MATLAB线性系统时域响应分析实验

合集下载

实验二 利用MATLAB进行时域分析

实验二 利用MATLAB进行时域分析

实验二利用MATLAB进行时域分析本实验内容包含以下三个部分:基于MATLAB得线性系统稳定性分析、基于MATLAB得线性系统动态性能分析、与MATALB进行控制系统时域分析得一些其它实例。

一、基于MATLAB得线性系统稳定性分析线性系统稳定得充要条件就是系统得特征根均位于S平面得左半部分。

系统得零极点模型可以直接被用来判断系统得稳定性。

另外,MATLAB语言中提供了有关多项式得操作函数,也可以用于系统得分析与计算。

(1)直接求特征多项式得根设p为特征多项式得系数向量,则MATLAB函数roots()可以直接求出方程p=0在复数范围内得解v,该函数得调用格式为:v=roots(p) 例3、1 已知系统得特征多项式为:特征方程得解可由下面得MATLAB命令得出。

>> p=[1,0,3,2,1,1];v=roots(p)结果显示:v =0、3202 + 1、7042i0、3202 - 1、7042i-0、72090、0402 + 0、6780i0、0402 - 0、6780i利用多项式求根函数roots(),可以很方便得求出系统得零点与极点,然后根据零极点分析系统稳定性与其它性能。

(2)由根创建多项式如果已知多项式得因式分解式或特征根,可由MATLAB函数poly()直接得出特征多项式系数向量,其调用格式为:p=poly(v) 如上例中:v=[0、3202+1、7042i;0、3202-1、7042i;-0、7209;0、0402+0、6780i; 0、0402-0、6780i];>> p=poly(v)结果显示p =1、0000 0、0001 3、00002、0001 0、9998 0、9999由此可见,函数roots()与函数poly()就是互为逆运算得。

(3)多项式求值在MATLAB 中通过函数polyval()可以求得多项式在给定点得值,该函数得调用格式为: polyval(p,v)对于上例中得p值,求取多项式在x点得值,可输入如下命令:>> p=[1,0,3,2,1,1];x=1polyval(p,x)结果显示x =1ans =8(4)部分分式展开考虑下列传递函数:式中,但就是与中某些量可能为零。

《自动控制原理》实验2(线性系统时域响应分析)

《自动控制原理》实验2(线性系统时域响应分析)

实验二 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。

二、基础知识及MATLAB 函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。

为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。

本次实验从分析系统的性能指标出发,给出了在MATLAB 环境下获取系统时域响应和分析系统的动态性能和稳态性能的方法。

用MATLAB 求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s 的降幂排列写为两个数组num 、den 。

由于控制系统分子的阶次m 一般小于其分母的阶次n ,所以num 中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。

1.用MATLAB 求控制系统的瞬态响应1)阶跃响应 求系统阶跃响应的指令有:step(num,den) 时间向量t 的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t) 时间向量t 的范围可以由人工给定(例如t=0:0.1:10)[y ,x]=step(num,den) 返回变量y 为输出向量,x 为状态向量在MATLAB 程序中,先定义num,den 数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。

考虑下列系统:25425)()(2++=s s s R s C 该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s的降幂排列。

则MATLAB 的调用语句:num=[0 0 25]; %定义分子多项式 den=[1 4 25]; %定义分母多项式step(num,den) %调用阶跃响应函数求取单位阶跃响应曲线grid %画网格标度线 xlabel(‘t/s’),ylabel(‘c(t)’) %给坐标轴加上说明 title(‘Unit -step Respinse of G(s)=25/(s^2+4s+25)’) %给图形加上标题名 则该单位阶跃响应曲线如图2-1所示:为了在图形屏幕上书写文本,可以用text 命令在图上的任何位置加标注。

实验1 利用matlab进行系统的时域分析

实验1 利用matlab进行系统的时域分析

实验1 利用matlab进行系统的时域分析一.实验目的:1.了解离散时间序列卷积与的matlab实现;2.利用卷积与求解系统的零状态响应;二.实验原理:1.连续时间系统零状态响应的求解连续时间LTI系统以常系数微分方程描述,系统的零状态响应可通过求解初始状态为零的微分方程得到。

在MATLAB中,控制系统工具箱提供了一个用于求解零初始状态微分方程数值解的函数lsim。

其调用方式为y= lsim( sys,x,t)式中t表示计算系统响应的抽样点向量,x就是系统输入信号向量,sys就是连续时间LTI系统模型,用来表示微分方程、差分方程、状态方程。

在求解微分方程时,微分方程的连续时间LTI系统模型sys要借助tf函数获得,其调用方式为sys= tf(b,a)式中b与a分别为微分方程右端与左端各项的系数向量。

例如对3阶微分方程+++=+++可用a=[ a3, a2, a1, a0];b=[b3 ,b2, b1,b0]; sys=tf( b,a)获得连续时间LTI模型。

注意微分方程中为零的系数一定要写入向量a与b中。

【例2-1】描述某力学系统中物体位移y(t)与外力f(t)的关系为++y(t)=x(t)物体质量m=l kg,弹簧的弹性系数ks= 100 N/m,物体与地面的摩擦系数fd=2 N·s/m,系统的初始储能为零,若外力x(t)就是振幅为10、周期为1的正弦信号,求物体的位移y(t)。

解:由已知条件,系统的输入信号为x(t)=10sin(2πt),系统的微分方程为++100y(t)=x(t)计算物体位移y(t)的MATLAB程序如下:%program2_1微分方程求解ts=0;te=5;dt=0、01;sys=tf([1],[1 2 100]);t=ts:dt:te;x=10*sin(2*pi*t);y=lsim(sys,x,t);plot(t,y);xlabel('Time(sec)')ylabel('y(t)')-0.25-0.2-0.15-0.1-0.0500.050.10.150.2Time(sec)y (t )图2-1系统的零状态响应2、连续时间系统冲激响应与阶跃响应的求解在MATLAB 中,求解系统冲激响应可应用控制系统工具箱提供的函数impulse,求解阶跃响应可利用函数step 。

MATLAB信号与系统实验报告19472[五篇范文]

MATLAB信号与系统实验报告19472[五篇范文]

MATLAB信号与系统实验报告19472[五篇范文]第一篇:MATLAB信号与系统实验报告19472信号与系统实验陈诉(5)MATLAB 综合实验项目二连续系统的频域阐发目的:周期信号输入连续系统的响应可用傅里叶级数阐发。

由于盘算历程啰嗦,最适适用MATLAB 盘算。

通过编程实现对输入信号、输出信号的频谱和时域响应的盘算,认识盘算机在系统阐发中的作用。

任务:线性连续系统的系统函数为11)(+=ωωjj H,输入信号为周期矩形波如图 1 所示,用MATLAB 阐发系统的输入频谱、输出频谱以及系统的时域响应。

-3-2-1 0 1 2 300.511.52Time(sec)图 1要领:1、确定周期信号 f(t)的频谱nF&。

基波频率Ω。

2、确定系统函数 )(Ω jn H。

3、盘算输出信号的频谱n nF jn H Y&&)(Ω=4、系统的时域响应∑∞-∞=Ω=nt jnn eY t y&)(MATLAB 盘算为y=Y_n*exp(j*w0*n“*t);要求(画出 3 幅图):1、在一幅图中画输入信号f(t)和输入信号幅度频谱|F(jω)|。

用两个子图画出。

2、画出系统函数的幅度频谱|H(jω)|。

3、在一幅图中画输出信号y(t)和输出信号幅度频谱|Y(jω)|。

用两个子图画出。

解:(1)阐发盘算:输入信号的频谱为(n)输入信号最小周期为=2,脉冲宽度,基波频率Ω=2π/ =π,所以(n)系统函数为因此输出信号的频谱为系统响应为(2)步伐:t=linspace(-3,3,300);tau_T=1/4;%n0=-20;n1=20;n=n0:n1;%盘算谐波次数20F_n=tau_T*Sa(tau_T*pi*n);f=2*(rectpuls(t+1.75,0.5)+rectpuls(t-0.25,0.5)+rectpuls(t-2.25,0.5));figure(1),subplot(2,1,1),line(t,f,”linewidth“,2);%输入信号的波形 axis([-3,3,-0.1,2.1]);grid onxlabel(”Time(sec)“,”fontsize“,8),title(”输入信号“,”fontweight“,”bold“)%设定字体巨细,文本字符的粗细text(-0.4,0.8,”f(t)“)subplot(2,1,2),stem(n,abs(F_n),”.“);%输入信号的幅度频谱xlabel(”n“,”fontsize“,8),title(”输入信号的幅度频谱“,”fontweight“,”bold“)text(-4.0,0.2,”|Fn|“)H_n=1./(i*n*pi+1);figure(2),stem(n,abs(H_n),”.“);%系统函数的幅度频谱xlabel(”n“,”fontsize“,8),title(”系统函数的幅度频谱“,”fontweight“,”bold“)text(-2.5,0.5,”|Hn|“)Y_n=H_n.*F_n;y=Y_n*exp(i*pi*n”*t);figure(3),subplot(2,1,1),line(t,y,“linewidth”,2);%输出信号的波形 axis([-3,3,0,0.5]);grid onxlabel(“Time(sec)”,“fontsize”,8),title(“输出信号”,“fontweight”,“bold”)text(-0.4,0.3,“y(t)”)subplot(2,1,2),stem(n,abs(Y_n),“.”);%输出信号的幅度频谱xlabel(“n”,“fontsize”,8),title(“输出信号的幅度频谱”,“fontweight”,“bold”)text(-4.0,0.2,“|Yn|”)(3)波形:-3-2-1 0 1 2 300.511.52Time(sec)输入信号f(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输入信号的幅度频谱|Fn|-20-15-10-5 0 5 10 15 2000.10.20.30.40.50.60.70.80.91n系统函数的幅度频谱|Hn|-3-2-1 0 1 2 300.10.20.30.4Time(sec)输出信号y(t)-20-15-10-5 0 5 10 15 2000.10.20.30.4n输出信号的幅度频谱|Yn| 项目三连续系统的复频域阐发目的:周期信号输入连续系统的响应也可用拉氏变更阐发。

MATLAB与信号实验——连续LTI系统的时域分析

MATLAB与信号实验——连续LTI系统的时域分析

MATLAB与信号实验——连续LTI系统的时域分析连续LTI系统的时域分析是信号与系统学中的重要课题。

MATLAB作为一种强大的科学计算软件,提供了丰富的工具和函数来进行信号与系统的分析。

下面将介绍MATLAB在连续LTI系统时域分析中的应用。

首先,我们需要了解连续LTI系统的基本概念。

一个连续域线性时不变系统(LTI系统)可以由它的冲激响应完全描述。

冲激响应是系统对单位冲激信号的响应。

在MATLAB中,可以使用impulse函数来生成单位冲激信号。

假设我们有一个连续LTI系统的冲激响应h(t),我们可以使用conv 函数来计算系统对任意输入信号x(t)的响应y(t)。

conv函数实现了卷积运算,可以将输入信号与冲激响应进行卷积运算得到输出信号。

例如,我们假设一个连续LTI系统的冲激响应为h(t) = exp(-t)u(t),其中u(t)是单位阶跃函数。

我们可以使用以下代码生成输入信号x(t)和计算输出信号y(t):```matlabt=-10:0.1:10;%时间范围x = sin(t); % 输入信号h = exp(-t).*heaviside(t); % 冲激响应y = conv(x, h, 'same'); % 计算输出信号```这段代码首先定义了时间范围t,然后定义了输入信号x(t)和冲激响应h(t)。

接下来,使用conv函数计算输入信号和冲激响应的卷积,设置参数’same’表示输出信号与输入信号长度相同。

最后,得到了输出信号y(t)。

在得到输出信号后,我们可以使用MATLAB的绘图功能来可视化结果。

例如,使用以下代码可以绘制输入信号和输出信号的图像:```matlabfigure;plot(t, x, 'b', 'LineWidth', 2); % 绘制输入信号hold on;plot(t, y, 'r', 'LineWidth', 2); % 绘制输出信号xlabel('时间');ylabel('幅度');legend('输入信号', '输出信号');```除了卷积运算外,MATLAB还提供了许多其他函数来进行连续LTI系统的时域分析。

基于MATLAB的线性时域分析

基于MATLAB的线性时域分析

实践环节:
• (1)二阶系统分析 • 试验1 • 程序: • den=[1 2 10]; %系统旳分母多项式 • num=10; %系统旳分子多项式 • r=roots(den) %计算分母多项式旳根 • [w,z]=damp(den)%计算系统旳自然振荡频率w和阻尼比z • [y,x,t]=step(num,den); %阶跃响应 • finalvalue=dcgain(num,den) • [yss,n]=max(y)%计算峰值大小 • percentovershoot=100*(yss-finalvalue)/finalvalue% 计算超
间ts,并与理论值相比较。 • 2.试作出下列系统旳阶跃响应,并比较与原系统响应曲线旳差
别与特点,作出相应旳试验分析成果。 • (a)G1(s)=(2s+1)/(s2+2s+10),有系统零点情况。 • (b)G2(s)=(s2+0.5)/(s2+2s+10),分子、分母多项式
阶数相等。 • (c)G3(s)=s/(s2+2s+10),分子多项式零次项系数为零。 • 3、已知单位反馈开环系统传递函数。
• 3、已知单位反G(S )
100
(0.1S 1)(S 5)

(b)G(S )
50
S (0.1S 1)(S 5)
10(2S 1)
• (c)G(S ) S 2 (S 2 6S 100)
• 输入分别为r(t)=2t和时, 系统旳响应曲线,分析 稳态值与系统输入函数 旳关系
• (3)已知单位反馈开环系统传递函数。 • a=[0.1,1.5,5]; • b=100; • sys=tf(b,a); • b1=50; • a1=[0.1,1.5,5,0]; • sys1=tf(b1,a1); • b2=[0 0 0 20 10]; • a2=[1 6 100 0 0]; • sys2=tf(b2,a2); • t=0:1:100; • e1=2*t; • e2=2+2*t+t.*t; • subplot(2,3,1); • lsim(sys,e1,t); • subplot(2,3,2); • lsim(sys1,e1,t); • subplot(2,3,3); • lsim(sys2,e1,t); • subplot(2,3,4); • lsim(sys,e2,t); • subplot(2,3,5); • lsim(sys1,e2,t); • subplot(2,3,6); • lsim(sys2,e2,t); •

线性系统时域分析实验报告

线性系统时域分析实验报告

竭诚为您提供优质文档/双击可除线性系统时域分析实验报告篇一:自动控制原理实验报告《线性控制系统时域分析》实验一线性控制系统时域分析1、设控制系统如图1所示,已知K=100,试绘制当h 分别取h=0.1,0.20.5,1,2,5,10时,系统的阶跃响应曲线。

讨论反馈强度对一阶系统性能有何影响?图1答:A、绘制系统曲线程序如下:s=tf(s);p1=(1/(0.1*s+1));p2=(1/(0.05*s+1));p3=(1/(0.02*s+1) );p4=(1/(0.01*s+1));p5=(1/(0.005*s+1));p6=(1/(0.002 *s+1));p7=(1/(0.001*s+1));step(p1);holdon;step(p2); holdon;step(p3);holdon;step(p5);holdon;step(p6);hol don;step(p7);holdon;b、绘制改变h系统阶跃响应图如下:stepResponse1.41.21Amplitude0.80.60.40.200.050.10.150.20.250.30.350.40.450.5Time(seconds)结论:h的值依次为0.1、0.2、0.5、1、2、5、10做响应曲线。

matlab曲线默认从第一条到第七条颜色依次为蓝、黄、紫、绿、红、青、黑,图中可知随着h值得增大系统上升时间减小,调整时间减小,有更高的快速性。

2?n?(s)?22,设已知s?2??ns??n2、二阶系统闭环传函的标准形式为?n=4,试绘制当阻尼比?分别取0.2,0.4,0.6,0.8,1,1.5,2,5等值时,系统的单位阶跃响应曲线。

求出?取值0.2,0.5,0.8时的超调量,并求出?取值0.2,0.5,0.8,1.5,5时的调节时间。

讨论阻尼比变化对系统性能的影响。

答:A、绘制系统曲线程序如下:s=tf(s);p1=16/(s^2+1.6*s+16);p2=16/(s^2+3.2*s+16);p3=16/(s^ 2+4.8*s+16);p4=16/(s^2+6.4*s+16);p5=16/(s^2+8*s+16) ;p6=16/(s^2+12*s+16);p7=16/(s^2+16*s+16);p8=16/(s^2 +40*s+16);step(p1);holdon;step(p2);holdon;step(p3); holdon;step(p4);holdon;step(p5);holdon;step(p6);hol don;step(p7);holdon;step(p8);holdon;b、绘制系统阶跃响应图如下:c、?取值为0.2、0.5、0.8、1.5、5时的参数值。

实验三 线性系统时域响应分析

实验三  线性系统时域响应分析

注意:作本实验前必须将本文件夹中的routh.m 文件放到C:\MATLAB6p5\work 目录中。

实验三 线性系统时域响应分析一、实验目的1.熟练掌握step( )函数和impulse( )函数的使用方法。

2.研究线性系统在单位阶跃函数及单位脉冲函数作用下的响应。

3.熟练掌握利用劳思判据判别系统的稳定性。

二、基础知识及MATLAB 函数(注意:本部分内容如果已经熟悉,可以不用阅读,直接看第三部分内容)(一)基础知识学习自动控制理论时已经知道,为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。

系统的传递函数用两个数组来表示。

1.阶跃响应考虑下列系统:25425)()(2++=s s s R s C该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s 的降幂排列如下:>> num=[25]>> den=[1 4 25]num 和den(即闭环传递函数的分子和分母),则命令>> step(num,den) 或>> step(num,den,t)将会产生出单位阶跃响应图(在阶跃命令中,t 为用户指定时间)。

由方程25425)()(2++=s s s R s C 描述的系统的单位阶跃响应在MATLAB 中表示如下:>> num=[25];>> den=[1 4 25];>> step(num,den)>> grid>> title('Unit-step Respinse of G(S)=25/(s^2+4s+25) ') 该单位阶跃响应曲线如下图2-1所示:图2-1 二阶系统的单位阶跃响应2.单位脉冲响应利用下列MATLAB 命令中的一种命令,可以得到控制系统的单位脉冲响应:>> impulse(num,den)例:试求下列系统的单位脉冲响应:12.01)()()(2++==s s s G s R s C在MATLAB 中可表示为由此得到的单位脉冲响应曲线如下图2-2所示:>>num=[0 0 1]; >>den=[1 0.2 1]; >>impulse(num,den); >>grid >>title('Unit-impulse Response of G(S)=1/(S^2+0.2s+1)')图2-2 二阶系统的单位脉冲相应3.单位斜坡响应在MATLAB 中没有斜坡响应命令,对于已经定义了的函数g ,可以通过下面的语句求函数g 的单位斜坡响应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
实验名称 线性系统时域响应分析
一、 实验目的
1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。

3.熟练掌握系统的稳定性的判断方法。

二、 实验内容
1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为
1
4647
3)(2
342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。

2.对典型二阶系统
2
22
2)(n
n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标
ss s p r p e t t t ,,,,σ。

2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n
ω对系统的影响。

3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。

4.单位负反馈系统的开环模型为
)
256)(4)(2()(2
++++=
s s s s K
s G 试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。

三、 实验结果及分析
1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为
1
4647
3)(2342++++++=s s s s s s s G
可以用几种方法绘制出系统的阶跃响应曲线?试分别绘制。

方法一: num=[1 3 7]; den=[1 4 6 4 1]; step(num,den) grid
xlabel('t/s'),ylabel('c(t)')
title('Unit-step Respinse of G(s)=(s^2+3s+7)/(s^4+4s^3+6s^2+4s+1)')
方法二: num=[1 3 7]; den=[1 4 6 4 1 0]; impulse(num,den) grid
xlabel('t/s'),ylabel('c(t)')
title('Unit-impulse Respinse of G(s)/s=(s^2+3s+7)/(s^5+4s^4+6s^3+4s^2+s)')
2.对典型二阶系统
2
22
2)(n
n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,0.25,0.5,1.0和2.0时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=0.25时的时域性能指标ss s p r p e t t t ,,,,σ。

2)绘制出当ζ=0.25, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。

(1)
num=[0 0 1]; den1=[1 0 4]; den2=[1 1 4]; den3=[1 2 4]; den4=[1 4 4]; den5=[1 8 4]; t=0:0.1:10;step(num,den1,t) >> grid
>> text(1.65,0.5,'Zeta=0'); hold Current plot held >> step(num,den2,t) >> text(1.65,0.36,'0.25');
>> step(num,den3,t)
>> text(1.65,0.3,'0.5');
>> step(num,den4,t)
>> text(1.65,0.21,'1.0');
>> step(num,den5,t)
>> text(1.65,0.15,'2.0');
ω不变,依次取值ζ=0,0.25,0.5,1.0和2.0影响:从上图可以看出,保持
n
时,系统逐渐从欠阻尼系统过渡到临界阻尼系统再到过阻尼系统,系统的超调量随ζ的增大而减小,上升时间随的增大而变长,系统的响应速度随ζ的增大而变慢,系统的稳定性随ζ的增大而增强。

由图可得出:当ζ=0.25时,p σ=44.4%,r t =0.944s,p t =1.64s,s t =5.4s,ss e =0
(2) num1=[0 0 1];den1=[1 0.5 1]; t=0:0.1:10;
step(num1,den1,t); grid;
text(3.0,1.4,'wn=1'); hold
Current plot held
>> num2=[0 0 4];den2=[1 1 4]; step(num2,den2,t); text(1.57,1.44,'wn=2');
>> num3=[0 0 16];den3=[1 2 16]; step(num3,den3,t); text(0.77,1.43,'wn=4');
>> num4=[0 0 36];den4=[1 3 36]; step(num4,den4,t); text(0.41,1.33,'wn=6');
影响:n ω越大,系统到达峰值时间越短,上升时间越短,系统响应时间越快,调节时间也变短,但是超调量没有变化。

3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。

方法一:
roots([2,1,3,5,10])
ans =
0.7555 + 1.4444i 0.7555 - 1.4444i -1.0055 + 0.9331i -1.0055 - 0.9331i 系统不稳定 方法二:
den=[2,1,3,5,10]; [r,info]=routh(den) r =
2.0000
3.0000 10.0000 1.0000 5.0000 0 -7.0000 10.0000 0 6.4286 0 0 10.0000 0 0
info =
所判定系统有 2 个不稳定根!
4.单位负反馈系统的开环模型为
)
256)(4)(2()(2++++=
s s s s K
s G
试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。

den=[1,12,69,198,866.5]; >> [r,info]=routh(den) r =
1.0000 69.0000 866.5000 1
2.0000 198.0000 0 52.5000 866.5000 0 -0.0571 0 0 866.5000 0 0
info =
所判定系统有 2 个不稳定根!
>> den=[1,12,69,198,866]; >> [r,info]=routh(den) r =
1.0000 69.0000 866.0000 1
2.0000 198.0000 0 52.5000 866.0000 0 0.0571 0 0 866.0000 0 0
info =
所要判定系统稳定!
>> den=[1,12,69,198,0];
>> [r,info]=routh(den)
r =
1.0000 69.0000 0
12.0000 198.0000 0
52.5000 0 0
198.0000 0 0
198.0000 0 0
info =
所要判定系统稳定!
>> den=[1,12,69,198,-0.001];
>> [r,info]=routh(den)
r =
1.0000 69.0000 -0.0010
12.0000 198.0000 0
52.5000 -0.0010 0
198.0002 0 0
-0.0010 0 0
info =
所判定系统有 1 个不稳定根!
分析知:闭环系统稳定的K值范围为(0,666)
总结判断闭环系统稳定的方法,说明增益K对系统稳定性的影响。

通过根轨迹来判断,或用劳斯表判断。

K值越大,稳定性越低。

四、实验心得与体会
熟练掌握了step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。

通过响应曲线观测特征参量和对二阶系统性能的影响。

熟练掌握系统的稳定性的判断方法。

相关文档
最新文档