函数的奇偶性和周期性教案

合集下载

第6讲模块复习:函数的奇偶性与周期性教案

第6讲模块复习:函数的奇偶性与周期性教案

第6讲模块复习:函数的奇偶性与周期性教案 第6讲:《函数的奇偶性与周期性》教案一、教学目标1.了解函数奇偶性、周期性的含义.2.会判定奇偶性,会求函数的周期.3.会做有关函数单调性、奇偶性、周期性的综合问题.二、知识梳理1.函数奇偶性的定义设函数y =f(x)的定义域为A.假如关于任意的x ∈A ,都有__________,则称f(x)为奇函数;假如关于任意的x ∈A 都有__________,则称f(x)为偶函数.2.奇偶函数的性质(1)f(x)为奇函数⇔f(-x)=-f(x)⇔f(-x)+f(x)=____;f(x)为偶函数⇔f(x)=f(-x)=f(|x|)⇔f(x)-f(-x)=____.(2)f(x)是偶函数⇔f(x)的图象关于____轴对称;f(x)是奇函数⇔f(x)的图象关于______对称.(3)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有______的单调性.3.函数的周期性(1)定义:假如存在一个非零常数T ,使得关于函数定义域内的任意x ,都有f(x +T )=______,则称f(x)为______函数,其中T 称作f(x)的周期.若T 存在一个最小的正数,则称它为f(x)的________.(2)性质: ①f(x +T )=f(x)常常写作f(x +T 2)=f(x -T 2).②假如T 是函数y =f(x)的周期,则kT(k ∈Z 且k ≠0)也是y =f(x)的周期,即f(x +kT )=f(x).③若关于函数f(x)的定义域内任一个自变量的值x 都有f(x +a)=-f(x)或f(x +a)=1f x 或f(x +a)=-1f x(a 是常数且a ≠0),则f(x)是以______为一个周期的周期函数.三、题型突破题型一 函数奇偶性的判定例1 判定下列函数的奇偶性. (1)1()(1)1x f x x x -=++; (2)11()()212x f x x =+-; (3) 22()log (1)f x x x =++;(4) 22,0(),0x x x f x x x x ⎧+<⎪=⎨-+>⎪⎩ 变式迁移1 判定下列函数的奇偶性.(1) 23()f x x x =-;(2) 22()11f x x x =-+-;(3) 24()33x f x x -=+-. 题型二 函数单调性与奇偶性的综合应用例2 已知偶函数()f x 在区间[)0,+∞上单调递增,则满足1(21)()3f x f -<的x 的取值范畴是________.变式迁移2 已知函数3()f x x x =+,对任意的[]2,2m ∈-,(2)()0f mx f x -+<恒成立,则x 的取值范畴为________. 题型三 函数性质的综合应用例3 已知定义在R 上的奇函数()f x ,满足(4)()f x f x -=-,且在区间[0,2]上是增函数,若方程()(0)f x m m =>,在区间[-8,8]上有四个不同的根1234,,,x x x x ,则1234x x x x +++=________.四、针对训练(满分:90分)一、填空题(每小题6分,共48分)[来源:学|科|网Z|X|X|K]1.已知2()f x ax bx =+是定义在[]1,2a a -上的偶函数,那么a b +的值为________.2.已知定义域为{}0x x ≠的函数()f x 为偶函数,且()f x 在区间(),0-∞上是增函数,若(3)0f -=,则()0f x x <的解集为________________. 3.已知()f x 是定义在R 上的偶函数,并满足1(2)()f x f x +=-,当1≤x ≤2时,()2f x x =-,则(6.5)f = ________.4.设()f x 为定义在R 上的奇函数.当0x ≥时,()22x f x x b =++ (b 为常数),则(1)f -=________.5.设函数()f x 满足:①(1)y f x =+是偶函数;②在[1,+∞)上为增函数,则(1)f -与(2)f 大小关系为____________________.6.设定义在R 上的函数()f x 满足()(2)13f x f x +=,若(1)2f =,则(99)f = .7.设函数()f x 是定义在R 上的奇函数,若()f x 满足(3)()f x f x +=,且(1)1f >,23(2)1m f m -=+,则m 的取值范畴为________________. 8.函数3()812f x x x =+-在区间[]3,3-上的最大值与最小值之和是 .二、解答题(共42分)9.(14分)已知()f x 是定义在[-6,6]上的奇函数,且()f x 在[0,3]上是x 的一次式,在[3,6]上是x 的二次式,且当3≤x ≤6时,()f x ≤(5)f =3,(6)f =2,求()f x 的表达式.10.(14分)设函数2()21(33)f x x x x =---≤≤,(1)证明()f x 是偶函数;(2)画出那个函数的图象;(3)指出函数()f x 的单调区间,并说明在各个单调区间上()f x 是增函数依旧减函数;(4)求函数的值域.11.(14分)已知函数2()a f x x x=+ (x ≠0,常数a ∈R).(1)讨论函数()f x 的奇偶性,并说明理由;(2)若函数()f x 在[2,+∞)上为增函数,求实数a 的取值范畴.五、参考答案二、知识梳理1.f(-x)=-f(x) f(-x)=f(x) 2.(1)0 0 (2)y 原点 (3)相反 3.(1)f(x) 周期 最小正周期 (2)③2a三、题型突破例1 解题导引 判定函数奇偶性的方法.(1)定义法:用函数奇偶性的定义判定.(先看定义域是否关于原点对称).(2)图象法:f(x)的图象关于原点对称,则f(x)为奇函数;f(x)的图象关于y 轴对称,则f(x)为偶函数.(3)差不多函数法:把f(x)变形为g(x)与h(x)的和、差、积、商的形式,通过g(x)与h(x)的奇偶性判定出f(x)的奇偶性.解 (1)定义域要求1-x 1+x≥0且x ≠-1, ∴-1<x ≤1,∴f(x)定义域不关于原点对称,∴f(x)是非奇非偶函数.(2)函数定义域为(-∞,0)∪(0,+∞).∵f(-x)=-x(12-x -1+12) =-x(2x 1-2x +12)=x(2x 2x -1-12) =x(12x -1+12)=f(x). ∴f(x)是偶函数.(3)函数定义域为R.∵f(-x)=log2(-x +x2+1)=log21x +x2+1=-log2(x +x2+1)=-f(x),[来源:学&科&网Z&X&X&K]∴f(x)是奇函数.(4)函数的定义域为(-∞,0)∪(0,+∞).当x<0时,-x>0,则f(-x)=-(-x)2-x =-(x2+x)=-f(x);当x>0时,-x<0,则f(-x)=(-x)2-x =x2-x =-(-x2+x)=-f(x).∴对任意x ∈(-∞,0)∪(0,+∞)都有f(-x)=-f(x).故f(x)为奇函数.变式迁移1 解 (1)由于f(-1)=2,f(1)=0,f(-1)≠f(1),f(-1)≠-f(1),从而函数f(x)既不是奇函数也不是偶函数.(2)f(x)的定义域为{-1,1},关于原点对称,又f(-1)=f(1)=0,f(-1)=-f(1)=0,∴f(x)既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧4-x2≥0|x +3|≠3得,f(x)定义域为[-2,0)∪(0,2]. ∴定义域关于原点对称, 又f(x)=4-x2x ,f(-x)=-4-x2x ,∴f(-x)=-f(x),∴f(x)为奇函数. 例2 解题导引 本题考查利用函数的单调性和奇偶性解不等式.解题的关键是利用函数的单调性、奇偶性化“抽象的不等式”为“具体的代数不等式”.在关于原点对称的两个区间上,奇函数的单调性相同,偶函数的单调性相反.解 偶函数满足f(x)=f(|x|),依照那个结论,有f(2x -1)< f ⎝ ⎛⎭⎪⎫13 ⇔ f(|2x -1|)<f ⎝ ⎛⎭⎪⎫13, 进而转化为不等式|2x -1|<13,解那个不等式即得x 的取值范畴是⎝ ⎛⎭⎪⎫13,23. 变式迁移2 (-2,23)解析 易知f(x)在R 上为单调递增函数,且f(x)为奇函数,故f(mx -2)+f(x)<0,等价于f(mx -2)<-f(x)=f(-x),现在应用mx -2<-x ,即mx +x -2<0对所有m ∈[-2,2]恒成立,令h(m)=mx +x -2, 现在,只需⎩⎪⎨⎪⎧ h -2<0h 2<0即可,解得x ∈(-2,23). 例3 解题导引 解决此类抽象函数问题,依照函数的奇偶性、周期性、单调性等性质,画出函数的一部分简图,使抽象问题变得直观、形象,有利于问题的解决.答案 -8解析 因为定义在R 上的奇函数,满足f(x -4)=-f(x),因此f(4-x)=f(x).因此,函数图象关于直线x =2对称且f(0)=0,由f(x -4)=-f(x)知f(x -8)=f(x),因此函数是以8为周期的周期函数.又因为f(x)在区间[0,2]上是增函数,因此f(x)在[-2,0]上也是增函数,如图所示,那么方程f(x)=m(m>0)在[-8,8]上有四个不同的根x1,x2,x3,x4,不妨设x1<x2<x3<x4.由对称性知x1+x2=-12,x3+x4=4,因此x1+x2+x3+x4=-12+4=-8.四、针对训练 1.13 解析 依题意得⎩⎪⎨⎪⎧ a -1=-2a b =0,∴⎩⎨⎧ a =13b =0, ∴a +b =13. 2.(-3,0)∪(3,+∞) 解析 由已知条件,可得函数f(x)的图象大致为下图,故f x x <0的解集为(-3,0)∪(3,+∞).3.-0.5[来源:学,科,网Z,X,X,K]解析 由f(x +2)=-1f x ,得f(x +4)=-1f x +2=f(x),那么f(x)的周期是4,得f(6.5)=f(2.5).因为f(x)是偶函数,则f(2.5)=f(-2.5)=f(1.5).而1≤x ≤2时,f(x)=x -2,∴f(1.5)=-0.5.综上知,f(6.5)=-0.5.4.-3解析 因为奇函数f(x)在x =0有定义,因此f(0)=20+2×0+b =b +1=0,b =-1.因此f(x)=2x +2x -1,f(1)=3,从而f(-1)=-f(1)=-3.5.f(-1)>f(2)解析 由y =f(x +1)是偶函数,得到y =f(x)的图象关于直线x =1对称,∴f(-1)=f(3).又f(x)在[1,+∞)上为单调增函数,∴f(3)>f(2),即f(-1)>f(2).6.132 解析 由()(2)13f x f x +=,得(4)(2)13f x f x ++=,因此(4)()f x f x +=,即()f x 是周期函数且周期为4,因此1313(99)(4243)(3)(1)2f f f f =⨯+===. 7.(-1,23)解析 ∵f(x +3)=f(x), ∴f(2)=f(-1+3)=f(-1).∵f(x)为奇函数,且f(1)>1,∴f(-1)=-f(1)<-1,∴2m -3m +1<-1. 解得:-1<m<23.8.16解析 设在区间[]3,3-上()x f 的最大值为M,最小值为m ,再设()()()x g x f x g ,8-=的最大值为M-8,最小值为m-8,又()312x x x g -=是奇函数,因此在区间[]3,3-上()(),0min max =+x g x g 即()()16m 08-m 8=+=+-M M ,.9.解 由题意,当3≤x ≤6时,设f(x)=a(x -5)2+3,∵f(6)=2,∴2=a(6-5)2+3.∴a =-1.∴f(x)=-(x -5)2+3(3≤x ≤6).………………………………………………………(4分)∴f(3)=-(3-5)2+3=-1.又∵f(x)为奇函数,∴f(0)=0.∴一次函数图象过(0,0),(3,-1)两点.∴f(x)=-13x(0≤x ≤3).…………………………………………………………………(8分)当-3≤x ≤0时,-x ∈[0,3],∴f(-x)=-13(-x)=13x.又f(-x)=-f(x),∴f(x)=-13x.∴f(x)=-13x(-3≤x ≤3).……………………………………………………………(10分)[来源:ZXX K]当-6≤x ≤-3时,3≤-x ≤6,∴f(-x)=-(-x -5)2+3=-(x +5)2+3.又f(-x)=-f(x),∴f(x)=(x +5)2-3.………………………………………………………………………(13分)∴f(x)=⎩⎨⎧ x +52-3, -6≤x ≤-3,-13x -3<x<3,……………………………………………14分-x -52+3, 3≤x ≤6.10.解 (1)f(-x)=(-x)2-2|-x|-1=x2-2|x|-1=f(x),即f(-x)=f(x).∴f(x)是偶函数.………………………………………………………(3分)(2)当x ≥0时,f(x)=x2-2x -1=(x -1)2-2,[来源:学+科+网Z+X+X +K]当x<0时,f(x)=x2+2x -1=(x +1)2-2, 即f(x)=⎩⎪⎨⎪⎧x -12-2, x ≥0,x +12-2, x<0. 依照二次函数的作图方法,可得函数图象如下图. ……………………………………………………………………………………………(7分)(3)由(2)中函数图象可知,函数f(x)的单调区间为[-3,-1],[-1,0],[0,1],[1,3].f(x)在[-3,-1]和[0,1]上为减函数,在[-1,0],[1,3]上为增函数.………………(10分)(4)当x ≥0时,函数f(x)=(x -1)2-2的最小值为-2,最大值为f(3)=2;当x<0时,函数f(x)=(x +1)2-2的最小值为-2,最大值为f(-3)=2; 故函数f(x)的值域为[-2,2].……………………………………………………………(14分)11.解 (1)当a =0时,f(x)=x2对任意x ∈(-∞,0)∪(0,+∞),有f(-x)=(-x)2=x2=f(x),∴f(x)为偶函数.…………………………………………………………………………(2分)当a ≠0时,f(x)=x2+a x (x ≠0,常数a ∈R),若x =±1时,则f(-1)+f(1)=2≠0;∴f(-1)≠-f(1),又f(-1)≠f(1),∴函数f(x)既不是奇函数,也不是偶函数.……………………………………………(6分)综上所述,当a =0时,f(x)为偶函数;当a ≠0时,f(x)为非奇非偶函数.………………………………………………………(7分)(2)设2≤x1<x2,f(x1)-f(x2)=x21+a x1-x22-a x2 =x1-x2x1x2[x1x2(x1+x2)-a],……………………………………………………………(10分)要使f(x)在x ∈[2,+∞)上为增函数,必须使f(x1)-f(x2)<0恒成立. ∵x1-x2<0,x1x2>4,即a<x1x2(x1+x2)恒成立.………………………………………(12分)又∵x1+x2>4,∴x1x2(x1+x2)>16,∴a 的取值范畴为(-∞,16].………………………………………………………(14分)。

函数的基本性质教案

函数的基本性质教案

函数的基本性质教案一、教学目标1. 让学生理解函数的概念,掌握函数的基本性质,包括单调性、奇偶性、周期性等。

2. 能够运用函数的基本性质解决实际问题,提高学生的数学应用能力。

3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。

二、教学内容1. 函数的概念及定义2. 函数的单调性3. 函数的奇偶性4. 函数的周期性5. 函数的基本性质在实际问题中的应用三、教学重点与难点1. 教学重点:函数的基本性质,包括单调性、奇偶性、周期性。

2. 教学难点:函数性质的证明和应用。

四、教学方法1. 采用讲授法,系统地讲解函数的基本性质。

2. 利用实例进行分析,帮助学生理解函数性质的应用。

3. 引导学生进行自主学习,培养学生的逻辑思维能力。

4. 利用小组讨论,提高学生的合作能力。

五、教学过程1. 导入:通过生活中的实例,引导学生认识函数,激发学生的学习兴趣。

2. 讲解:讲解函数的概念,定义,并引入函数的单调性、奇偶性、周期性等基本性质。

3. 分析:分析函数性质的证明方法,并通过实例进行分析,让学生理解函数性质的应用。

4. 练习:布置练习题,让学生巩固所学内容。

5. 总结:对本节课的内容进行总结,强调函数基本性质的重要性。

6. 作业布置:布置课后作业,巩固所学知识。

7. 课后辅导:针对学生学习中遇到的问题进行辅导,提高学生的学习能力。

六、教学评价1. 评价方式:采用课堂表现、课后作业和单元测试相结合的方式进行评价。

2. 评价内容:(1) 函数概念的理解和运用;(2) 函数单调性、奇偶性、周期性的理解和证明;(3) 函数性质在实际问题中的应用能力。

七、教学资源1. 教材:《数学分析》;2. 教学课件;3. 实例素材;4. 练习题库;5. 课后辅导资料。

八、教学进度安排1. 第1周:讲解函数的概念及定义;2. 第2周:讲解函数的单调性;3. 第3周:讲解函数的奇偶性;4. 第4周:讲解函数的周期性;5. 第5周:函数性质在实际问题中的应用。

函数的奇偶性教案(通用8篇)

函数的奇偶性教案(通用8篇)

函数的奇偶性教案(通用8篇)函数的奇偶性教案(通用8篇)作为一位兢兢业业的人民教师,很有必要精心设计一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

来参考自己需要的教案吧!下面是小编收集整理的函数的奇偶性教案,欢迎阅读,希望大家能够喜欢。

函数的奇偶性教案篇1教学目标:了解奇偶性的含义,会判断函数的奇偶性。

能证明一些简单函数的奇偶性。

弄清函数图象对称性与函数奇偶性的关系。

重点:判断函数的奇偶性难点:函数图象对称性与函数奇偶性的关系。

一、复习引入1、函数的单调性、最值2、函数的奇偶性(1)奇函数(2)偶函数(3)与图象对称性的关系(4)说明(定义域的要求)二、例题分析例1、判断下列函数是否为偶函数或奇函数例2、证明函数在R上是奇函数。

例3、试判断下列函数的奇偶性三、随堂练习1、函数()是奇函数但不是偶函数是偶函数但不是奇函数既是奇函数又是偶函数既不是奇函数又不是偶函数2、下列4个判断中,正确的是_______.(1)既是奇函数又是偶函数;(2)是奇函数;(3)是偶函数;(4)是非奇非偶函数3、函数的图象是否关于某直线对称?它是否为偶函数?函数的奇偶性教案篇2一、教学目标【知识与技能】理解函数的奇偶性及其几何意义.【过程与方法】利用指数函数的图像和性质,及单调性来解决问题.【情感态度与价值观】体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣.二、教学重难点【重点】函数的奇偶性及其几何意义【难点】判断函数的奇偶性的方法与格式.三、教学过程(一)导入新课取一张纸,在其上画出平面直角坐标系,并在第一象限任画一可作为函数图象的图形,然后按如下操作并回答相应问题:1 以y轴为折痕将纸对折,并在纸的背面(即第二象限)画出第一象限内图形的痕迹,然后将纸展开,观察坐标系中的图形;问题:将第一象限和第二象限的图形看成一个整体,则这个图形可否作为某个函数y=f(x)的图象,若能请说出该图象具有什么特殊的性质?函数图象上相应的点的坐标有什么特殊的关系?答案:(1)可以作为某个函数y=f(x)的图象,并且它的图象关于y 轴对称;(2)若点(x,f(x))在函数图象上,则相应的点(-x,f(x))也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.(二)新课教学1.函数的奇偶性定义像上面实践操作1中的图象关于y轴对称的函数即是偶函数,操作2中的图象关于原点对称的函数即是奇函数.(1)偶函数(even function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(学生活动):仿照偶函数的定义给出奇函数的定义(2)奇函数(odd function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.注意:1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称).2.具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.3.典型例题(1)判断函数的奇偶性例1.(教材P36例3)应用函数奇偶性定义说明两个观察思考中的四个函数的奇偶性.(本例由学生讨论,师生共同总结具体方法步骤) 解:(略)总结:利用定义判断函数奇偶性的格式步骤:1 首先确定函数的定义域,并判断其定义域是否关于原点对称;2 确定f(-x)与f(x)的关系;3 作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.(三)巩固提高1.教材P46习题1.3 B组每1题解:(略)说明:函数具有奇偶性的一个必要条件是,定义域关于原点对称,所以判断函数的奇偶性应应首先判断函数的定义域是否关于原点对称,若不是即可断定函数是非奇非偶函数.2.利用函数的奇偶性补全函数的图象(教材P41思考题)规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.说明:这也可以作为判断函数奇偶性的依据.(四)小结作业本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称.单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.课本P46 习题1.3(A组) 第9、10题, B组第2题.四、板书设计函数的奇偶性一、偶函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.二、奇函数:一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.三、规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称.函数的奇偶性教案篇3学习目标 1.函数奇偶性的概念2.由函数图象研究函数的奇偶性3.函数奇偶性的判断重点:能运用函数奇偶性的定义判断函数的奇偶性难点:理解函数的奇偶性知识梳理:1.轴对称图形:2中心对称图形:【概念探究】1、画出函数,与的图像;并观察两个函数图像的对称性。

函数奇偶性的教案

函数奇偶性的教案

函数奇偶性教案教学目标:1. 理解奇函数和偶函数的概念。

2. 学会判断函数的奇偶性。

3. 能够运用函数的奇偶性解决实际问题。

教学内容:一、奇函数和偶函数的定义1. 引入奇函数和偶函数的概念。

2. 讲解奇函数和偶函数的定义。

3. 通过例题让学生理解奇函数和偶函数的概念。

二、判断函数的奇偶性1. 介绍判断函数奇偶性的方法。

2. 讲解如何判断一个函数是奇函数还是偶函数。

3. 通过练习题让学生掌握判断函数奇偶性的方法。

三、函数奇偶性的性质1. 介绍函数奇偶性的性质。

2. 讲解奇函数和偶函数的性质。

3. 通过例题让学生理解函数奇偶性的性质。

四、函数奇偶性的应用1. 介绍函数奇偶性在实际问题中的应用。

2. 讲解如何运用函数奇偶性解决实际问题。

3. 通过练习题让学生学会运用函数奇偶性解决实际问题。

2. 让学生评价自己的学习效果。

3. 布置作业,巩固所学知识。

教学方法:1. 采用讲授法,讲解奇函数和偶函数的定义及性质。

2. 采用案例分析法,让学生通过例题理解奇函数和偶函数的概念。

3. 采用练习法,让学生通过练习题掌握判断函数奇偶性的方法。

4. 采用实际应用法,让学生学会运用函数奇偶性解决实际问题。

教学评价:1. 课堂讲解的清晰度和连贯性。

2. 学生练习题的完成情况。

3. 学生运用函数奇偶性解决实际问题的能力。

六、奇偶性在图像上的表现1. 介绍奇偶性在函数图像上的表现。

2. 讲解奇函数和偶函数图像的特点。

3. 通过示例让学生观察并分析奇偶性在函数图像上的表现。

七、函数奇偶性与坐标系的关系1. 介绍函数奇偶性与坐标系的关系。

2. 讲解奇函数和偶函数在不同坐标系中的表现。

3. 通过练习题让学生掌握函数奇偶性与坐标系的关系。

八、函数奇偶性与变换1. 介绍函数奇偶性与变换的关系。

2. 讲解奇函数和偶函数在坐标变换中的性质。

3. 通过例题让学生理解函数奇偶性与变换的关系。

九、实际问题中的函数奇偶性1. 介绍函数奇偶性在实际问题中的应用。

函数的奇偶性教案2篇

函数的奇偶性教案2篇

函数的奇偶性教案第一篇:函数的奇偶性教案目标:1. 了解函数的奇偶性的定义和性质。

2. 判断函数的奇偶性。

3. 通过练习题加深对函数的奇偶性的理解。

预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以用一个简单的问题引入话题,例如:你知道什么是函数的奇偶性吗?为什么需要关注函数的奇偶性?学生可以自由发言,激发学生们的兴趣。

步骤二:讲解奇偶性的概念(10分钟)教师简要讲解函数的奇偶性的概念,可以借助一些例子来说明。

奇函数和偶函数是对称的关系,奇函数关于y轴对称,而偶函数关于原点对称。

步骤三:奇偶性的判断方法(15分钟)教师讲解奇偶性的判断方法。

一般来说,对于一元函数,可以通过以下两种方法判断函数的奇偶性。

方法1:使用函数的定义式。

对于奇函数,f(-x)=-f(x)成立;对于偶函数,f(-x)=f(x)成立。

方法2:使用函数的图象。

对于奇函数,其图象关于原点对称;对于偶函数,其图象关于y轴对称。

步骤四:练习题(15分钟)教师提供一些练习题,让学生在纸上完成,然后进行讲解和讨论。

例如:1. 判断函数f(x)=x^3+3x^2-5x是否为奇函数。

2. 判断函数g(x)=2x^2-4是否为偶函数。

3. 利用函数的奇偶性,简化函数h(x)=5x^3-x^2+2x-1的图象。

步骤五:总结(10分钟)教师对本节课内容进行总结,并强调函数的奇偶性的重要性和应用。

第二篇:函数的奇偶性教案(续)目标:1. 掌握奇函数和偶函数的一些常见函数的性质。

2. 进一步加深对函数的奇偶性的理解。

3. 练习函数的奇偶性的判断和应用。

预计完成时间:1课时教学步骤:步骤一:引入话题(10分钟)教师可以复习上节课的内容,然后提问学生,你还记得什么是奇函数和偶函数吗?奇函数和偶函数有哪些性质?步骤二:常见函数的性质(15分钟)教师讲解一些常见函数的性质,例如:1. 幂函数:对于非负整数n,当n为奇数时,函数f(x)=x^n是奇函数;当n为偶数时,函数f(x)=x^n是偶函数。

《函数的奇偶性与周期性》教案

《函数的奇偶性与周期性》教案

《函数的奇偶性与周期性》教案教案:函数的奇偶性与周期性一、教学内容本节课主要内容为函数的奇偶性与周期性。

1.函数的奇偶性概念及判断方法;2.函数的周期性概念及判断方法;3.综合应用题。

二、教学目标1.理解函数的奇偶性的定义;2.掌握函数奇偶性的判断方法;3.了解函数周期的概念,掌握函数周期的判断方法;4.能够应用函数的奇偶性与周期性解决综合问题。

三、教学过程1.导入(5分钟)教师通过提问与学生交流,引出函数的奇偶性与周期性的概念,比如“大家了解什么是函数的奇偶性吗?可以举几个例子来说明一下。

”“函数的周期性是什么意思呢?”等等。

2.讲解(25分钟)通过投影仪展示PPT,讲解函数的奇偶性与周期性的概念。

1)函数的奇偶性概念及判断方法:函数f(x)为奇函数,当且仅当对于任意x∈D,f(-x)=-f(x);函数f(x)为偶函数,当且仅当对于任意x∈D,f(-x)=f(x);判断奇偶性的方法为将函数代入定义进行验证。

2)函数的周期性概念及判断方法:函数f(x)的周期为T,当且仅当对于任意x∈D,有f(x+T)=f(x);判断函数周期的方法为找出函数的一次性表达式,并将其化简为f(x+T)=f(x)。

3)综合应用题解析:通过一些例题的解析,让学生能够运用奇偶性和周期性的知识解决问题。

3.锻炼与拓展(20分钟)举一些例题进行训练,可以分小组进行讨论与比赛,以增加学生的参与度。

1)设f(x)是定义域为R的周期函数,且f(0)=3,f(1)=2,f(2)=4,f(3)=-1,f(4)=-2,f(5)=-4,求f(2005)的值。

2)已知函数f(x)是定义域为R的奇函数,且f(2)=3,f(4)=-1,求f(x)的表达式。

3)设f(x)=x^3-3x,则f(x)是奇函数还是偶函数?。

4.巩固与评价(10分钟)布置一些练习题,要求学生自主完成,并互相批改答案,提升学生的综合应用能力。

1)设f(x)为周期函数,且f(x)=2x^2-x+1,周期为T,求T的值。

高一数学上册《函数的基本性质》教案、教学设计

2.学生的数学思维能力、逻辑推理能力和直观想象力发展不平衡,部分学生对数形结合的方法还不够熟悉。教师应针对这一情况,设计丰富的教学活动,提高学生的数学素养。
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。

函数奇偶性的教案

函数奇偶性的教案第一章:函数奇偶性的概念引入教学目标:1. 理解函数奇偶性的基本概念;2. 学会判断函数的奇偶性;3. 理解奇偶性在数学中的应用。

教学内容:1. 引入函数的概念;2. 介绍奇偶性的定义;3. 举例说明奇偶性的判断方法。

教学活动:1. 引导学生回顾函数的定义,强调函数的输入输出关系;2. 引入奇偶性的概念,解释奇偶性的含义;3. 通过具体例子,让学生学会判断函数的奇偶性;4. 练习判断一些简单函数的奇偶性;5. 引导学生思考奇偶性在数学中的应用,如物理中的对称性等。

教学评价:1. 检查学生对函数奇偶性概念的理解;2. 评估学生判断函数奇偶性的能力;3. 考察学生对奇偶性应用的理解。

第二章:偶函数的性质教学目标:1. 理解偶函数的定义及其性质;2. 学会运用偶函数的性质解决问题;3. 掌握偶函数图像的特点。

教学内容:1. 偶函数的定义及其性质;2. 偶函数图像的特点;3. 偶函数在实际问题中的应用。

教学活动:1. 引导学生回顾上一章所学的内容,强调奇偶性的概念;2. 引入偶函数的定义,解释偶函数的含义;3. 通过具体例子,让学生学会运用偶函数的性质解决问题;4. 练习运用偶函数性质解决一些实际问题;5. 引导学生思考偶函数图像的特点,分析偶函数在实际问题中的应用。

教学评价:1. 检查学生对偶函数定义及其性质的理解;2. 评估学生运用偶函数性质解决问题的能力;3. 考察学生对偶函数图像特点的认识。

第三章:奇函数的性质教学目标:1. 理解奇函数的定义及其性质;2. 学会运用奇函数的性质解决问题;3. 掌握奇函数图像的特点。

教学内容:1. 奇函数的定义及其性质;2. 奇函数图像的特点;3. 奇函数在实际问题中的应用。

教学活动:1. 引导学生回顾前两章所学的内容,强调奇偶性的概念;2. 引入奇函数的定义,解释奇函数的含义;3. 通过具体例子,让学生学会运用奇函数的性质解决问题;4. 练习运用奇函数性质解决一些实际问题;5. 引导学生思考奇函数图像的特点,分析奇函数在实际问题中的应用。

函数的奇偶性与周期性教案

函数的奇偶性与周期性教案教案标题:函数的奇偶性与周期性教案教学目标:1. 理解函数的奇偶性与周期性的概念;2. 掌握判断函数奇偶性和周期性的方法;3. 能够应用函数的奇偶性和周期性解决相关问题。

教学准备:1. 教师准备:教学课件、教学素材、教学实例;2. 学生准备:笔记本、教科书、计算器。

教学过程:一、导入(5分钟)1. 引入函数的概念,回顾函数的定义和基本性质;2. 提问学生是否了解函数的奇偶性和周期性。

二、概念解释与讲解(15分钟)1. 介绍函数的奇偶性的概念:奇函数和偶函数的定义;2. 介绍函数的周期性的概念:周期函数的定义;3. 通过图像和数学表达式的比较,让学生理解奇函数、偶函数和周期函数的特点。

三、判断函数的奇偶性(20分钟)1. 引导学生通过函数图像的对称性来判断函数的奇偶性;2. 指导学生通过函数表达式的特点来判断函数的奇偶性;3. 给出一些实例,让学生通过观察函数图像或计算函数表达式的值来判断函数的奇偶性。

四、判断函数的周期性(20分钟)1. 介绍周期函数的概念和周期的定义;2. 引导学生通过观察函数图像来判断函数的周期性;3. 指导学生通过计算函数表达式的值来判断函数的周期性;4. 给出一些实例,让学生通过观察函数图像或计算函数表达式的值来判断函数的周期性。

五、应用与拓展(15分钟)1. 给出一些实际问题,让学生应用函数的奇偶性和周期性解决问题;2. 提供一些拓展问题,让学生进一步思考和探索函数的奇偶性和周期性的应用场景。

六、总结与评价(10分钟)1. 总结函数的奇偶性和周期性的概念和判断方法;2. 检查学生对函数的奇偶性和周期性的掌握情况,提供必要的补充和指导。

教学延伸:1. 学生可以通过自主学习更多的函数奇偶性和周期性的例题,巩固所学知识;2. 学生可以尝试设计一些函数图像,通过观察图像来判断函数的奇偶性和周期性。

评估方式:1. 课堂练习:布置一些练习题,检查学生对函数奇偶性和周期性的理解和应用能力;2. 个人作业:布置一些作业题,让学生在课后进一步巩固和拓展所学知识。

高中数学教案《函数的奇偶性

高中数学教案《函数的奇偶性》章节一:函数奇偶性的概念引入教学目标:1. 理解函数奇偶性的概念;2. 学会判断函数的奇偶性;3. 掌握函数奇偶性的性质。

教学内容:1. 引入奇偶性的概念;2. 举例说明奇偶性的判断方法;3. 总结奇偶性的性质。

教学步骤:1. 引入奇偶性的概念,让学生思考日常生活中遇到的奇偶性例子;2. 给出函数奇偶性的定义,解释奇偶性的判断方法;3. 通过具体例子,让学生学会判断函数的奇偶性;4. 引导学生总结奇偶性的性质。

教学评估:1. 课堂提问,了解学生对奇偶性概念的理解程度;2. 布置练习题,让学生运用奇偶性的判断方法。

章节二:奇函数和偶函数的性质教学目标:1. 理解奇函数和偶函数的性质;2. 学会运用奇偶性解决实际问题。

教学内容:1. 介绍奇函数和偶函数的性质;2. 举例说明奇偶性在实际问题中的应用。

教学步骤:1. 回顾奇偶性的概念,引导学生理解奇函数和偶函数的性质;2. 通过具体例子,让学生学会运用奇偶性解决实际问题;3. 总结奇偶性在实际问题中的应用。

教学评估:1. 课堂提问,了解学生对奇偶性性质的理解程度;2. 布置练习题,让学生运用奇偶性解决实际问题。

章节三:函数奇偶性的判定定理教学目标:1. 理解函数奇偶性的判定定理;2. 学会运用判定定理判断函数的奇偶性。

教学内容:1. 介绍函数奇偶性的判定定理;2. 举例说明判定定理的运用方法。

教学步骤:1. 引导学生理解函数奇偶性的判定定理;2. 通过具体例子,让学生学会运用判定定理判断函数的奇偶性;3. 总结判定定理的运用方法。

教学评估:1. 课堂提问,了解学生对判定定理的理解程度;2. 布置练习题,让学生运用判定定理判断函数的奇偶性。

章节四:函数奇偶性在实际问题中的应用教学目标:1. 理解函数奇偶性在实际问题中的应用;2. 学会运用奇偶性解决实际问题。

教学内容:1. 介绍函数奇偶性在实际问题中的应用;2. 举例说明奇偶性在实际问题中的解决方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的奇偶性和周期性教案
【教学目标】1.了解函数奇偶性定义,懂得判断一些函数的奇偶性;
2.理解奇(偶)函数图象的特性; 3.了解几类常见函数的周期
【教学重点】奇(偶)函数的性质
【教学难点】分段函数和抽象函数奇偶性的判断
【例题设置】例1(偶函数的性质),例2(分段函数奇偶性的判断),例3(抽象函数
奇偶性的判断
【教学过程】 一、例题引入
〖例1〗 定义在[2,]a -上的偶函数()g x ,当0x ≥时,
()g x 单调递减.(1)()g m g m -<,求实数m 的取值范围.
解:∵定义在[2,]a -上的函数()g x 为偶函数
∴区间[2,]a -关于y 轴对称,即20a -+=,解得2a =,并且(|1|)()g m g x -= ∴(1)()(|1|)(||)g m g m g m g m -<⇔-< …………① 又∵当0x ≥时,()g x 单调递减
∴不等式①等价于0|1|2
0||2|1|||
m m m m ≤-≤⎧⎪
≤≤⎨⎪->⎩
,解得112m -≤<
∴实数m 的取值范围为1
[1,]2
-
★点评:本题应用了偶函数的一个性质(|1|)()g m g x -=,从而避免了一场“大规模”的分类讨论.
二.要点回顾
函数的奇偶性(应优先考虑定义域): 1.定义:(设函数()y f x =的定义域为D )
⑴ 如果对于任意的x D ∈,有()()f x f x -=,那么()y f x =叫做偶函数,其图象关
于y 轴对称,在其对应的区间内有相反的单调性...............
. ⑵ 如果对于任意的x D ∈,有()()f x f x -=-,那么()y f x =叫做奇函数,其图象关
于原点轴对称,在其对应的区间内有相..........同.的单调性....
. ★注意:具有奇偶性的函数,其定义域必关于y 轴(或原点)对称.
2.奇偶性的等价条件
()f x 为偶函数()()()()0f x f x f x f x ⇔-=⇔--=⇔(||)()f x f x =()1()f x f x -⇔=
()f x 为奇函数()
()()()()()()01()
f x f x f x f x f x f x f x f x -⇔-=-⇔=--⇔-+=⇔
=-
3.判断函数奇偶性的步骤:
⑴ 判断函数的定义域是否关于y 轴(或原点)对称(该步很关键且容易被遗漏); ⑵ 对()f x 进行化简,若已是最简形式,可跳过该步骤; ⑶ 判断()f x -与()f x 的关系.
★注:亦可根据函数的图象判断其奇偶性(但不能用来证明奇偶性).
〖例2〗 判断下列各函数的奇偶性:
⑴ 221
()lg lg f x x x
=+

()(f x x =-⑶220
()0
x x x f x x x x ⎧+<=⎨-+>⎩
解:⑴ 函数的定义域(,0)(0,)-∞+∞ 关于y 轴对称,且22()lg lg 0f x x x =-= ∴()f x 既为奇函数也为偶函数
⑵ 由
101x
x
+≥-得原函数定义域为[1,1)-关于y 轴不对称 ∴()f x 既非奇函数也非偶函数
⑶ 函数的定义域(,0)(0,)-∞+∞ 关于y 轴对称
当0x <时,0x ->,则22()()()()f x x x x x f x -=---=-+=- 当0x >时,0x -<,则22()()()()f x x x x x f x -=--=-+=-
综上所述,对任何x ∈(,0)(0,)-∞+∞ 都有()()f x f x -=-,故()f x 为奇函数. ★点评:分段函数的性质的讨论通法为“分类讨论”.
〖例3〗 ()f x 是定义在R 上的函数,对于任意,x y R ∈,()()f x y f x y ++-
2()()f x f y =恒成立,且(0)0f ≠,试判断()f x 的奇偶性.
解:∵对于任意,x y R ∈,()()f x y f x y ++-2()()f x f y =恒成立 令0x y ==,得(0)(0)2(0)(0)f f f f +=⋅,且(0)0f ≠,∴(0)1f =
令0x =,得()()2(0)()f y f y f f y +-=,即()()f y f y -=.故()f x 是偶函数. ★点评:抽象函数是近几年高考的热点,研究这类函数的根本方法是“赋值”,解题中要灵活应用题目条件赋值转化. 4.奇(偶)函数的性质(补充) ⑴ 奇函数的反函数仍是奇函数;
(()0f x ≠)

()0f x ≠)
⑵ 若奇函数()f x 在0x =处有定义,则(0)0f = ⑶ 已知2012()n n f x a a x a x a x =++++ ,则
当0240a a a ==== (即偶数次项系数都为0)时,()f x 为奇函数; 法1350a a a ==== (即奇数次项系数都为0)时,()f x 为偶函数. ⑷ 函数()0f x =(定义域D 关于y 轴对称)既为奇函数也为偶函数; ⑸ 奇(偶)函数的导函数为偶(奇)函数;(文科不给,理科证明如下)
已知:()f x 为奇函数. 求证:()f x '为偶函数 ∵()f x 为奇函数 ∴()()f x f x -=-
证法一:两边同时求导得:
()()f x f x ''--=-,即()()f x f x ''-=
∴()f x '为偶函数
⑹ 若()()f x g x 、都是奇(偶)函数,则()()f x g x ±为奇(偶)函数;()()f x g x ⋅为
偶函数;
()
()
f x
g x (()0g x ≠)为偶函数; ⑺ 若()()f x g x 、中一个为偶函数,一个为奇函数,则()()f x g x ⋅为奇函数;
()()
f x
g x (()0g x ≠)为偶函数;
三、函数周期性复习 1.定义:如果对于任意的...x D ∈(D 为()f x 的定义域)
,有()()f x T f x +=,那么()y f x =具备周期性,T 叫做函数的一个周期.
2.几种常见的函数周期 ⑴ sin()y A x ωϕ=+ 2||T π
ω= ⑵ cos()y A x ωϕ=+ 2||
T πω=
⑶ tan()y A x ωϕ=+
||
T πω=
证法二: ∴0()()
()lim
x f x x f x f x x
∆→+∆-'=∆ 0()()
()lim
x f x x f x f x x
∆→-+∆--'-=∆ 0()()
lim
x f x x f x x
∆→--∆+=∆ 0()()
lim ()x f x x f x f x x
-∆→-∆-'==-∆
注意()
f x '-与[()]f x '
-的区别
思考:
周期函数的定义域是否都为
R ?
函数2((2,21))y x k x k k =+∈+ 其中k Z ∈,其周期为2
⑷ cot()y A x ωϕ=+ ||
T πω=
⑸ 若对任意的...x D ∈,都有()()f x h f x h +=-,则()f x 的周期2T h =
推广:若对任意的...x D ∈,都有()()f x a f x b +=+,则()f x 的周期||T b a =- ⑹ 若对任意的...x D ∈,都有()()f x h f x +=-,则()f x 的周期2T h =
⑺ 若对任意的...x D ∈,都有1
()()
f x h f x +=,则()f x 的周期2T h = ⑻ 若对任意的...x D ∈,都有()()f x T f x -=,则()f x 的周期为T
【课堂小结】
1.“定义域必关于y 轴(或原点)对称”是函数具有奇偶性的必要条件; 2.()f x 为偶函数⇔(||)()f x f x =;
3.若奇函数()f x 在0x =处有定义,则(0)0f =.在大题中要给出证明: 由()f x 为奇函数知(0)(0)f f =-,故(0)0f =
【教后反思】。

相关文档
最新文档