。
3. 资源限制:- 资源1的总量为30个;- 资源2的总量为40个。
三、数学建模1. 定义变量:- 设生产的产品A数量为x,产品B数量为y。
2. 建立目标函数:- 目标函数为最大化利润,即Maximize Z = 10x + 15y。
3. 建立约束条件:- 资源1的消耗约束:3x + 2y ≤ 30;- 资源2的消耗约束:2x + 4y ≤ 40;- 非负约束:x ≥ 0,y ≥ 0。
四、求解将目标函数和约束条件带入线性规划模型,使用合适的求解方法,例如单纯形法、内点法等,求解得到最优解。
五、结果分析根据求解结果,得到最优解为x = 6,y = 6,此时利润最大为Z = 150。
意味着公司应该生产6个产品A和6个产品B,才能达到最大利润。
六、敏感性分析为了进一步了解模型的稳定性和可行性,可以进行敏感性分析。
通过改变资源数量、利润等参数,观察最优解的变化情况,以评估模型的可行性和鲁棒性。
七、结论根据线性规划模型的求解结果和敏感性分析,可以得出以下结论:- 公司应该生产6个产品A和6个产品B,以达到最大利润。
- 如果资源数量发生变化,最优解可能会有所调整。
- 如果产品利润发生变化,最优解也会相应变化。
综上所述,通过线性规划模型,我们可以帮助公司制定最优的生产计划,以达到最大利润。
同时,敏感性分析可以提供决策者对模型的可行性和鲁棒性的评估,为决策提供参考依据。
线性规划的12种题型
线性规划的12种题型线性规划是高考必考的知识点,学生对这个知识点认识多数停留在简单应用阶段,现将常见题型归纳如下:一、 考查不等式表示的平面区域:例1、不等式0x y ->所表示的平面区域是( ) A. B. C. D.分析:法一:代入特殊点验证;法二:看系数的符号,若x 系数为正数,则左小右大,选B练习1、不等式()20y x y +-≥在平面直角坐标系中表示的区域(用阴影部分表示)是 ( )选C2、已知点()3,1-和()4,3--在直线320x y a -+=的同侧,则a 的取值范围是__________.【答案】611a a ><-或二、 判断可行域形状例2、不等式组 (5)()0,03x y x y x -++≥⎧⎨≤≤⎩表示的平面区域是( ) A.矩形 B.三角形 C.直角梯形 D.等腰梯形分析:画图可知为等腰梯形,选D练习2、已知约束条件400x k x y x y ≥⎧⎪+-≤⎨⎪-≤⎩表示面积为1的直角三角形区域,则实数k 的值为( )A.0B.1C.1或3D.3选B三、 最值型简单线性规划例3、设变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≥-041y y x y x ,则目标函数y x z 42+=的最大值为( )A .2B .4C .8D .11分析:1.画可行域,2画l 0:2x+4y=0,3平移到可行域的最右侧确定最优解的位置,4联立求出最优解坐标,4代入目标函数求最大值11选D练习3、若实数,x y 满足1000x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则23x y z +=的最小值为.答案:1四、最优解问题例4、如图所示的坐标平面的可行域(阴影部分且包括边界)内,目标函数ay x z -=2取得最大值的最优解有无数个,则a 为( )A.-2B.2C.-6D.6分析:因为x 的系数为正,所以目标函数与BC 重合时,取最大值,最优解有无数个 代入B 、C 的坐标两式相等,求出a=-2选A五、斜率型线性规划例5、若x 、y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则1y x -的最大值为 . 分析:1y x -相当于P (x,y )与Q (0,1)连线的斜率,直线最陡时,斜率最大,P 取(1,3)答案:2练习:5、设,x y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,且231x y z x ++=+,则z 的取值范围是( ) A.[3,11] B.[2,10] C.[2,6] D.[1,5]选A六、距离型例6、设实数,x y 满足约束条件250403100x y x y x y --≤⎧⎪+-≤⎨⎪+-≥⎩,则22z x y =+的最小值为 ( )10 C.8 D.5分析:所求式子相当于原点与可行域内点距离的平方,利用点到直线距离公式可求 选B练习6、设x ,y 满足0,10,3220,y ax y x y ≥⎧⎪+-≤⎨⎪--≤⎩若210z x x y =-+2的最小值为12-,则实数a的取值范围是( )A .32a <B .32a <-C .12a ≥D .12a ≤- 选D七、含绝对值型例7、实数y x ,满足⎪⎩⎪⎨⎧≤≥-++≤20222x y x x y ,则||y x z -=的最大值是( )A .2B .4C .6D .8分析:先求出z=x-y 的最值,再取绝对值选B八、向量型例8、已知()21A ,,()00O ,,点()M x y ,满足12222x y x y ≤≤⎧⎪≤⎨⎪-≤⎩,则z OA AM =的最大值为( )A .1B .0 C.1- D .5-分析:先将向量化简,再求最值选A九、变换型例9、已知点(),M a b 在由不等式组002x y x y ≥⎧⎪≥⎨⎪+≤⎩确定的平面区域内,则点(),N a b a b +-所在平面区域的面积是( )A .1B .2C .4D .8分析:设x=a+b,y=a-b,求出x,y 满足的关系式,再求解选C练习9设变量x ,y 满足1,0,0,x y x y +≤⎧⎪≥⎨⎪≥⎩则点(,)P x y x y +-所在区域的面积为( )A .2B .1C .12D .14 选B十、隐含型例10、已知关于x 的方程2(1)210x a x a b +++++=的两个实根分别为1x ,2x ,且101x <<,21x >,则b a的取值范围是( ) A .1(1,)4-- B .1(1,]4-- C .(1,)-+∞ D .1(,)4-∞- 分析:根据条件,利用根的分布列出关系式,提供约束条件,再求解选A练习10、若关于的方程22222(6)2410x a b b x a b a b -+-+++-+=的两个实数根1x ,2x 满足1201x x ≤≤≤,则224a b a ++的最大值和最小值分别为( ) A.12和5+ B.72-和5+ C.72-和12 D.12-和15-选B十一、含参型例11、设1m >,变量x ,y 在约束条件,,1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值为2,则m =_________.分析:画大致图像,确定最优解位置,解方程组,代入求解1m =+练习1、当x ,y 满足不等式组22,4,72x y y x x y +≤⎧⎪-≤⎨⎪-≤⎩时,22kx y -≤-≤恒成立,则实数k 的取值范围是( )A .[]1,1-B .[]2,0-C .13,55⎡⎤-⎢⎥⎣⎦D .1,05⎡⎤-⎢⎥⎣⎦练习2、已知变量y x ,满足约束条件⎪⎩⎪⎨⎧≥-≤-≤+1236x y x y x ,则目标函数(0,0)z ax by a b =+>>的最小值为2,则b a 11+的最小值为( )A .2B .4C .53+D .223+十二、曲线型例12已知实数,x y 满足401010x y y x +-≤⎧⎪-≥⎨⎪-≥⎩,则2y z x =的最大值是 A .13B .9C .2D .11 分析:所求函数变形后为抛物线,代最高点取最大值【答案】B练习12已知P (x,y)的坐标满足021,x y x y x ≤⎧⎪>⎨⎪<+⎩________ 分析:可转化为向量夹角余弦,再画图求解答案:((注:可编辑下载,若有不当之处,请指正,谢谢!)。
线性规划经典例题
线性规划经典例题一、问题描述某工厂生产两种产品A和B,每单位产品A需要2个工时和3个材料单位,每单位产品B需要3个工时和2个材料单位。
已知该工厂每天有40个工时和50个材料单位可用。
产品A的利润为每单位100元,产品B的利润为每单位80元。
问该工厂应该生产多少单位的产品A和产品B才能使利润最大化?二、数学建模1. 假设生产产品A的单位数量为x,生产产品B的单位数量为y。
2. 根据题目要求,可以得到以下约束条件:- 工时约束:2x + 3y ≤ 40- 材料约束:3x + 2y ≤ 50- 非负约束:x ≥ 0,y ≥ 03. 目标函数:利润最大化,即最大化目标函数 Z = 100x + 80y。
三、标准格式的线性规划模型最大化目标函数:Z = 100x + 80y约束条件:2x + 3y ≤ 403x + 2y ≤ 50x ≥ 0,y ≥ 0四、求解方法可以使用线性规划的求解方法,如单纯形法或者求解器进行求解。
以下是使用求解器求解的步骤:1. 打开线性规划求解器,输入目标函数和约束条件。
2. 设置目标为最大化。
3. 添加约束条件:2x + 3y ≤ 40,3x + 2y ≤ 50,x ≥ 0,y ≥ 0。
4. 点击求解按钮,得到最优解及最优值。
5. 解释结果并作出决策。
五、求解结果与决策分析经过求解器计算,得到最优解为x = 10,y = 10,最优值为Z = 1800。
根据最优解,该工厂应该生产10个单位的产品A和10个单位的产品B,才能使利润最大化,最大利润为1800元。
六、敏感性分析对于该线性规划问题,我们可以进行敏感性分析来了解目标函数系数的变化对最优解的影响。
1. 目标函数系数变化:- 如果产品A的利润系数从100变为110,产品B的利润系数从80变为90,重新求解得到新的最优解为x = 10,y = 10,最优值为Z = 2000。
可以看出,利润系数的变化对最优解有一定的影响,但最优解仍然是生产10个单位的产品A和10个单位的产品B。
六种经典线性规划例题
线性计划罕有题型及解法由已知前提写出束缚前提,并作出可行域,进而经由过程平移直线在可行域内求线性目的函数的最优解是最罕有的题型,除此之外,还有以下六类罕有题型.一.求线性目的函数的取值规模例1、若x.y则z=x+2y的取值规模是()A.[2,6]B.[2,5]C.[3,6]D.(3,5]解:如图,作出可行域,作直线l:x+2y=0,将l向右上方平移,过点A(2,0)时,有最小值2,过点B(2,2)时,有最大值6,故选A二.求可行域的面积例 2.不示的平面区域的面积为()A.4B.1C.5D.无限大解:如图,作出可行域,△ABC的面积即为所求,由梯形OMBC的面积减去梯形OMAC的面积即可,选B三.求可行域中整点个数例3.知足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A.9个B.10个C.13个D.14个解:|x|+|y|≤20,0) 0,0) yy≥作出可行域如右图,是正方形内部(包含鸿沟),轻易得到整点个数为13个,选D四.求线性目的函数中参数的取值规模例 4.已知x.y 知足以下束缚前提使z=x+ay(a>0)取得最小值的最优解有很多个,则a 的值为 ( )A.-3B.3C.-1D.1解:如图,作出可行域,作直线l :x+ay =0,要使目的函数z=x+ay(a>0)取得最小值的最优解有很多个,则将l 向右上方平移后与直线x+y =5重合,故a=1,选D五.求非线性目的函数的最值例5.已知x.y,则z=x 2+y 2的最大值和最小值分离是() A.13,1 B.13,2解:如图,作出可行域,x 2+y 2是点(x,y )到原点的距离的平方,故最大值为点A (2,3)到原点的距离的平方,即|AO|2=13,最小值为原点到直线2x +y -2=0的距离的平方,选C 六·比值问题,可把z,如许目的函数的最值就转化为PQ 连线斜率的最值.例 已知变量x ,y 知足束缚前提⎩⎨⎧x -y +2≤0x ≥1x +y -7≤0则 yx的取值规模是( ).(A )[95,6] (B )(-∞,95]∪[6,+∞)(C )(-∞,3]∪[6,+∞) (D )[3,6] 解析 yx 是可行域内的点M (x ,y )与原点O(0,0)连线的斜率,当直线OM 过点(52,92)时,yx 取得最小值95;当直线OM 过点(1,6)时,yx取得最大值6. 答案A。
高中数学线性规划练习题及讲解
高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。
以下是一些线性规划的练习题,以及对这些题目的简要讲解。
### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。
工厂每天有机器时间100小时和人工时间80小时。
如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。
设生产产品A的数量为x,产品B的数量为y。
2. 目标函数为:\( P = 50x + 80y \)。
3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。
5. 计算每个顶点的目标函数值,选择最大的一个。
### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。
产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。
公司每月有原材料预算3000元。
如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。
2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。
3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。
6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。
### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性规划常见题型及解法
求线性目标函数的取值范围
2
2 2
x y A D y 2
O
x x=2
求可行域的面积
y
y
M 5
2 x y 2 y
x y 2 x y 2
x y x
(3,5]
y =2
( 13 例1
x+2y
时 6 的点 C 、 x , 个
y 6 y 3 2 x + y —3 = 0
C 、 5 A 、 4 B 、 1
D 、无穷大 ()
0,将 有
最小值 故选A
.B
A ---
作出可行域如右图 点个数为13个,选D x + y =2
则z=x+2y 的取值范围是 ()
旦y =2
0 0表示的平面区域的面积为 三、求可行域中整点个数
解:|x| + |y| <2等价于 解:如图,作出可行域,作直线I : I 向右上方平移,过点A ( 2,0 ) 2,过点B ( 2,2 )时,有最大值 [2,6] B 、[2 ,5] C 、[3,6]
解:如图,作出可行域,△ ABC 的面积即为所求,由梯形OMBC 的面积减去梯形OMAC 的
面积即可,选B 例 3、满足 |x| + |y| <2 A 、9 个 B 、10 个 由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性 目标函数的最优解是最常见的题型,除此之外,还有以下六类常见题型。
(x 0,y 0)
(x 0,y p 0) (xp 0,y 0) (xp 0,y p 0)
是正方形内部(包括边界),容易得到整
y)中整点(横纵坐标都是整数)有() D 、 14 个
2x 例2、不等式组x x 若x 、y 满足约束条件 y
O
C V —►
x
2x + y —6= 0
故a=1 ,选D 四、求线性目标函数中参数的取值范围
解:如图,作出可行域,作直线I : x+ay = 0, 要使目标函数z=x+ay (a>0)取得最小值的最优解
有无数个,则将I 向右上方平移后与直线x+y = 5重合,
五、求非线性目标函数的最值
例 已知变量x , y 满足约束条件
9 (A) [-, 6]
5
x — y + 2 <0,
x >1, 贝U y
的取值范围是( x
x + y — 7 <0,
9
(B) (—3 Z ] U [6,+m )
5
(C) (—^, 3] U [6 ,+R) ( D ) [3 , 6]
解析
"是可行域内的点 M(x , y )与原点O
x 3
5 9
y
(0, 0)连线的斜率,当直线 OM 过点(2 , 2)时,'取得
2 2 x 最小值9
当直线0止点(1, 6)时,y
取得最大值6.答案A
x y
5
例4、已知x 、y 满足以下约束条件
x y 5 0,使 z=x+ay( a>0) x 3
取得最小值的最优解有无数个,
则 a 的值为 ()
A 、 一 3
B 、 3
C 、 一 1
D 、 1
2x y 2 0
例5、已知x 、y 满足以下约束条件x
2y 4 0 3x y 3 0
,则z=x 2+y 2
的最大值和最小值分别是(
A 、 13 , 1 C 、13 ,—
5
B 、13 , 2 D 、.13 , 口
5
解:如图,作出可行域,x 2+y 2
是点(x , y )到原点的距 离的平方,故最大
值为点 A ( 2,3 )到原点的距离的平方, 2
即|A0| =13 ,最小值为原点到直线2x + y — 2=0的距离的平
-2= 0
方,即为4
,选C 5 六•比值问题
当目标函数形如z y a
时,可把z 看作是动点 x b 为PQ 连线斜率的最值。
P(x, y)与定点Q(b,a)连线的斜率,这样目标函数的最值就转化
5 X。