典型系统的时域响应和稳定性分析
自动控制原理实验一 典型系统的时域响应和稳定性分析

实验一典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD-ACC+教学实验系统一套。
三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图1-1所示。
图1-1(2)图1-2(3) 理论分析系统开环传递函数为:G(s)=K1T0⁄s(T1s+1)开环增益:K= K1T0⁄先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中由图1-2,可以确地1-1中的参数。
T0= 1s , T1= 0.1s ,K1= 200R , K= 200R系统闭环传递函数为:W(s)=5Ks2+5s+5K其中自然振荡角频率:?n ω= 10√10R;阻尼比:?ζ= √10R402.典型的三阶系统稳定性分析(1) 结构框图:如图1-3所示。
图1-3(2) 模拟电路图:如图1-4所示。
图1-4(3) 理论分析系统的开环传函为: G(s)H(s)=20K s 3+12s 2+20s系统的特征方程为:1()()0G s H s += : s 3+12s 2+20s+20K=0 (4) 实验内容实验前由Routh 判断得Routh 行列式为:S 3 1 20 S 2 12 20K S 1 20-5/3*K 0 S 0 20K为了保证系统稳定,第一列各值应为正数,因此可以确定系统稳定 K 值的范围 : 0<K <12 R >41.7k系统临界稳定K: K=12 R =41.7k 系统不稳定K 值的范围: K >12 R <41.7k四、实验步骤1)将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。
典型系统动态性能和稳定分析

实验报告课程名称:实验项目:实验地点:专业班级:学号:学生姓名:指导教师:年月日典型系统动态性能和稳定性分析一·实验目的1学习和掌握动态性能指标的测试方法。
2研究典型系统参数对系统动态性能和稳定性的影响。
二·实验要求1定性的影响。
2定性的影响。
1 2.1.1和图2.1.2设计U9、U15、U11和U82利34 2.2.1和图2.2.2设计并连接由一个U9、U15、U11、U10和U8连成5并测出其超调量和调节时间。
672、3与5、6参阅“实验一”的实验步骤2实验步骤7“实验一”的实验步骤3这里不再赘述。
1典型二阶系统典型二阶系统的方块结构图如图 2.1.1其开环传递函数为其闭环传递函数为其中取二阶系统的模拟电路如图2.1.2该系统的阶跃响应如图2.1.3Rx接U4单元的220K 电位器改变元件参数Rx 2.1.3a 2.1.3b 2.1.3c分别对应2典型三阶系统的方块结构图如图2.2.1其开环传递函数为其中取三阶系统的模拟电路如图2.2.2所示。
该系统开环传递函数为Rx的单位为K系统特征方程为系统稳定 0<K<12系统临界稳定 K=12系统不稳定 K>12根据K求取Rx。
这里的Rx可利用模拟电路单元的220K Rx即可改变K2而改变K该系统的阶跃响应如图2.2.3 a、2.2.3b 和2.2.3c稳定、临界稳定和稳定的三种情况。
实验数据记录:二阶欠阻尼二阶过阻尼振荡二阶临界阻尼振荡三阶稳定六、实验结果与分析。
系统响应及系统稳定性(实验一)

实验项目:系统响应及系统稳定性实验课程:数字信号处理y2n=filter(B,A,x2n);subplot(2,2,4);y='y2(n)';stem(y2n,'p');title('(c)系统对u(n)的响应y2(n)');运行结果:②用conv函数程序代码:x1n=[11111111];h1n=[ones(1,10)zeros(1,10)];h2n=[12.52.51zeros(1,10)];y21n=conv(h1n,x1n);y22n=conv(h2n,x1n);figure(2)subplot(2,2,1);y='h1(n)';stem(h1n,'b');title('(d)系统单位脉冲响应h1(n)');subplot(2,2,2);y='y21(n)';stem(y21n,'b');title('(e)h1(n)与R8(n)的卷积y21(n)');subplot(2,2,3);y='h2(n)';stem(h2n,'b');title('(f)系统单位脉冲响应h2(n)');subplot(2,2,4);y='y22(n)';stem(y22n,'b');title('(g)h2(n)与R8(n)的卷积y22(n)');运行结果:yn=conv(x2,hn);n=0:length(yn)-1;stem(n,yn,'.')运行结果:(2)求出系统的单位脉冲响应:程序代码:ys=1;xn=[1,zeros(1,50)];B=[0.05,0.05];A=[1,-0.9];xi=filtic(B,A,ys);hn=filter(B,A,xn,xi);n=0:length(hn)-1;stem(n,hn,'.');运行结果:3. 用线性卷积求出x1(n)=R8(n)分别对于两系统的输出响应,并画出波形程序代码:对h1(n)的系统响应:h1=[ones(1,10),zeros(1,30)];x1=[ones(1,8),zeros(1,30)];yn1=conv(x1,h1);n=0:length(yn1)-1;stem(n,yn1,'.');对h2(n)的系统响应:h2=[1,2.5,2.5,1,zeros(1,30)];x1=[ones(1,8),zeros(1,30)];yn2=conv(x1,h2);n=0:length(yn2)-1;stem(n,yn2,'.');运行结果:4.给定一谐振器的差分方程为y(n)=1.8237y(n-1)-0.9801y(n-2)+b0x(n)-b0x(n-2),b0=1/100.49用实验方法检查系统是否稳定。
自动控制原理实验 典型系统的时域响应和稳定性分析

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。
图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。
图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图1.2-4 所示。
图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由Routh 判断得Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。
由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。
实验二-典型环节的时域分析和频域分析

一、 实验名称:典型环节的时域分析和频域分析二、实验目的:(1) 理解、掌握matlab 模拟典型环节的根本方法,包括:比例环节、积分环节、一阶微分环节、惯性环节和振荡环节等。
(2) 熟悉各种典型环节的阶跃响应曲线和频域响应曲线 (3) 理解参数变化对动态特性的影响三、 实验要求:(1) 一人一机,独立完成实验内容 。
(2) 根据实验结果完成实验报告,并用A4纸打印后上交。
四、 时间:2022年11月21日 五、 地点:信自楼234实验报告:一、比例环节的时域分析和频域分析 比例环节的传递函数:()G s k(1) 当k=1:3:10时,绘制系统的阶跃响应曲线,分析k值的影响情况。
程序:for k=1:3:10;num=k;den=1;G=tf(num,den);figure(1);step(G); hold on; %翻开第1个图形窗口,绘制系统的阶跃响应曲线 endfigure(1); legend('k=1','k=4','k=7','k=10'); 曲线:结果分析:时域响应的结果就是把输入信号放大k 倍。
如图,输入信号为幅值为1的阶跃信号,因此,输出是幅值为k 的阶跃信号。
程序:for k=1:3:10;num=k;den=1;G=tf(num,den);figure(1);bode(G);hold on; %翻开第1个图形窗口,绘制系统的阶跃响应曲线 endfigure(1); legend('k=1','k=4','k=7','k=10');曲线:结果分析:比例环节对幅频有影响,输出信号的幅值为输入信号的20*lgk倍。
比例环节对相位没有影响,如图显示,相位特性为一条0度的程度线。
二、积分环节的时域分析和频域分析积分环节的传递函数:1 ()G ss=(1) 当k=1:3:10时,绘制系统()kG ss=的阶跃响应曲线,分析曲线特点。
中南大学典型系统时域响应及稳定性分析实验报告.doc

中南大学典型系统时域响应及稳定性分析实验报告典型试验系统的时域响应和稳定性分析1.目的要求1。
研究二阶系统的特征参数(ξ,ωn)对跃迁过程的影响。
2.研究二阶对象在三种阻尼比下的响应曲线和系统稳定性。
3.熟悉劳斯判据,用劳斯判据分析三阶系统的稳定性。
2.原则1简介。
典型二阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:开环增益2。
典型三阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:系统的特征方程为:三个,一台仪表电脑,TD-1.目的要求1。
研究二阶系统的特征参数(ξ,ωn)对跃迁过程的影响。
2.研究二阶对象在三种阻尼比下的响应曲线和系统稳定性。
3.熟悉劳斯判据,用劳斯判据分析三阶系统的稳定性。
2.原则1简介。
典型二阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:开环增益2。
典型三阶系统的稳定性分析(1)结构框图:如图所示。
(2)理论分析系统的开环传递函数为:系统的特征方程为:三、一台仪表微机,TD:首先计算临界阻尼、欠阻尼和过阻尼时电阻R的理论值,然后将理论值应用于模拟电路,观察二阶系统的动态性能和稳定性,这应与理论分析基本一致。
系统的闭环传递函数为:其中固有振荡角频率:阻尼比:2.典型三阶系统稳定性分析实验内容Routh行列式由Routh在实验前确定为:为了确保系统的稳定性,第一列中的值应该是正的,因此有实验步骤:1.用“短路块”缩短信号源单元的“ST”端脚和“S”端脚。
由于每个运算放大器单元配备有零锁定场效应晶体管,所以运算放大器具有零锁定功能。
将开关置于“方波”位置,分别调节调幅和调频电位器,使“输出”端的方波幅度输出为1V,周期约为10s。
2.典型二阶系统瞬态性能指标测试(1)根据模拟电路图1.2-系统闭环传递函数:其中固有振荡角频率:阻尼比:2.典型三阶系统稳定性分析实验内容Routh行列式由Routh在实验前确定为:为了确保系统的稳定性,第一列中的值应该是正的,因此有实验步骤:1.用“短路块”缩短信号源单元的“ST”端脚和“S”端脚。
系统函数零极点时域特性和稳定性

若 pi为k阶极点,则 pi Ki1tk1 Ki2tk2
Ki(k1)t Kik e pit
②典型情况
ⅰ) pi =0(一阶)
j
h(t)
0
0t
1 h(t) u(t) s
pi =0 (二阶)
j
h(t)
0
0t
1 s2
h(t)
tu(t)
ⅱ) pi<0(实一阶)
j
a
0
h(t)
0t
1 eatu(t) sa
自由响应 齐次解
零输入响应 齐次解的一部分
强迫响应 特解
零状态响应 齐次解的一部分+特解
2.Ki , Kk 均由 pi , pk共同作用,即 自由响应:形式只由H(s)决定,幅度相位由H(s), E(s)共同决定 强迫响应:形式只由E(s)决定,幅度相位由H(s), E(s)共同决定
3.固有频率(自由频率):系统行列式(系统特征方程)的根, 反映全部自由响应的形式
④∞处: 分母次数 > 分子次数则为零点,阶次为分母次数减分子次数 分母次数 < 分子次数则为极点,阶次为分子次数减分母次数
注意:零、极点个数相同
⑤零极点图中:×表示极点;○表示零点
[例1]: ①
H
(s)
s[(s 1)2 (s 1)2 (s2
1] 4)
解:
极点:s = -1 (二阶) s = j2 (一阶) s = -j2(一阶)
pi<0(实二阶)
j
a
0
h(t)
0t
(s
1 a)2
teatu(t)
起始增加,最终收敛
ⅲ) pi>0(实一阶)
j
h(t)
中南大学典型系统的时域响应和稳定性分析实验报告

中南大学典型系统的时域响应和稳定性分析实验报告实验介绍:本实验以中南大学典型系统为研究对象,通过构建数学模型和实际建模结果,分析系统的时域响应和稳定性,以及初步探讨系统的性能和优化方法。
实验步骤:1、对中南大学典型系统进行数学建模,并得到系统的传递函数。
2、通过Matlab对系统的传递函数进行分析,得到系统的时域响应。
3、分析系统特征方程的根,判断系统的稳定性。
4、探讨系统的性能指标,并初步探讨系统的优化方法。
实验结果:1、数学模型及传递函数:根据中南大学典型系统的构成,我们可以得到其传递函数为:$$G(s) = \frac{Y(s)}{X(s)}=\frac{K}{s(T_1s+1)(T_2s+1)}$$2、时域响应分析:阶跃响应脉冲响应可以看出,在系统输入为阶跃信号时,系统的响应随着时间的增加逐渐趋于稳定;在系统输入为脉冲信号时,系统的响应在一定时间范围内会有一个稳定的振荡。
3、稳定性分析:我们根据系统的特征方程$$1+G(s)=0$$得到特征方程为:$$s^3+T_1T_2s^2+(T_1+T_2)s+K=0$$我们通过Matlab计算特征方程的根,得到系统的特征根分别为:$-0.0327\pm0.6480j$和$-2.4341$。
根据根的位置,我们可以判断系统的稳定性。
由于系统的根都在左半平面,因此系统是稳定的。
4、性能指标和优化方法:本实验中,我们主要关注系统的稳定性和响应速度等性能指标。
在实际应用中,我们可以通过调整系统控制参数,如增益$K$和时间常数$T_1$和$T_2$等,来优化系统的性能。
结论:本实验通过对中南大学典型系统进行数学建模和实际响应分析,得到了系统的传递函数、阶跃响应和脉冲响应等数学模型,并根据特征方程的根判断了系统的稳定性。
在探讨系统性能指标和优化方法的基础上,我们可以进一步探究系统的优化方案,并为实际控制应用提供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理课程实验报告
实验题目: 典型系统的时域响应和稳定性分析
1 实验目的
1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析
2 实验设备
PC 机一台,TD-ACC+实验系统一套。
3 基本原理、内容、结果及分析:
3.1 基本原理
1.典型的二阶系统稳定性分析 (1) 结构框图:如图1.2-1 所示。
(2) 理论分析 系统开环传递函数为:
开环增益
2.典型的三阶系统稳定性分析 (1) 结构框图:如图1.2-3 所示。
系统开环传递函数为: 系统的特征方程为:
3.2内容
1.典型的二阶系统稳定性分析
2.典型的三阶系统稳定性分析
3.3步骤
1.典型的二阶系统稳定性分析 实验内容:
先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中, 观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图 1.2-2),
其中自然振荡角频率:
阻尼比:
2.典型的三阶系统稳定性分析 实验内容
实验前由Routh 判断得Routh 行列式为:
为了保证系统稳定,第一列各值应为正数,所以有
实验步骤
1. 将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。
由于每个运放单元均设置了锁 零场效应管,所以运放具有锁零功能。
将开关设在“方波”档,分别调节调幅和调频电位器,使得 “OUT ”端输出的方波幅值为1V ,周期为10s 左右。
2. 典型二阶系统瞬态性能指标的测试
(1) 按模拟电路图1.2-2 接线,将1 中的方波信号接至输入端,取R = 10K 。
(2) 用示波器观察系统响应曲线C(t),测量并记录超调MP 、峰值时间tp 和调节时间tS 。
(3) 分别按R = 50K ;160K ;200K ;改变系统开环增益,观察响应曲线C(t),测量并记录性能指标MP 、 tp 和tS ,及系统的稳定性。
并将测量值和计算值进行比较 (实验前必须按公式计算出)。
将实验结果 填入表1.2-1 中。
表1.2-2 中已填入了一组参考测量值,供参照。
3.典型三阶系统的性能
(2) 观察系统的响应曲线,并记录波形。
(3) 减小开环增益 (R = 41.7K;100K),观察响应曲线,并将实验结果填入表1.2-3 中。
表1.2-4 中已填入了一组参考测量值,供参照。
3.4数据处理
典型的二阶系统稳定性分析
R=10K
2阶过230k
2阶临界89.4k
典型的三阶系统稳定性分析R=30K
R=47.1K
R=100K
3阶等幅R=31k 3阶发散
3阶收敛
3.5分析讨论
典型二阶系统瞬态性能指标
典型三阶系统在不同开环增益下的响应情况。