浅谈二氧化钛讲解
二氧化钛的作用

二氧化钛的作用二氧化钛(TiO2)是一种广泛应用于各个领域的物质,其出色的光催化、抗菌、防晒等多种性能使得它成为了当代科技产品使用最广泛的化学材料之一。
下面我们将从多个角度来探讨二氧化钛的作用。
一、光催化光催化,指的是在光的作用下,通过钛的电子跃迁,使得二氧化钛发生氧化还原反应的过程。
二氧化钛的光催化性能是目前应用最为广泛的一项性质。
二氧化钛能够利用阳光、荧光灯等光源,将水、空气中的有害物质(如有害气体、细菌等)分解成无害的物质。
因此,二氧化钛成功应用于空气净化、污水处理、水质净化、医用消毒等多种领域。
二、催化在化学反应中,需要加入某种物质,以促进反应的进行,这种物质我们称之为催化剂。
二氧化钛是一种优秀的催化剂,它可以促进很多化学反应的进行。
比如在油漆工业中,二氧化钛是一种重要的催化剂,在化工生产中,二氧化钛被广泛应用于化学反应的催化过程中。
三、防晒在夏天,我们经常可以看到许多人都擦涂着防晒霜,这是因为紫外线会加速皮肤水分的蒸发、使皮肤灼热脱水、过度晒黑,而导致皮肤老化、色素沉淀甚至诱发皮肤癌等问题。
二氧化钛作为一种自然的防晒成分,可从根源上避免上述问题的发生,其特殊的光学性质可以吸收紫外线,将其转化为安全的热能,进而保护皮肤不受损伤。
四、电化学材料二氧化钛作为一种优秀的电化学材料,其应用范围也非常广泛,它可以用于太阳能电池、电催化等多个领域。
在太阳能电池领域,二氧化钛的应用可以提高太阳能电池的转化效率;在电催化领域,二氧化钛的应用可用于电解科学的研究以及环境污染治理等。
五、生物医疗二氧化钛还可以用于生物医疗领域。
当二氧化钛纳米颗粒进入细胞后,由于其小尺寸和特殊的表面形态,可以在周围的环境中吸附和释放分子,具有调控生物学过程的功能,这是一种很有前途的新型生物医疗材料。
总结:二氧化钛是一种多功能的材料,同时也是一种非常重要的化学原料,其在日常生活当中的应用非常广泛,其性质独特,成为各个领域科技的重要支撑。
二氧化钛的基本知识点总结

二氧化钛的基本知识点总结二氧化钛的基本知识点总结二氧化钛是一种常见的无机化合物,化学式为TiO2,具有广泛的应用领域。
在本文中,将总结二氧化钛的基本知识点,包括其结构、性质、制备方法以及应用等方面。
第一部分:结构和性质1. 结构:二氧化钛的晶体结构主要有两种形式:金红石型和锐钛型。
其中金红石型结构是最常见的,具有六方最密堆积结构;锐钛型结构则是指在高温下出现的三斜结构。
这两种结构对于二氧化钛的性质具有重要影响。
2. 物理性质:二氧化钛是一种无色的固体,具有较高的熔点(1830℃)和热稳定性。
它是一种半导体材料,具有较宽的能带隙,使其具备光催化、光电和光谱学性质。
3. 化学性质:二氧化钛的化学性质较为稳定,具有较强的抗氧化性和耐化学腐蚀性。
它可与酸、强碱和氧化剂反应,但对于大多数溶剂和常规的化学试剂是稳定的。
第二部分:制备方法1. 水热法:水热法是一种常用的制备二氧化钛的方法,即将钛酸盐与水在高温高压的条件下反应,形成二氧化钛颗粒。
这种方法可以控制颗粒的尺寸和形态,适用于大规模生产。
2. 气相法:气相法是一种将钛源先氧化成气态的钛酸酐,然后在高温条件下还原为固态二氧化钛的方法。
这种方法适用于纳米级二氧化钛的制备,并可通过调整条件来控制其性质。
3. 溶胶-凝胶法:溶胶-凝胶法是将含钛溶液通过水解和凝胶化反应得到二氧化钛凝胶,再经过干燥和烧结得到二氧化钛产品的方法。
这种方法简单易行,适用于制备陶瓷、薄膜和涂料等应用。
第三部分:应用领域1. 光催化应用:二氧化钛具有光催化降解有机物、抑制细菌生长和净化空气等性质,可应用于环境治理、自洁材料和光合水分解等领域。
2. 光电应用:由于二氧化钛的半导体性质,它可以作为太阳能电池、气敏元件和光电催化剂等的材料。
其中,锐钛型二氧化钛在光电领域的应用更为广泛。
3. 纳米材料应用:纳米级二氧化钛具有较大的比表面积和特殊的光学、电学性质,在催化、传感和药物等领域有广泛的应用前景。
二氧化钛的作用

二氧化钛的作用二氧化钛(TiO2)是一种重要的功能材料,具有多种应用,如光催化、自洁性、防腐蚀、防紫外线、杀菌等。
下面将介绍二氧化钛的作用及其在不同领域应用的一些实例。
首先,二氧化钛具有良好的光催化性能。
当二氧化钛暴露在紫外光下时,会激发其电子发生跃迁,形成电子-空穴对。
这些电子-空穴对能够参与氧化还原反应,对有机污染物、细菌、病毒等进行高效降解。
因此,二氧化钛在水处理、空气净化、环境治理等领域具有广泛应用。
其次,二氧化钛具有自洁性能。
二氧化钛在阳光照射下能够氧化附着其表面的有机物,使其分解为无害物质,从而能够自我清洁。
这种自洁性能使得二氧化钛广泛应用于建筑材料、汽车涂料、户外广告牌等表面涂层,不仅能够减轻清洁维护负担,还能够降低环境污染。
此外,二氧化钛还具有良好的防腐蚀性能。
由于其优异的化学稳定性和电化学活性,二氧化钛被广泛应用于防腐蚀涂层中。
它能够与金属基体形成保护膜,防止金属被氧化、腐蚀。
因此,在船舶、桥梁、汽车、建筑等行业中,二氧化钛被广泛用于防腐蚀涂料的研发和应用。
另外,二氧化钛对紫外线有良好的吸收能力。
它能够吸收紫外线并将其转化为热能,从而降低紫外线对人体的伤害。
因此,二氧化钛广泛应用于防晒霜、日用品、塑料制品等中,用于保护皮肤、防止塑料老化等。
最后,二氧化钛还具有杀菌作用。
当二氧化钛受到照射时,其产生的活性氧能够破坏细菌的细胞结构,达到杀菌的效果。
这使得二氧化钛被应用于家居用品、医疗器械等领域,用于消毒、防菌等。
综上所述,二氧化钛是一种功能性材料,具有多种作用。
其光催化、自洁性、防腐蚀、防紫外线和杀菌等性能,使其在环境治理、建筑、汽车、医疗等领域得到广泛应用。
随着科学技术的不断发展,相信二氧化钛的应用领域还将不断拓展。
二氧化钛的特性及在食品中的应用

二氧化钛的特性及在食品中的应用FOOD INGREDIENTS 添加剂·配料58 食品安全导刊 2010年8月刊二氧化钛,又称钛白,无臭、无味,是一种白色粉末。
它的化学式为TiO 2,分子量为79.9。
二氧化钛是应用最广泛的白色素之一,如在食品、化妆品、油漆、橡胶、涂料、塑料、纸张、墨水和纤维等行业中的应用。
一般来说,市场上的大多数二氧化钛是从锐钛矿或者金红石中提炼出来的。
锐钛矿中的二氧化钛是一种白色粉末;然而金红石中的二氧化钛是灰白色甚至略带颜色的,这取决于影响其反光率的物质结构。
商业用二氧化钛一般是采用硫酸盐方法或氯化物方法进行生产,主要原料包括钛铁矿(FeO/TiO 2),天然金红石或者钛矿渣。
二氧化钛的生产方法硫酸盐法锐钛矿和金红石中的二氧化钛可以通过硫酸盐方法提炼出来。
含钛矿渣首先用硫酸溶解,然后用水或者稀酸冲淡。
从矿石中溶出的大部分二氧化钛都以钛的氧化-硫酸盐的形式存在,铁离子以其二价的氧化形态存在,可通过结晶生成硫酸亚铁(FeSO 4·7H 2O)而被过滤除去;剩余的溶液采用沉降法除去硅土等不溶物。
提炼锐钛矿中的二氧化钛,部分澄清液需要用碱进行中和以便生产出锐钛矿微晶体,这些微晶体被注入母液中进行水解,产出锐钛矿晶体,接下来进行过滤、冲洗,800~850℃的煅烧和微粉化。
提炼金红石中的二氧化钛,首先也是中和一部分母液,然后与澄清液一起加入进行后续反应,生成的晶体进行过滤、冲洗、900~930℃的煅烧及微粉化。
氯化物法氯化物法提炼金红石中的二氧化钛。
在800~1200℃高温下,氯与金红石在流化床反应器上进行反应,金红石在还原条件下生成无水四氯化钛。
无水四氯化钛可通过分级冷凝方法提纯,然后采用直接高温氧化法或在900~1400℃高温下与水蒸气反应可将四氯化钛转变为二氧化钛,二氧化钛再被冲洗、煅烧,得出最终产品。
或者,含钛矿石与一定浓度的盐酸反应生成四氯化钛水溶液,然后进一步纯化、水解、过滤、冲洗、煅烧和后续反应,可得最终产品。
浅谈二氧化钛

浅谈纳米二氧化钛纳米二氧化钛(Ti02)是一种重要的无机功能材料,由于其粒子具有表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应等性质;其晶体具有防紫外线、光吸收性好、随角异色效应和光催化等性能;而且它的耐候性、耐用化学腐蚀性和化学稳定性较好,因此纳米二氧化钛被广泛应用于光催化、太阳能电池、有机污染物降解、涂料等领域。
但纳米二氧化钛也有一定的局限性,可在纳米二氧化钛中添加合适的物质(如树脂、聚苯胺、偶联剂、氟碳树脂等),对其进行改性。
1. 纳米TiO2的制备(纳米TiO2溶胶)纳米TiO2的制备方法一般分为气相法和液相法。
由于气相法制备纳米TiO2有诸多缺点如:能耗大、成本高、设备复杂等,且条件苛刻,大大限制了其发展。
液相法主要包括水解法、沉淀法、溶胶-凝胶法、水热法、微乳液法、微波感应等离子体法等制备技术。
而液相法能耗小、设备简单、成本低,是实验室和工业上广泛使用的制备方法。
由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂,在此仅介绍用溶胶-凝胶法制备纳米TiO2溶胶。
溶胶一凝胶法制备纳米TiO2:是以钛的醇盐Ti(OR)2,(R为-C2H5、-C3H7、-C4H9等烷基)为原料。
其主要步骤为:钛醇盐溶于溶剂中形成均相溶液,以保证钛醇盐的水解反应在分子均匀的水平上进行,由于钛醇盐在水中的溶解度不大,一般选用醇(乙醇、丙醇、丁醇等)作为溶剂;钛醇盐与水发生水解反应,同时失去水和失醇缩聚反应,生成物聚集成1nm左右的粒子并形成溶胶;经陈化、溶胶形成三维网络而成凝胶;干燥凝胶以除去残余水分、有机基团和有机溶剂,得到干凝胶;干凝胶研磨后煅烧,除去化学吸附的羟基和烷基团,以及物理吸附的有机溶剂和水,得到纳米TiO2粉体。
因为钛醇盐的水解活性很高,所以需添加抑制剂来减缓其水解速度,常用的抑制剂有盐酸、醋酸、氨水、硝酸等。
二氧化钛的作用

二氧化钛的作用引言:二氧化钛(TiO2)是一种常见的金属氧化物,具有广泛的应用领域。
它在研究和工业领域中发挥着重要的作用。
本文将介绍二氧化钛的主要作用,包括催化剂、光催化剂、防晒剂和晶体活性生物修复剂等方面。
一、催化剂1. 可选氧化剂:二氧化钛在许多化学反应中作为催化剂使用。
其作为催化剂时,可以选择性地氧化有机化合物,转化成更有价值的产物。
这种选择性催化反应对于有机合成化学的发展具有重要意义。
2. 水处理剂:二氧化钛也用作催化剂进行水处理,主要是处理污水和工业废水。
通过二氧化钛的催化作用,可以有效地降解有机物和重金属离子,提高水体的质量,从而保护环境。
二、光催化剂1. 空气净化:二氧化钛在室内和室外空气净化中都发挥着重要的作用。
它具有良好的光催化活性,能够吸收大气中的有害污染物,如挥发性有机化合物(VOCs)和氮氧化物(NOx),同时产生具有氧化性的自由基,将这些污染物转化为无害的物质。
2. 自洁玻璃:二氧化钛还可以应用于自洁玻璃。
自洁玻璃是一种具有自我清洁能力的材料,能够通过光催化作用分解污垢和有机物,从而保持其光洁度。
这种特殊的材料广泛应用于建筑、汽车和太阳能电池板等领域。
三、防晒剂二氧化钛在防晒产品中被广泛使用。
它具有强大的紫外线吸收能力,能够过滤掉紫外线中的UVA和UVB辐射。
通过添加二氧化钛,可以降低紫外线对皮肤的伤害,有效预防晒伤和皮肤癌的发生。
四、晶体活性生物修复剂研究发现,二氧化钛可以用作晶体活性生物修复剂。
晶体活性生物修复是一种利用微生物和氧化还原反应修复受到污染的土壤和地下水的方法。
二氧化钛作为催化剂提供了一个良好的环境,促进微生物对有机化合物和重金属的降解,从而恢复土壤和地下水的质量。
结论:二氧化钛作为一种重要的金属氧化物,在催化剂、光催化剂、防晒剂和晶体活性生物修复剂等方面发挥着重要作用。
它在环境保护、能源和化学工业等领域具有广泛的应用前景。
随着科学技术的进步和研究的深入,二氧化钛的应用将进一步扩大,为人类社会的可持续发展做出更大的贡献。
二氧化钛的杀菌及自清洁功能

二氧化钛的杀菌及自清洁功能二氧化钛是一种常见的无机化合物,化学式为TiO2、在环境中,二氧化钛具有杀菌及自清洁功能,因其可通过光催化作用产生活性氧物种,从而破坏细菌、病毒及有机污染物等。
以下将以1200字以上对二氧化钛的杀菌及自清洁功能进行详细介绍。
一、杀菌功能:1.光催化杀菌机制二氧化钛通过光催化作用产生活性氧物种,如超氧阴离子(O2·-)、羟基自由基(·OH)和过氧化氢(H2O2),这些物种具有较强的氧化性能,可以破坏微生物的膜结构、蛋白质和核酸,从而引起微生物的死亡。
2.细菌杀菌效果研究表明,二氧化钛对多种细菌具有较强的杀菌效果,包括大肠杆菌、金黄色葡萄球菌、沙门氏菌等。
例如,将二氧化钛涂覆在医疗设备表面,可有效抑制细菌的滋生,降低交叉感染的风险。
3.病毒杀灭作用二氧化钛对多种病毒也具有较强的杀灭作用。
一项研究发现,将二氧化钛涂覆在口罩上,能够有效去除空气中的流感病毒、禽流感病毒等。
此外,二氧化钛还可用于水处理中,有效去除水中的病毒污染。
4.食品安全保障二氧化钛还可应用于食品行业,用于保障食品的安全。
例如,将二氧化钛纳米颗粒添加到食品中,可以起到杀菌、防腐的作用,延长食品的货架期。
二、自清洁功能:1.自清洁效果二氧化钛可通过光催化作用分解有机污染物,例如油脂、颜料、细菌代谢物等。
一项研究表明,在阳光照射下,涂覆二氧化钛的表面可将污染物降解为无害的物质,起到自清洁的作用。
这一功能可应用于建筑材料、玻璃及汽车玻璃等领域,减轻人工清洗的负担。
2.抗污功能二氧化钛还具有抗污功能,即能够阻止污染物附着在表面上。
这是由于二氧化钛具有超疏水和超亲油的特性,使得其表面不易被水和油污染物附着。
这一功能可应用于建筑材料、汽车外表面等领域,提高材料的清洁度和美观度。
3.空气净化作用由于二氧化钛能够光催化分解有机污染物,因此可应用于空气净化领域。
例如,在室内空气净化装置中添加二氧化钛纳米颗粒,可有效去除空气中的甲醛、苯等有害气体。
二氧化钛的作用与功效

二氧化钛的作用与功效二氧化钛是一种广泛应用于许多领域的重要材料。
它具有多种作用和功效,包括光催化、防紫外线、杀菌消毒、自洁、净化空气和防腐等。
本文将详细介绍二氧化钛的功效与作用。
一、光催化二氧化钛具有良好的光催化性能,可以利用光的能量将有害物质分解为无毒的物质。
这得益于它在紫外光照射下产生的激发态电子能够与氧分子结合,形成具有强氧化能力的超氧根离子和氢氧自由基,从而分解附着在表面的有机物、细菌和病毒等。
光催化广泛应用于水处理、空气净化以及环境污染治理等方面。
二、防紫外线二氧化钛具有良好的防紫外线性能,可以吸收或反射太阳中的紫外线,从而有效保护人体免受紫外线辐射的伤害。
这主要归功于二氧化钛的能隙结构可以吸收短波长的紫外线,同时又能反射长波长的紫外线。
因此,许多防晒霜、防晒服装和太阳眼镜等产品都添加了二氧化钛。
三、杀菌消毒二氧化钛具有优异的杀菌消毒能力。
在光催化作用下,二氧化钛能产生自由基和氧化物,能够破坏细菌和病毒的细胞膜,从而杀死或抑制它们的生长。
这使得二氧化钛成为一种理想的杀菌剂,在医疗设备、饮用水处理、纺织品抗菌等领域有广泛的应用。
四、自洁二氧化钛具有自洁能力,能够通过阳光照射分解吸附在其表面的污染物,保持表面的清洁。
这得益于二氧化钛的光催化性能,光照下的二氧化钛可以产生活性氧物种,分解附着在表面的有机物和污染物,从而实现自洁效果。
因此,二氧化钛广泛应用于建筑材料、玻璃、陶瓷等产品的涂层中,以提高其自洁性能。
五、净化空气二氧化钛可以通过光催化氧化有害气体和挥发性有机物,净化空气质量。
空气中的有害气体和挥发性有机物会吸附在二氧化钛表面,并经过光照下的氧化反应降解成水和二氧化碳等无害物质。
这使得二氧化钛成为一种理想的空气净化材料,广泛应用于中小型空气净化器、室内装修材料、汽车内饰等领域。
六、防腐二氧化钛能够提供有效的防腐保护。
在涂料和塑料中添加二氧化钛可以提高其耐久性和抗老化性能,延长产品的使用寿命。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈纳米二氧化钛纳米二氧化钛(Ti02)是一种重要的无机功能材料,由于其粒子具有表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应等性质;其晶体具有防紫外线、光吸收性好、随角异色效应和光催化等性能;而且它的耐候性、耐用化学腐蚀性和化学稳定性较好,因此纳米二氧化钛被广泛应用于光催化、太阳能电池、有机污染物降解、涂料等领域。
但纳米二氧化钛也有一定的局限性,可在纳米二氧化钛中添加合适的物质(如树脂、聚苯胺、偶联剂、氟碳树脂等),对其进行改性。
1. 纳米TiO2的制备(纳米TiO2溶胶)纳米TiO2的制备方法一般分为气相法和液相法。
由于气相法制备纳米TiO2有诸多缺点如:能耗大、成本高、设备复杂等,且条件苛刻,大大限制了其发展。
液相法主要包括水解法、沉淀法、溶胶-凝胶法、水热法、微乳液法、微波感应等离子体法等制备技术。
而液相法能耗小、设备简单、成本低,是实验室和工业上广泛使用的制备方法。
由于传统的方法不能或难以制备纳米级二氧化钛,而溶胶-凝胶法则可以在低温下制备高纯度、粒径分布均匀、化学活性大的单组分或多组分分子级纳米催化剂,在此仅介绍用溶胶-凝胶法制备纳米TiO2溶胶。
溶胶一凝胶法制备纳米TiO2:是以钛的醇盐Ti(OR)2,(R为-C2H5、-C3H7、-C4H9等烷基)为原料。
其主要步骤为:钛醇盐溶于溶剂中形成均相溶液,以保证钛醇盐的水解反应在分子均匀的水平上进行,由于钛醇盐在水中的溶解度不大,一般选用醇(乙醇、丙醇、丁醇等)作为溶剂;钛醇盐与水发生水解反应,同时失去水和失醇缩聚反应,生成物聚集成1nm左右的粒子并形成溶胶;经陈化、溶胶形成三维网络而成凝胶;干燥凝胶以除去残余水分、有机基团和有机溶剂,得到干凝胶;干凝胶研磨后煅烧,除去化学吸附的羟基和烷基团,以及物理吸附的有机溶剂和水,得到纳米TiO2粉体。
因为钛醇盐的水解活性很高,所以需添加抑制剂来减缓其水解速度,常用的抑制剂有盐酸、醋酸、氨水、硝酸等。
但在制备过程中要注意加水方式、水量、pH值、溶剂量、反应温度、拌速度等因素对凝胶形成的影响。
图1 溶胶一凝胶法合成纳米Ti02的工艺流程2. 纳米TiO2的光催化的基本原理TiO2之所以能够成为一种很好的光催化剂,是由于其特有的能带结构造成的。
TiO2满的价带和空的导带之间的禁带宽度(金红石型为3.0 eV,锐钛型为3.2 eV),当吸收了波长小于或等于387.5nm的光子后,它吸收的光子能量大于禁带宽度时,价带中的电子就会被激发到导带,在导带形成高活性的电子(e-),同时在价带相应产生一个带正电的空穴(h+),即生成电子-空穴对。
TiO2表面的空穴可以和吸附的水分子或羟基等发生一系列反应:TiO2 + hv → h+ + e-H2O + h+ →·OH + H+O2 + e- →·O2-·O2- + H+ → HO2·2HO2·→ O2 + H2O2H2O2 +·O2- →·OH + OH- + O2有机物+·OH + O2→ CO2 + H2O + 其他产物生成的羟基自由基(·OH),超氧离子自由基(·O2-)具有很强的氧化分解能力,能够将大部分有机物直接氧化为CO2、H2O和机矿化小分子。
3. 纳米TiO2的表面性质3.1 表面超亲水性目前的研究认为,在光照条件下,TiO表面的超亲水性起因于其表面结构的2表面迁移,在变化在紫外光照射下,价带电子被激发到导带,电子和空穴向TiO2表面生成电子空穴对,电子与Ti4+反应,空穴则与表面桥氧离子反应,分别形成正三价的钛离子和氧空位。
此时,空气中的水解离吸附在氧空位中,成为化学吸附水(表面羟基),化学吸附水可进一步吸附空气中的水分,形成物理吸附层。
3.2 表面羟基中Ti-O键的极性较大,表面吸附的水因极化相对于其它金属氧化物,TiO2作为吸附剂及各种载体的发生解离,容易形成羟基。
这种表面羟基可提高TiO2性能,为表面改性提供方便。
3.3 表面酸碱性二氧化钛用于涂料时,其表面酸碱性与涂料介质密切相关。
在改性时常加入Al、Si、Zn等金属氧化物,以形成新的酸碱点。
3.4 表面电性在干粉状态通常带有静电荷,在液态介质中因表面带有电荷就会吸附相 TiO2反的电荷而形成扩散双电层,使颗粒有效直径增加,当颗粒彼此接近时,而使双电层间的斥力增加,有利于分散体系的稳定。
4. 纳米TiO2改性及其在涂料中的应用4.1纳米TiO2改性纳米TiO表面活性强、颗粒间易发生团聚,又由于其表面疏油亲水性能,2的禁带较宽(3.2eV),只导致在有机物介质中分散不均匀;其次,纯纳米 TiO2在紫外光照射下才有光催化活性,没有可见光光催化活性,以及太阳光利用率低等缺点,其应用与功能受到制约。
因此需要对 TiO进行改性,以降低表面高能2的光谱响应范围,从而使材料产生新的功能,增加材料的附用价值。
和增加 TiO24.1.1 无机改性无机表面改性就是在二氧化钛浆液中添加无机物改性剂,在适当的 pH 下,使改性剂的金属或非金属离子以氢氧化物或水合氧化物的形式均匀沉积在二氧化钛颗粒的表面,形成包膜。
由于二氧化钛本身有很强的光化学活性,在阳光照射下,特别是紫外线照射下易发生失活、黄变、粉化等现象,进而影响其使用性能。
当在二氧化钛表面包覆一层无机物后,其抗粉化性、保色性、耐候性和光化学稳定性得到提高,黄变、粉化等现象得到明显的改善。
铝和硅是最常见的无机物改性剂。
4.1.2 有机改性有机处理剂和TiO2颗粒表面的连接主要有两种形式。
一种是物理吸附。
因为有机表面活性剂分子一般由亲水的极性基和亲油的非极性基两部分组成,当它和有极性的TiO2分子接触时,它的极性基便被吸附在TiO2表面,让非极性基展露在外与其他有机介质亲和,从而使界面张力降低,促使有机介质渗入聚集在一起的颗粒中,而将空隙中的空气排斥,使TiO2颗粒相互分离,达到分散的效果。
另一种方式是化学键合,即处理剂与TiO2表面的羟基反应而连接起来,使TiO2变为憎水而亲油,改善了二氧化钛与有机介质的相容性。
其中最常用的方法有偶联剂法、表面活性剂法和聚合物包覆等,用于纳米二氧化钛表面改性的有机处理剂有胺类、酯类、脂肪酸碱金属盐、多元醇、偶联剂等。
4.1.3 复合改性为了提高包膜处理的效果,使用两种或多种包膜剂来进行复合表面包覆。
复合包膜方法有无机复合包膜、无机-有机复合包膜。
其中无机复合包膜的方法有硅铝复合包膜、硅锌复合包膜、硅锆复合包膜等。
以硅铝复合包膜为例,将铝和硅的化合物包覆在纳米二氧化钛颗粒的表面,则产品就会同时具有单独用硅和单独用铝两种包膜方法所得产品的优点。
4.2 纳米TiO2在涂料中的应用纳米TiO2涂料外观为白色液体。
在紫外光的作用下具有很强的氧化还原能力,化学性能稳定,能将甲醛、甲苯、二甲苯、氨、氡、TVOC等有害有机物、污染物、臭气、细菌、微生物等有害有机物彻底分解成无害的CO2和 H2O,并具有去除污染物、亲水性、自洁性等特性,性能持久,不产生二次污染。
由于纳米TiO2具有随角异色效应、光催化作用、紫外线屏蔽特征,其主要应用于汽车面漆、净化空气涂料、耐老化涂料及自清洁内墙涂料。
但由于二氧化钛光催化涂料强烈的氧化作用,用于普通涂料的树脂会很快地被分解而失去作用,所以光催化涂料用的粘合剂必须是无机粘合剂或者是原子间结合力极强的硅氧基树脂、氟碳基树脂等。
5. 纳米TiO2在绝缘子防污闪涂层中的应用相关研究证明绝缘子污闪的三个要素是绝缘子表面积污、污层湿润和作用电压。
在后两个条件不可改变的情况下,绝缘子表面积污是一个关键问题,如果采取一定的技术措施,防止在绝缘子表面造成积污或者少积污,就能达到防止污闪的目的。
纳米TiO2的防污闪机理(以绝缘子为例):纳米TiO2的亲水性和疏水性是一对矛盾,但它们是在不同的自然环境里表现出来的,所以恰好被利用。
在毛毛雨、雾、霜等气象条件下,由于纳米结构的TiO2薄膜不被阳光照射,表现出憎水性,就象荷叶表面,使微小的水滴变成水珠,在绝缘子表面构成高电阻相串联的放电模型,使泄漏电流限制在安全范围内,不会造成闪络。
纳米TiO2在光照条件下表现的是亲水性,而绝缘子清扫作业都在晴天进行,在此条件下绝缘子表面的无机物会很容易被去除,有机物因光的催化作用被分解,也很容易被冲走或洗掉。
因此,可通过在绝缘子表面制备一层纳米结构的TiO2,薄膜的方法,利用其光分解作用、憎水性和半导体特性,改善绝缘子的表面状况,提高瓷质绝缘子的抗污染能力,进而减少因污闪造成的停电事故。
目前广泛使用的防污闪涂料是RTV(室温硫化硅橡胶),但R1V硅橡胶表面能低,附着力差,涂层材质较软,机械强度差,在酸碱催化下易于水解,耐化学酸碱及有机溶剂能力较差,有机材料易老化,电气性能和机械性能都会随着运行时间而逐渐下降,这种性能上的下降不可恢复,尤其在特高压直流电网条件下,R Ⅳ硅橡胶涂料更会面临一些问题,因此对防污闪涂层性能提出了更高要求。
而有关研究利用TiO2的光分解作用、超亲水性和半导体特性,将纳米TiO2应用于绝缘子的防污闪涂料中,改善了绝缘子的表面状况,提高瓷质绝缘子的抗污染能力。
纳米TiO2通过吸收太阳光紫外光,纳米TiO2的光催化功能使得附着在材料表面的污染物分解为无毒无害的CO2和H2O(污染物为碳氢化合物。
若污染物为其他化合物,则可将其还原为离子状态)。
而超亲水性使得污染物不易在其表面附着,即使附着也是和外表层的水膜结合,附着的污染物在外力(如风力、雨水等)的作用下,能自动从TiO2表面脱离下来,使绝缘子能够常年保持表面的自洁净,从而达到防污秽及防污闪的功的目的。
此外,周永言等人于2015年研究了TiO2/PTFE 改性氟碳防污闪涂层材料,他们采用表面改性后的金红石型纳米 TiO2与 PTFE(聚四氟乙烯)作为复合填料,将其与氟碳树脂(FEvE)结合,制备具有防污闪性能的纳米复合氟碳杂化材料,用压缩空气喷涂法将其涂覆在玻璃绝缘子基底表面形成氟碳防污闪涂层。
6. 结语纳米TiO2作为一种新型的环境材料,在绿色环保方面有巨大的应用潜力。
相信随着科技进步将不断完善纳米TiO2表面修饰技术,开发研制纳米TiO2改性材料,纳米TiO2必将应用于生活空间的多种场合,发挥其多功能效应,成为一种极其重要的环保材料。
参考文献1.李志军, 王红英. 纳米二氧化钛的性质及应用进展[J]. 广州化工, 2006, 34(1):23-25.2.李小林, 涂开光. 纳米二氧化钛合成, 改性, 应用概述[J].中国化工贸易,2015,34.3.魏绍东. 溶胶-凝胶法制备纳米 TiO2 技术的研究进展[J]. 材料导报, 2004, 18(F10): 50-53.4.姜鸿基, 彭嘉选. 纳米 TiO2 光催化剂的制备及在降解有机物方面的研究进[J].功能材料, 2002, 33(4): 360-362.5.张浦, 郑典模, 梁志鸿. 纳米 TiO2 应用于涂料的研究进展[J]. 江西化工,2004(4): 20-22.6.李经, 谭欣, 赵林. 二氧化钛光催化涂料的研究进展[J]. 合成材料老化与应用,2005, 34(1): 44-47.7.刘小强, 杜仕国, 闫军, 等. 纳米二氧化钛改性及其在涂料中的应用[J]. 化工时刊, 2004, 18(11): 13-16.8.王博赟. 复合纳米二氧化钛的改性及在自清洁抗菌氟碳涂料中的应用研究[D].西北师范大学, 2009.9.李菲, 屈贞财, 肖根生. 偶联剂改性纳米二氧化钛的分散性研究[J]. 郑州牧业工程高等专科学校学报, 2014, 34(3): 8-10.10.李小培, 艾照全, 肖宇, 等. 油酸改性纳米二氧化钛/聚丙烯酸酯复合乳液的制备及表征[J]. 粘接, 2015, 36(4): 50-53.11.于欢. 石墨烯/TiO2 复合材料改性水性聚氯酯防污涂层研究 [D]. 大连海事大学, 2013.12. Yang T, Sang S, Zhao X, et al. Surface modification of TiO2/PDMS hybrid membrane materials nanoparticles and preparation of TiO2[J]. Polymer Composites, 2015.13. Zhang J, Wang Z, Zhang X, et al. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO/polyethylene glycol mixture[J]. Applied Surface Science,22015, 345: 418-427.14. Nolan M, Iwaszuk A, Lucid A K, et al. Design of Novel Visible Light Active Photocatalyst Materials: Surface Modified TiO[J]. Advanced2Materials, 2016.15. Lin Y, Li D, Hu J, et al. Highly efficient photocatalytic degradation of organic pollutants by PANI- modified TiOcomposite[J]. The Journal2of Physical Chemistry C, 2012, 116(9): 5764-5772.16.王鹏. 防污闪技术的现状与发展趋势研究[J]. 科学与财富, 2015, 7(27):22 -22.17.苏建军, 李杰, 王学刚, 等. RTV 硅橡胶防污闪涂料研究现状[J]. 山东电力技术, 2015, 42(001): 1-7.18.赵林杰. 硅橡胶复合绝缘子憎水性与污闪特性研究[D]. 北京: 华北电力大学, 2008.19.李彦吉, 王兰河, 杜心康. 瓷绝缘子防污闪技术的研究[J]. 铁道标准设计,2008(11): 108-110.20.李清坤, 李金辉, 郭佃顺. 一种含氟偶联剂的合成及其在防污闪涂料中的应[J].化工新型材料, 2013, 41(7): 176-178.光催化薄膜在陶瓷绝缘子防污闪中的应21.庄建东,曾文琳,刘平,等.纳米TiO2[J].机械工程材料,2012,36(9):85-8822.周永言, 钟娴, 刘嘉文, 等. TiO2/PTFE 改性氟碳防污闪涂层材料的研究[J].中南大学学报: 自然科学版, 2015, 46(2): 452-458.。