二次函数培优100题突破
二次函数培优100题突破.

⼆次函数培优100题突破.初三数学培优卷:⼆次函数考点分析培优★★★⼆次函数的图像抛物线的时候应抓住以下五点:开⼝⽅向,对称轴,顶点,与x 轴的交点,与y 轴的交点.★★⼆次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)⼀般式:y=ax 2+bx+c ,三个点顶点式:y=a (x -h )2+k ,顶点坐标对称轴顶点坐标(-2ba,244ac b a -).顶点坐标(h ,k )★★★a b c 作⽤分析│a │的⼤⼩决定了开⼝的宽窄,│a │越⼤,开⼝越⼩,│a │越⼩,开⼝越⼤,a ,b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=-2ba <0,即对称轴在y 轴左侧,当a ,b?异号时,对称轴x=-2ba>0,即对称轴在yc?的符号决定了抛物线与y 轴交点的位置,c=0时,抛物线经过原点,c>0时,与y 轴交于正半轴;c<0时,与y?轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作⽤的,也可以互相推出.交点式:y=a(x- x 1)(x- x 2),(有交点的情况)与x 轴的两个交点坐标x 1,x 2 对称轴为221x x h +=1.把⼆次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的⼆次函数关系式是2)1(2-+=x y 则原⼆次函数的解析式为2.⼆次函数的图象顶点坐标为(2,1),形状开品与抛物线y= - 2x 2相同,这个函数解析式为________。
3.如果函数1)3(232++-=+-kx x k y k k 是⼆次函数,则k 的值是______4.(08绍兴)已知点11()x y ,,22()x y ,均在抛物线21y x =-上,下列说法中正确的是()A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >5.(兰州10) 抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2★6.抛物线5)43()1(22+--++=x m m x m y 以Y 轴为对称轴则。
二次函数经典100题突破

二次函数培优卷★★★二次函数的图像抛物线的时候应抓住以下五点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.★★二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)一般式:y=ax 2+bx+c ,三个点顶点式:y=a (x -h )2+k ,顶点坐标对称轴,顶点坐标(-2b a ,244ac b a -).顶点坐标(h ,k ) ★★★a b c 作用分析│a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大,a ,b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=-2b a <0,即对称轴在y 轴左侧,当a ,b•异号时,对称轴x=-2b a>0,即对称轴在y 轴c•的符号决定了抛物线与y 轴交点的位置,c=0时,抛物线经过原点,c>0时,与y 轴交于正半轴;c<0时,与y•轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出.交点式:y=a(x- x 1)(x- x 2),(有交点的情况)与x 轴的两个交点坐标x 1,x 2 ,对称轴为221x x h +=1.把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是2)1(2-+=x y 则原二次函数的解析式为2.二次函数的图象顶点坐标为(2,1),形状开品与抛物线y= - 2x 2相同,这个函数解析式为________。
3.如果函数1)3(232++-=+-kx x k y k k 是二次函数,则k 的值是______4.已知点11()x y ,,22()x y ,均在抛物线21y x =-上,下列说法中正确的是( )A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y > 5.抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2★6.抛物线5)43()1(22+--++=x m m x m y 以Y 轴为对称轴则。
专题02 二次函数(满分突破卷)【满分王】(解析版)

专题02 二次函数(满分突破卷)1.将抛物线y=3x2向上平移4个单位,再向右平移2个单位,所得抛物线的函数解析式为 .【答案】y=3(x﹣2)2+4.【解答】解:将抛物线y=3x2向上平移4个单位,再向右平移2个单位,所得抛物线的函数解析式为y=3(x﹣2)2+4,故答案是:y=3(x﹣2)2+4.2.当m﹣2≤x≤m时,函数y=x2﹣4x+4的最小值为4,则m的值为 .【答案】:0或6.【解答】解:∵二次函数y=x2﹣4x+4=(x﹣2)2,∴该函数的对称轴是直线x=2,∵当m﹣2≤x≤m时,函数y=x2﹣4x+4的最小值为4,且x=0和x=4时,y=4,①当m≤0,得m=0时,当m﹣2≤x≤m时,函数y=x2﹣4x+4的最小值为4;②当m﹣2≥4,得m=6时,当m﹣2≤x≤m时,函数y=x2﹣4x+4的最小值为4;由上可得,m的值是0或6,故答案为:0或6.3.已知二次函数y=﹣(x﹣k)2+h,当x>2时,y随x的增大而减小,则函数中k的取值范围是( )A.k≥2B.k≤2C.k=2D.k≤﹣2【答案】B【解答】解:抛物线的对称轴为直线x=k,因为a=﹣1<0,所以抛物线开口向下,所以当x>k时,y的值随x值的增大而减小,而x>2时,y的值随x值的增大而减小,所以k≤2.故选:B.4.在平面直角坐标系中,抛物线y=x2的图象如图所示.已知点A的坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线交于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线交于点A4,…,依此规律进行下去,则点A2020的坐标为 .【解答】解:∵A点坐标为(1,1),∴直线OA为y=x,A1(﹣1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解得或,∴A2(2,4),∴A3(﹣2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解得或,∴A4(3,9),∴A5(﹣3,9)…,∴A2020(1011,10112),故答案为(1011,10112).5.(2022•莱芜区一模)将抛物线y=﹣(x+1)2的图象位于直线y=﹣4以下的部分向上翻折,得到如图所示的图象,若直线y=x+m与图象只有四个交点,则m的取值范围是( )A.﹣1<m<1B.1<m<C.﹣1<m<D.﹣1<m<【答案】C【解答】解:令y=﹣4,则﹣4=﹣(x+1)2,解得x=﹣3或1,∴A(﹣3,﹣4),平移直线y=x+m知:直线位于l1和l2时,它与新图象有三个不同的公共点.①当直线位于l1时,此时l1过点A(﹣3,﹣4),∴﹣4=﹣3+m,即m=﹣1.②当直线位于l2时,此时l2与函数y=﹣(x+1)2的图象有一个公共点,∴方程x+m=﹣x2﹣2x﹣1,即x2+3x+1+m=0有两个相等实根,∴△=9﹣4(1+m)=0,即m=.由①②知若直线y=﹣x+m与新图象只有四个交点,m的取值范围为﹣1<m<.故选:C.6.如图,菱形ABCD的边长为2,∠A=60°,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x(0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为( )A.B.C.D.【答案】A【解答】解:∵菱形ABCD的边长为2,∠A=60°,∴∠DBC=60°,∵BQ=2+x,QH⊥BD,∴BH=BQ=1+x,过H作HG⊥BC,∴HG=BH=+x,∴S=PB•GH=x2+x,(0<x≤2),故选:A.7.(2022•日照一模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b2<4ac;③2c<3b;④a+2b>m(am+b)(m≠1);⑤若方程|ax2+bx+c|=1有四个根,则这四个根的和为2,其中正确的结论有( )A.2个B.3个C.4个D.5个【答案】A【解答】解:∵抛物线开口向下,∴a<0,∵抛物线对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc<0,①错误.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,∴b2>4ac,②错误.∵x=﹣1时,y<0,∴a﹣b+c<0,∵b=﹣2a,∴a=﹣,∴﹣b+c<0,∴2c<3b,③正确.∵x=1时,y=a+b+c为函数最大值,∴a+b+c>m(am+b)+c(m≠1),∴a+b>m(am+b)(m≠1),∵b>0,∴a+2b>a+b>m(am+b)(m≠1),④正确.方程|ax2+bx+c|=1的四个根分别为ax2+bx+c=1和ax2+bx+c=﹣1的根,∵抛物线y=ax2+bx+c关于直线x=1对称,∴抛物线与直线y=1的交点的横坐标为之和为2,抛物线与直线y=﹣1的交点横坐标为之和为2,∴方程|ax2+bx+c|=1的四个根的和为4,⑤错误.故选:A8.“燃情冰雪,拼出未来”,北京冬奥会将于2022年2月4日如约而至.某商家已提前开始冬奥会吉祥物“冰墩墩”纪念品的销售.每个纪念品进价40元,规定销售单价不低于44元,且不高于52元.销售期间发现,当销售单价定为44元时,每天可售出300个,销售单价每上涨1元,每天销量减少10个.现商家决定提价销售,设每天销售量为y个,销售单价为x元.(1)直接写出y与x之间的函数关系式和自变量x的取值范围;(2)求当每个纪念品的销售单价是多少元时,商家每天获利2400元;(3)将纪念品的销售单价定为多少元时,商家每天销售纪念品获得的利润w元最大?最大利润是多少元?【解答】解:(1)根据题意得:y=300﹣10(x﹣44)=﹣10x+740,∴y与x之间的函数关系式为y=﹣10x+740(44≤x≤52);(2)根据题意得:(﹣10x+740)(x﹣40)=2400,整理得:x2﹣114x+3200=0,解得:x1=50,x2=64,∵44≤x≤52,∴x=50,∴当每个纪念品的销售单价是50元时,商家每天获利2400元;(3)根据题意得:w=(﹣10x+740)(x﹣40)=﹣10x2+1140x﹣29600=﹣10(x﹣57)2+2890,∵﹣10<0,∴当x<57时,w随x的增大而增大,∵44≤x≤52,∴当x=52时,w有最大值,最大值为2640,∴将纪念品的销售单价定为52元时,商家每天销售纪念品获得的利润w元最大,最大利润是2640元.9.如图,△ABC是等腰直角三角形,AB=,D为斜边BC上的一点(D与B、C均不重合),连接AD,把△ABD绕点A按逆时针旋转后得到△ACE,连接DE,设BD=x.(1)求证∠DCE=90°;(2)当△DCE的面积为1.5时,求x的值;(3)试问:△DCE的面积是否存在最大值?若存在,请求出这个最大值,并指出此时x 的取值;若不存在,请说明理由.【解答】解:(1)∵△ABD绕点A按逆时针旋转后得到△ACE,∴△ACE≌△ABD,∴∠ABD=∠ACE,(2分)又∵△ABC是等腰直角三角形,且BC为斜边,∴∠ABD+∠ACD=90°,(3分)∴∠ACE+∠ACD=90°,即:∠DCE=90°;(5分)(2)∵AC=AB=,∴BC2=AC2+AB2=,∴BC=4.(6分)∵△ACE≌△ABD,∠DCE=90°,∴CE=BD=x,而BC=4,∴DC=4﹣x,∴Rt△DCE的面积为:DC•CE=(4﹣x)x.∴(4﹣x)x=1.5,(8分)即x2﹣4x+3=0.解得x=1或x=3.(10分)(3)△DCE存在最大值.(11分)理由如下:设△DCE的面积为y,于是得y与x的函数关系式为:y=(4﹣x)x(0<x<4),(12分)=﹣(x﹣2)2+2,∵a=﹣<0,∴当x=2时,函数y有最大值2.(13分)又∵x满足关系式0<x<4,故当x=2时,△DCE的最大面积为2.(14分)10.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C (0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.【解答】解:(1)设抛物线解析式为y=ax2+bx+c,把A、B、C三点坐标代入可得,解得,∴抛物线解析式为y=x2﹣3x﹣4;(2)作OC的垂直平分线DP,交OC于点D,交BC下方抛物线于点P,如图1,∴PO=PC,此时P点即为满足条件的点,∵C(0,﹣4),∴D(0,﹣2),∴P点纵坐标为﹣2,代入抛物线解析式可得x2﹣3x﹣4=﹣2,解得x=(小于0,舍去)或x=,∴存在满足条件的P点,其坐标为(,﹣2);(3)∵点P在抛物线上,∴可设P(t,t2﹣3t﹣4),过P 作PE ⊥x 轴于点E ,交直线BC 于点F ,如图2,∵B (4,0),C (0,﹣4),∴直线BC 解析式为y =x ﹣4,∴F (t ,t ﹣4),∴PF =(t ﹣4)﹣(t 2﹣3t ﹣4)=﹣t 2+4t ,∴S △PBC =S △PFC +S △PFB =PF •OE +PF •BE =PF •(OE +BE )=PF •OB =(﹣t 2+4t )×4=﹣2(t ﹣2)2+8,∴当t =2时,S △PBC 最大值为8,此时t 2﹣3t ﹣4=﹣6,∴当P 点坐标为(2,﹣6)时,△PBC 的最大面积为8.11.如图,已知抛物线y =﹣x 2+mx +m ﹣2的顶点为A ,且经过点B (3,﹣3).(1)求顶点A 的坐标;(2)在对称轴左侧的抛物线上存在一点P ,使得∠PAB =45°,求点P 坐标;(3)如图(2),将原抛物线沿射线OA 方向进行平移得到新的抛物线,新抛物线与射线OA 交于C ,D 两点,请问:在抛物线平移的过程中,线段CD 的长度是否为定值?若是,请求出这个定值;若不是,请说明理由.【解答】解:(1)依题意﹣32+3m+m﹣2=﹣3∴m=2,∴y=﹣x2+2x=﹣(x﹣1)2+1∴顶点A(1,1);(2)过B作BQ⊥BA交AP于Q,过B作GH∥y轴分别过A,Q作AG⊥GH于G,QH⊥GH于H,∠AGB=∠ABQ=∠BHQ=90°,∴∠ABG=∠BQH.∵∠PAB=45°,∴BA=BQ.在△ABG和△BQH中,,∴△ABG≌△BQH(AAS),∴AG=BH=3﹣1=2,BG=QH=1﹣(﹣3)=4∴Q(﹣1,﹣5)∴直线AP的解析式为y=3x﹣2联立抛物线与AP,得∴﹣x2+2x=3x﹣2∴x1=1(不符合题意的解要舍去),x2=﹣2∴P(﹣2,﹣8);(3)在抛物线平移的过程中,线段CD的长度是为定值,∵直线OA的解析式为y=x,∴可设新抛物线解析式为y=﹣(x﹣a)2+a联立抛物线与OA,,∴﹣(x﹣a)2+a=x,∴x1=a,x2=a﹣1,x1﹣x2=1;y1=x1=a,y2=x2=a﹣1,y1﹣y2=1;即C,D两点横坐标的差是常数1,C,D两点纵坐标的差是常数1,∴CD====,∴在抛物线平移的过程中,线段CD的长度是定值.12.如图,直线y=x﹣3与坐标轴交于A、B两点,抛物线y=x2+bx+c经过点B,与直线y=x﹣3交于点E(8,5),且与x轴交于C,D两点.(1)求抛物线的解析式;(2)抛物线上有一点M,当∠MBE=75°时,求点M的横坐标;(3)点P在抛物线上,在坐标平面内是否存在点Q,使得以点P,Q,B,C为顶点的四边形是矩形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【解答】解:(1)直线y=x﹣3与坐标轴交于A、B两点,则A(3,0)B(0,﹣3),把B、E点坐标代入二次函数方程,解得:抛物线的解析式y=x2﹣x﹣3…①,则:C(6,0);(2)符合条件的有M和M′,如下图所示,当∠MBE=75°时,∵OA=OB,∴∠MBO=30°,此时符合条件的M只有如图所示的一个点,MB直线的k为﹣,所在的直线方程为:y=﹣x﹣3…②,联立方程①、②可求得:x=4﹣4,即:点M的横坐标4﹣4;当∠M′BE=75°时,∠OBM′=120°,直线M′B的k值为﹣,其方程为y=﹣x﹣3,将M′B所在的方程与抛物线表达式联立,解得:x=,故:即:点M的横坐标4﹣4或.(3)存在.①当BC为矩形对角线时,矩形BP′CQ′所在的位置如图所示,设:P′(m,n),n=m2﹣m﹣3…③,P′C所在直线的k1=,P′B所在的直线k2=,则:k1•k2=﹣1…④,③、④联立得:=0,解得:m=0或6,这两个点分别和点B、C重合,与题意不符,故:这种情况不存在,舍去.②当BC为矩形一边时,情况一:矩形BCQP所在的位置如图所示,直线BC所在的方程为:y=x﹣3,则:直线BP的k为﹣2,所在的方程为y=﹣2x﹣3…⑤,联立①⑤解得点P(﹣4,5),则Q(2,8),情况二:矩形BCP″Q″所在的位置如图所示,此时,P″在抛物线上,其坐标为:(﹣10,32),Q″坐标为(﹣16,29).故:存在矩形,点Q的坐标为:(2,8)或(﹣16,29).13.直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,与抛物线y=ax2﹣2ax+a+4(a <0)交于点B,如图所示.(1)求该抛物线的解析式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,四边形OAMB的面积为S,求S与m的函数表达式,并求出S的最大值;(3)若点D在平面内,点C在直线AB上,平面内是否存在点D使得以O,B,C,D 为顶点的四边形是菱形.若存在,请直接写出点D的坐标;若不存在,请说明理由.【解答】解:(1)∵直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,∴A(1,0)、B(0,3);∵抛物线y=ax2﹣2ax+a+4(a<0)经过点B,∴a+4=3,∴a=﹣1,∴该抛物线的解析式为y=﹣x2+2x+3;(2)过点M作MH⊥x轴于点H,如图所示:设点M (m ,﹣m 2+2m +3),则S =S 梯形BOHM ﹣S △AMH=(3﹣m 2+2m +3)×m ﹣(m ﹣1)×(﹣m 2+2m +3)=﹣m 2+m +,∵﹣<0,∴S 有最大值,当m =时,S 的最大值是.∴S 与m 的函数表达式为S =﹣m 2+m +,S 的最大值是;(3)设点C 的坐标为(m ,﹣3m +3),而点B 和点O 的坐标分别为(0,3)和(0,0),①当OB 是菱形的一条边时,∵OB =BC =3,或OB =OC =3,∴9=(m ﹣0)2+(﹣3m +3﹣3)2,或m 2+(﹣3m +3)2=9,∴m =±或m =或m =0(舍),∴点D的坐标为(﹣,)或(,﹣)或(,);②当OB是菱形的对角线时,CD必在OB的中垂线上,∴y C=,∴点C(,),此时BC2=+==CO2,此时以O、C、B、D为顶点的四边形是菱形,则点D(﹣,).综上所述,点D的坐标为(﹣,)或(,﹣)或(,)或(﹣,).。
二次函数解答题通关100题(含答案)(2)

二次函数解答题通关 100 题
1.某片果园有果树80 棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距
离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.
(1)求y 与x 之间的函数关系式;
(2)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
2.已知:二次函数y 瞨 x2 + tx — 3 的图象经过点A 2th .
(1)求二次函数的解析式;
(2)求二次函数的图象与x 轴的交点坐标;
(3)将(1)中求得的函数解析式用配方法化成y 瞨 x — h 2 + t 的形式.
3.小明开了一家网店,进行社会实践,计划经销甲、乙两种商品.若甲商品每件利润10 元,乙商
品每件利润20 元,则每周能卖出甲商品40 件,乙商品20 件.经调查,甲、乙两种商品零售单价分别每降价1 元,这两种商品每周可各多销售10 件.为了提高销售量,小明决定把甲、乙两种商品的零售单价都降价x 元.
(1)直接写出甲、乙两种商品每周的销售量y(件)与降价x(元)之间的函数关系式:
y 甲瞨,y
乙
瞨.
(2)求出小明每周销售甲、乙两种商品获得的总利润W(元)与降价x(元)之间的函数关系式?如果每周甲商品的销售量不低于乙商品的销售量的3,那么当x 定为多少元时,才能使小
2
明每周销售甲、乙两种商品获得的总利润最大?。
《二次函数》精编测试题及参考答案(提高)

二次函数精编测试题及参考答案(提高)一、选择题1.下列是二次函数的是()A.y=2x-1B. y=x2-(x-1)2C.y=x(x+1)-7D.y=1 x22.若二次函数y=(k-2)x2-3x+4与x轴有两个交点,则k的取值范围是()A.k≠2B.k≠4116C.k<4116且k≠2 D.k>4116且k≠23.将抛物线y=2x2-4x+1向左平移2022个单位,再向下平移2023个单位,则平移后抛物线的解析式为()A.y=2(x-1)2-1B.y=2(x+2021)2-2024C.y=2(x-2022)2-2024D.y=2(x-2024)2+20224.关于二次函数y=3x2+1的说法中,错误的是()A.抛物线顶点(0,1)B.当x>1时,y随x的增大而增大C.图象经过点(1,4)D.图象的对称轴是直线x=15.如果三点P1(1,y1),P2(3,y2)和P3(4,y3)在抛物线y=-x2+6x+c的图象上,那么y1,y2与y3之间的大小关系是()A y1<y3<y2 B.y3<y2<y1 C.y3<y1<y2 D.y1<y2<y36.根据下表中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0a,b,c为常数)的一个解x的范围可能是()A.6<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.207.向空中抛一枚物体,第x秒时的高度为y米,且高度与时间的关系为y=ax2+bx+c(a≠0),若此物体在第6秒与第15秒时的高度相等,则下列时间中物体所在的高度最高是()A.第6秒B.第10秒C.第14秒D.第15秒8.如图,函数y=kx 2-2x+1和y=k(x-1)(k 是常数,且k ≠0)在同一平面直角坐标系的图象可能是( ) 9.三孔桥的三个桥孔呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.当大孔水面宽度为20米时,单个小孔的水面宽度为( )A.2√3B. 4√3C. 5√2D. 6√310.如图,在四边形DEFG 中,∠E=∠F= 90°,∠DGF=45°,DE=1,FG=3,Rt △ABC 的直角顶点C 与点G 重合,另一个顶点B(在点C 左侧)在射线FG 上,且BC=1,AC=2,将△ABC 沿GF 方向平移,点C 与点F 重合时停止.设CG 的长为x,△ABC 在平移过程中与四边形DEFG 重叠部分的面积为y,则下列图象能正确反映y 与x 函数关系的是( )11.对于二次函数y=12x 2-6x+21,有以下结论:①当x>5时,y 随x 的增大而增大;②当x=6时,y 有最小值3;③图象与x 轴有两个交点;④图象是由抛物线y=12x 2先向左平移6个单位长度,再向上平移3个单位长度得到的.其中结论正确的个数为( )A.1B.2C.3D.412.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-1,则下列结论: ①abc<0;②(4a+c)2<(2b)2;③若(x1,y1)和(x2,y2)是抛物线上的两点,则当|x1+1|>|x2+1|时,y1<y2;④抛物线的顶点坐标为(-1,m),则关于x的方程ax2+bx+c=m-1无实数根.其中正确结论的个数是()A.1B.2C.3D.4二、填空题13.二次函数y=3(x-3)2+2顶点坐标为_________.14.已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c的值是_______.15.如图,在一幅长50cm,宽30cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂画,设整个挂画总面积为ycm2,金色纸边的宽为xcm,则y与x的关系式是_____________.第15题第16题第17题16.如图,有一座拱桥洞呈抛物线形状,这个桥洞的最大高度为16m,跨度为40m,现把它的示意图放在如图的平面直角坐标系中,则抛物线对应的函数关系式为________________.17.如图,把抛物线y=12x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为_________.18.如图,在平面直角坐标系中,抛物线y=x2的图象如图所示,已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4,…,依次进行下去,则点A2023的坐标是_____________.三、解答题19.已知函数y=(m2+2m)x2+mx+m+1,(1)当m为何值时,此函数是一次函数.(2)当m为何值时,此函数是二次函数.20.如图,一农户要建一矩形猪舍,猪舍的一边利用长12m的住房墙,另外三边用27m长的建筑材料围成,为了方便进出,在垂直于住房墙的一边留一个1m宽的门.所围成矩形猪舍的长、宽分别为多少时,猪舍的面积y最大,最大面积是多少?21.如图,已知直线y1=kx+n与抛物线y2=-x2+bx+c相交于A(4,0)和B(0,2).(1)求直线和抛物线解析式;(2)当y1>y2时,求x的取值范围;(3)若直线上方的抛物线有一点C,S△ABC=6,求点C的坐标.22.某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/吨,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(吨)之间的关系为m=50+0.2x,销售价y(万元/吨)与原料的质量x(吨)之间的关系如图所示.(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)当原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?23.抛物线y=-x2+bx+c经过点A(-3,0)和点C(0,3).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)若过顶点D的直线将△ACD的面积分为1:2两部分,并与x轴交于点Q,求点Q的坐标.参考答案一、选择题1-5 CCBDA 6-10 CBBCB 11-12 AC二、填空题13.(3,2)14. 115.y=4x2+160x+150016.y=−125(x−20)2+1617. 13.518.(-1012,10122)三、解答题19(1)m=-2 (2)m≠0且m≠-220.设宽为x,y=-2x2+28x,当宽为8米,长为12米时,面积最大,最大是96平方米。
二次函数培优专题训练(含答案)

A. 个B. 个C. 个D. 个
二、填空题
11.若抛物线y=x2﹣2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.
12.二次函数y=x2-4x+5的最小值是
13.已知(x1,y1),(x2,y2)是抛物线y=ax2(a≠0)上的两点.当x2<x1<0时,y2<y1,则a的取值范围是_____.
(1)求y与x的函数关系式;
(2)每件文具的售价定为多少元时,月销售利润为2520元?
(3)每件文具的售价定为多少元时可使月销售利润最大?最大的月利润是多少?
参考答案
1.A
【解析】
试题分析:二次函数的一般形式中的顶点式是:y=a(x-h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).
(1)求x=2时,平行四边形AGEF的面积.
(2)当x为何值时,平行四边形AGEF的面积最大?最大面积是多少?
19.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示.
(1)已知6月份这种蔬菜的成本最低,此时出售每干克的收益是多少元?(收益=售价-成本)
试题解析:A:在对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小.故此选项正确,
B:当x=0,y=1,∴图象与y轴的交点坐标为:(0,1),故此选项错误,
C:∵a=-1,∴函数的开口向下,对称轴是x=1,故此选项错误,
D:∵这个函数的顶点是(1,2),故此选项错误,
故选A.
考点:二次函数的性质.
(2)S是x的什么函数?
(3)当S=6时,求点P的坐标;
(4)在y=x2的图象上求一点P′,使△OP′A的两边OP′=P′A.
(最新整理)二次函数培优经典题

(完整)二次函数培优经典题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)二次函数培优经典题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)二次函数培优经典题的全部内容。
二次函数与圆的综合复习一、二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1、下列函数中,是二次函数的是。
①y=x2-4x+1;②y=2x2;③y=2x2+4x; ④y=-3x;⑤y=-2x-1;⑥y=mx2+nx+p; ⑦y =(4,x) ;⑧y=(x+1)(x-1)-x2。
2、已知函数y=(m-1)x m2 +1+5x-3是二次函数,求m的值。
二、函数y=a(x-h)2+k的图象与性质3.由二次函数1)3(22+-=xy,可知( )A.其图象的开口向下 B.其图象的对称轴为直线3-=xC.其最小值为1 D.当3<x时,y随x的增大而增大4.(2011山东济宁)将二次函数245y x x=-+化为2()y x h k=-+的形式,则y=.三、函数y=ax2+bx+c的图象和性质5. 通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)y=12x2-2x+1 ;(2)y=-3x2+8x-2;四、二次函数的对称轴、顶点、最值(方法:如果解析式为顶点式y=a(x-h)2+k,则对称轴为直线x=h,顶点(h,k),最值为k;如果解析式为一般式y=ax2+bx+c则对称轴为直线x=—错误!,顶点(- 错误!,错误!),最值为错误!)6.抛物线y=x2+2x-3的对称轴是;顶点坐标是 .7.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m=。
(最新整理)二次函数培优经典题

(完整)二次函数培优经典题(完整)二次函数培优经典题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)二次函数培优经典题)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)二次函数培优经典题的全部内容。
二次函(完数整)与二次函圆数培的优经综典题合复习一、二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1、下列函数中,是二次函数的是。
①y=x2—4x+1;②y=2x2;③y=2x2+4x; ④y= - 3x;⑤y= - 2x — 1;⑥y=mx2+nx+p; ⑦y =(4,x);⑧丫=(x+1)(x-1) -x2。
2、已知函数y=(m — 1)x m2+1+5x — 3是二次函数,求m的值。
二、函数丫二2&一卜)2+k的图象与性质3.由二次函数y—2(% 3)2 +1 , 可知( )A.其图象的开口向下B.其图象的对称轴为直线% = .3C其最小值为1 D.当%<3时,y随x的增大而增大4.(2011山东济宁)将二次函数y二%2 -4% + 5化为y=(%-h)2 + k的形式,贝卜二三、函数y=ax2+bx+c的图象和性质5. 通过配方,写出下列函数的开口方向、对称轴和顶点坐标:1(1) y=2 x2—2x+1 ;(2) y= — 3x2+8x — 2;四、二次函数的对称轴、顶点、最值(方法:如果解析式为顶点式y=a(x — h) 2+k,则对称轴为直线*二h顶点(h,k),最值为k;如果解析式为一般式y=ax2+bx+c则对称轴为直线x二一错误!,顶点(-错误!,错误!),最值为错误!)6.抛物线y=x2+2x—3的对称轴是 ____________ ;顶点坐标是______________ .7.若二次函数y=3x2+mx — 3的对称轴是直线x = 1,则m =______ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学培优卷:二次函数考点分析培优★★★二次函数的图像抛物线的时候应抓住以下五点: 开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.★★二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)一般式:y=ax 2+bx+c ,三个点顶点式:y=a (x -h )2+k ,顶点坐标对称轴顶点坐标(-2ba,244ac b a -).顶点坐标(h ,k )★★★a b c 作用分析│a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大,a ,b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=-2ba <0,即对称轴在y 轴左侧,当a ,b•异号时,对称轴x=-2ba>0,即对称轴在yc•的符号决定了抛物线与y 轴交点的位置,c=0时,抛物线经过原点,c>0时,与y 轴交于正半轴;c<0时,与y•轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出.交点式:y=a(x- x 1)(x- x 2),(有交点的情况) 与x 轴的两个交点坐标x 1,x 2对称轴为221x x h +=1个单位,所得到的图象对应的二次函数关系式是2)1(2-+=x y 则原二次函数的解析式为2.二次函数的图象顶点坐标为(2,1),形状开品与抛物线y= - 2x 2相同,这个函数解析式为________。
3.如果函数1)3(232++-=+-kx x k y k k 是二次函数,则k 的值是______4.(08绍兴)已知点11()x y ,,22()x y ,均在抛物线21y x =-上,下列说法中正确的是( )A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >5.(兰州10) 抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2★6.抛物线5)43()1(22+--++=x m m x m y 以Y 轴为对称轴则。
M =7.二次函数52-+=a ax y 的图象顶点在Y 轴负半轴上。
且函数值有最小值,则m 的取值范围是8.函数245(5)21a a y a xx ++=-+-, 当a =_______时, 它是一次函数; 当a =_______时, 它是二次函数.9.抛物线2)13(-=x y 当x 时,Y 随X 的增大而增大10.抛物线42++=ax x y 的顶点在X 轴上,则a 值为★11.已知二次函数2)3(2--=x y ,当X 取1x 和2x 时函数值相等,当X 取1x +2x 时函数值为12.若二次函数k ax y +=2,当X 取X1和X2(21x x ≠)时函数值相等,则当X 取X1+X2时,函数值为13.若函数2)3(-=x a y 过(2.9)点,则当X =4时函数值Y =★14.若函数k h x y ---=2)(的顶点在第二象限则, h 0 ,k 015.已知二次函数当x=2时Y 有最大值是1.且过(3.0)点求解析式?16.将121222--=x x y 变为n m x a y +-=2)(的形式,则n m ⋅=_____。
★17.已知抛物线在X 轴上截得的线段长为6.且顶点坐标为(2,3)求解析式?(讲解对称性书写)的顶点到x 轴的距离是3,那么c 的值等于( )(A )8 (B )14 (C )8或14 (D )-8或-1419.二次函数y=x 2-(12-k)x+12,当x>1时,y 随着x 的增大而增大,当x<1时,y 随着x 的增大而减小,则k 的值应取( )(A )12 (B )11 (C )10 (D )920.若0<b ,则二次函数12-+=bx x y 的图象的顶点在 ( A ) (A )第一象限(B )第二象限 (C )第三象限(D )第四象限 21.不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( ) A.a>0,△>0 B.a>0, △<0 C.a<0, △<0 D.a<0, △<0 ★22.已知二次函数)1(3)1(2-++-=a a x x a y 的图象过原点则a 的值为23.二次函数432--=x x y 关于Y 轴的对称图象的解析式为 关于X 轴的对称图象的解析式为 关于顶点旋转180度的图象的解析式为24. 二次函数y=2(x+3)(x-1)的x 轴的交点的个数有__个,交点坐标为_______。
25.已知二次函数222--=x ax y 的图象与X 轴有两个交点,则a 的取值范围是26.二次函数y=(x-1)(x+2)的顶点为___,对称轴为 _。
27.抛物线y=(k-1)x 2+(2-2k)x+1,那么此抛物线的对称轴是直线_________,它必定经过________和____28.若二次函数3622+-=x x y 当X 取两个不同的值X1和X2时,函数值相等,则X1+X2=29.若抛物线22y x x a =++的顶点在x 轴的下方,则a 的取值范围是( )A.1a > B.1a < C.1a ≥ D.1a ≤30.抛物线y= (k 2-2)x 2+m-4kx 的对称轴是直线x=2,且它的最低点在直线y= -21+2上,求函数解析式。
31.已知二次函数图象与x 轴交点(2,0)(-1,0)与y 轴交点是(0,-1)求解析式及顶点坐标。
32.y= ax 2+bx+c 图象与x 轴交于A 、B 与y 轴交于C ,OA=2,OB=1 ,OC=1,求函数解析式32. ★★★★★抛物线562-+-=x x y 与x 轴交点为A ,B ,(A 在B 左侧)顶点为C.与Y 轴交于点D (1)求△ABC 的面积。
0 2 3-x y33(2)若在抛物线上有一点M ,使△ABM 的面积是△ABC 的面积的2倍。
求M 点坐标(得分点的把握) 34(3)在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.35(4)在抛物线上是否存在一点P ,使四边形PBAC 是等腰梯形,若存在,求出P 点的坐标;若不存在,请说明理由 二次函数图象与系数关系+增减性 36.二次函数c bx ax y +-= 图象如下,则a,b,c 取值范围是37已知y=ax 2+bx+c 的图象如下, 则:a____0 b___0 c___0a+b+c____0,a-b+c__0。
2a+b____0 b 2-4ac___0 4a+2b+c 038.二次函数c bx ax y ++=2的图象如图所示. 有下列结论: ①240b ac -<; ②0ab >; ③0a b c -+=; ④40a b +=;⑤当2y =时,x 等于0.⑥02=++c bx ax 有两个不相等的实数根 ⑦22=++c bx ax 有两个不相等的实数根 ⑧0102=-++c bx ax 有两个不相等的实数根 ⑨42-=++c bx ax 有两个不相等的实数根 其中正确的是( )39.(天津市)已知二次函数c bx ax y ++=2的图象如图所示,下列结论:① 0>abc ;② c a b +<;③024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )。
A. 2个B. 3个C. 4个D. 5个40.小明从右边的二次函数c bx ax y ++=2图象中,观察得出了下面的五条信息:①0a <,②0c =,③函数的最小值为3-,④当0x <时,0y >,⑤当1202x x <<<时,12y y >.你认为其中正确的个数为( )A.2 B.3 C.4 D.541.已知二次函数c bx ax y ++=2,其中a b c ,,满足0a b c ++=和930a b c -+=,则该二次函数图象的对称轴是直线 .42.直已知y=ax 2+bx+c 中a<0,b>0,c<0 ,△<0,函数的图象过 象限。
43.若),41(),,45(),,413(321y C y B y A --为二次函数245y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .123y y y << B .213y y y <<C .312y y y<< D .132y y y<< 44.在同一平面直角坐标系中,一次函数y ax b =+和二次函数245.二次函数c bx ax y ++=2的图象如图所示,则直线y O x y O x y O x yO xABCDOxyCA y xO y bx c =+的图象不经过( )A.第一象限 B.第二象限 C.第三象限D.第四象限46.抛物线y=ax 2+bx+c 的图象如图,OA=OC ,则( )(A ) ac+1=b(B ) ab+1=c(C )bc+1=a(D )以上都不是 47.已知二次函数y=a 2x +bx+c,且a <0,a-b+c >0,则一定有( )A 24b ac - >0 B24b ac -=0C24b ac -<0 D24b ac -≤048.若二次函数y=ax 2+bx+c 的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c 的变化范围是( )(A )0<S<2 (B) S>1(C) 1<S<2 (D)-1<S<149.(10包头)已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确结论的个数是 个.50.(10 四川自贡)y=x 2+(1-a )x +1是关于x 的二次函数,当x 的取值范围是1≤x ≤3时,y 在x =1时取得最大值,则实数a 的取值范围是( )。