工程数学-概率论复习考试题库(成教、自考)2015

合集下载

(完整版)概率论与数理统计复习题带答案讲解

(完整版)概率论与数理统计复习题带答案讲解

;第一章 一、填空题1. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(A -B)=( 0.3 )。

2. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.7,乙击中敌机的概率为0.8.求敌机被击中的概率为( 0.94 )。

3. 设A、B、C为三个事件,则事件A,B,C中不少于二个发生可表示为(AB AC BC ++ )。

4. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率为( 0.496 )。

5. 某人进行射击,每次命中的概率为0.6 独立射击4次,则击中二次的概率为( 0.3456 )。

6. 设A、B、C为三个事件,则事件A,B与C都不发生可表示为( ABC )。

7. 设A、B、C为三个事件,则事件A,B,C中不多于一个发生可表示为( ABAC BC I I ); 8. 若事件A 与事件B 相互独立,且P (A )=0.5, P(B) =0.2 , 则 P(A|B)=( 0.5 ); 9. 甲、乙各自同时向一敌机炮击,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为( 0.8 ); 10. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A -)=( 0.5 ) 11. 三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为( 0.864 )。

12. 若事件A ⊃B 且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.3 ); 13. 若事件A 与事件B 互不相容,且P (A )=0.5, P(B) =0.2 , 则 P(B A )=( 0.5 ) 14. A、B为两互斥事件,则A B =U ( S )15. A、B、C表示三个事件,则A、B、C恰有一个发生可表示为( ABC ABC ABC ++ )16. 若()0.4P A =,()0.2P B =,()P AB =0.1则(|)P AB A B =U ( 0.2 ) 17. A、B为两互斥事件,则AB =( S )18. 保险箱的号码锁定若由四位数字组成,则一次就能打开保险箱的概率为(110000)。

工程数学(概率论与数理统计)

工程数学(概率论与数理统计)

Y X 05 02B中1.设事件A与B相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( )A、AB=B、P(A)=P(A)P()C、P(B)=1-P(A)D、P(B |)=0A中2.设A、B、C为三事件,则事件( )A、 B、C C、()C D、()C中3.设二维随机变量(X、Y)的联合分布为( )则P{XY=0}=( )A、 B、 C、 D、1C中4.设XB(10,),则E(X)=( )A、 B、1C、 D、 10B中5.设XN(1,),则下列选项中,不成立的是( )A、E(X)=1B、D(X)=3C、P(X=1)=0D、P(X<1)=0.5A中6.设A与B互为对立事件,且P(A)>0,P(B)>0,则下列各式中错误的是( )A、 B、P(B|A)=0 C、P(AB)=0 D、P(A∪B)=1D中7.设A,B为两个随机事件,且P(AB)>0,则P(A|AB)=( )A、P(A)B、P(AB)C、P(A|B)D、1C中8.设随机变量X在区间[2,4]上服从均匀分布,则P{2<X<3}=( )A、P{3.5<X<4.5} B、P{1.5<X<2.5} C、P{2.5<X<3.5} D、P{4.5<X<5.5}B中9.设随机变量X的概率密度为f (x)=则常数c等于( )A、-1B、C、D、1A中10.设二维随机变量(X,Y)的分布律为Y X01 200.10.2010.30.10.120.100.1,则P{X=Y}=( )A、0.3B、0.5C、0.7D、0.8Y X 0100.10.210.30.4A中11.设随机变量X服从参数为2的指数分布,则下列各项中正确的是( )A、E(X)=0.5,D(X)=0.25B、E(X)=2,D(X)=2C、E(X)=0.5,D(X)=0.5D、E(X)=2,D(X)=4C难12.设随机变量X服从参数为3的泊松分布,YB(8,),且X,Y相互独立,则D(X-3Y-4)=A、-13B、15C、19D、23B中13.下列关系式中成立的是( )A、 (A-B)∪B=AB、 AB与B互不相容C、D、 (A∪B)-B=A A中14.设一批产品共有1000个,其中50个次品,从中随机地有放回地选取500个产品,X表示抽到次品的个数,则P(X=3)=( )A、 B、 C、(0.05)3(0.95)497 D、A中15.从标号为1,2,…,101的101个灯泡中任取一个,则取得标号为偶数的灯泡的概率为( )A、 B、 C、 D、D中16.设事件A、B满足P(A)=0.2,P(B)=0.6,则P(A∪B)=( )A、0.12B、0.4C、0.6D、0.8A中17.设每次试验成功的概率为p(0<p<1),则在3次独立重复试验中至少成功一次的概率为( )A、1-(1-p)3B、p(1-p)2C、D、p+p 2+P 3D中18.设二维随机变量(X,Y)的分布律为设p ij =P{X=i,Y=j}i,j=0,1,则下列各式中错误的是( )A、 B、 C、 D、D中19.设X,Y是任意随机变量,C为常数,则下列各式中正确的是( )A、D(X+Y)=D(X)+D(Y)B、D(X+C)=D(X)+CC、D(X-Y)=D(X)-D(Y)D、D(X-C)=D(X)D中20.设随机变量X的分布函数为F(x)= 则E(X)=( )A、 B、 C、 D、3C中21.设随机变量X与Y相互独立,且XB(36,),YB(12,),则D(X-Y+1)=()A、 B、 C、 D、D中22.设A、B为随机事件,且P(B)>0,P(A|B)=1,则有()A、P(A∪B)>P(A) B、P(A∪B)>P(B) C、P(A∩B)=P(B) D、P(A∪B)=P(B)D中23.设离散型随机变量X的分布律为X0123p0.10.30.40.2F(x)为其分布函数,则F(3)=()A、0.2B、0.4C、0.8D、1D中24.设随机变量的联合分布律为XY1231 20.18α0.300.20.120.08则有()A、α=0.10B、α=0.22C、α=0.20D、α=0.12B中25.设随机变量X~N(1,22),Y~N(1,2),已知X与Y相互独立,则3X-2Y的方差为()A、8B、16C、28D、44B中26.设A与B互为对立事件,且P(A)>0,P(B)>0,则下列各式中错误的是( )A、P(A)=1-P(B)B、P(AB)=P(A)P(B)C、PD、P(A∪B)=1D中27.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=( )A、P(AB) B、P(A) C、P(B) D、1B中28.下列各函数可作为随机变量分布函数的是( )A、;B、;C、;D、;B中29.设随机变量X的概率密度为则P{-1<X<1}=()YX-10100.10.30.210.20.10.1A、 B、 C、 D、1C中30.设二维随机变量(X,Y)的分布律为,则P{X+Y=0}=( )A、0.2 B、0.3 C、0.5 D、0.7B中31.设随机变量X的概率密度为则常数c=( )A、 B、 C、2 D、4D中31.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是( )A、E(X)=0.5,D(X)=0.5B、E(X)=0.5,D(X)=0.25C、E(X)=2,D(X)=4D、E(X)=2,D(X)=2C中32.设随机变量X与Y相互独立,且XN(1,4),YN(0,1),令Z=X-Y,则D(Z)=( )A、1B、3C、5D、6C中33.已知D(X)=4,D(Y)=25,Cov(X,Y)=4,则ρXY =( )A、0.004B、0.04C、0.4D、4A中34.设事件A与B互不相容,且P(A)>0,P(B)>0,则有( )A、P(AB)=P(A)+P(B)B、P(AB)=P(A)P(B)C、A=D、P(A|B)=P(A)D中35.某人独立射击三次,其命中率为0.8,则三次中至多击中一次的概率为( )A、0.002B、0.008C、0.08D、0.104B中36.设事件{X=K}表示在n次独立重复试验中恰好成功K次,则称随机变量X服从( )A、两点分布B、二项分布C、泊松分布D、均匀分布C中37.设随机变量X的概率密度为f(x)= 则K=( )A、 B、 C、 D、B中38.设二维随机向量(X,Y)的联合分布函数F(x,y),其联合分布列为Y 01X-10.20.300.10.4则P(-1,1) =( )A、0.2B、0.3C、0.6D、0.7D中39.从一批产品中随机抽两次,每次抽1件。

概率论与数理统计习题-工程数学

概率论与数理统计习题-工程数学

概率论与数理统计习题集第一单元 随机变量基本概念一、 选择题1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误的是( )A .0)|(=B A P B .P (B|A )=0C .P (AB )=0D .P (A ∪B )=12.设A ,B 为两个随机事件,且P (AB )>0,则P (A|AB )=( )A .P (A )B .P (AB )C .P (A|B )D .13.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一件次品的概率为( )A .601B .457C .51D .1574.设A 为随机事件,则下列命题中错误的是( )A .A 与A 互为对立事件B .A 与A 互不相容C .Ω=⋃A AD .A A =5. 2.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2 B .0.4 C .0.6 D .0.86.设事件A 与B 互不相容,且P(A)>0,P(B) >0,则有( )A .P(AB )=l B .P(A)=1-P(B)C .P(AB)=P(A)P(B)D .P(A ∪B)=17.设A 、B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( )A .P(AB)=0B .P(A-B)=P(A)P(B )C .P(A)+P(B)=1D .P(A|B)=08.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( )A .0.125B .0.25C .0.375D .0.509.某射手向一目标射击两次,Ai 表示事件“第i 次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=( )A .A1A2B .21A AC .21A AD .21A A10.某人每次射击命中目标的概率为p(0<p<1),他向目标连续射击,则第一次未中第二次命中的概率为( )A .p2B .(1-p)2C .1-2pD .p(1-p)11.已知P(A)=0.4,P(B)=0.5,且A B ,则P(A|B)=( )A .0B .0.4C .0.8D .112.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( )A .0.20B .0.30C .0.38D .0.5713.已知P(B|A)=103,P(A)=51,则P(AB)=( ) A .21 B.23 C .32 D.503 14.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( ) A.2258B.21C.83 D.43 15.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次抽到白球的概率为( ) A.53 B.43 C.21 D.103 16.6位同学参加百米短跑初赛,赛场有6条跑道,则已知甲同学排在第一跑道,乙同学排在第二跑道的概率( ) A.52 B.51 C.92 D. 7317.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的条件下第二张也是奇数的概率( ) A.52 B.51 C.21 D. 7318.福娃是2008年北京第二十九届奥运会的吉祥物,每组福娃都由“贝贝”“晶晶”“欢欢”“迎迎”和“妮妮”这五个福娃组成,甲、乙两人随机地从一组五个福娃中选取一个留作纪念。

工程数学复习资料一(选择题)

工程数学复习资料一(选择题)

2015下工程数学复习资料一(选择题等做完大题目再来做)1方程组⎪⎩⎪⎨⎧=+=+=-331232121a x x a x x a x x 相容的充分必要条件是( B ),其中 )3,2,1(,0=≠i a iA 0321=++a a aB 0321=-+a a aC 0321=+-a a aD 0321=++-a a a 2设A 、B 是两个事件,则下列等式中 ( C ) 是不正确的。

A P (AB )=P (A )P (B ),其中A,B 相互独立B P (AB )=P (B )P (A|B ),其中P (B )≠ 0C P (AB )=P (A )P (B ),其中A,B 互不相容D P (AB )=P (A )P (B|A ),其中P (A )≠ 03设321,,x x x 是来自正态总体N (μ,σ2)的样本,μ未知,则下列 ( D )不是统计量。

A ∑=3131i i x B∑=31i i x C 32132x x x -+ D )(3131μ-∑=i i x 4设 A 、B 都是n 阶方阵,则下列命题正确的是(A )。

A |AB|=|A| |B|B 2222)(B AB A B A +-=-C AB=BAD 若AB=0,则A=0或B=0 5已知2维 向量组α1,α2, α3,α4,则 r (α1,α2, α3,α4 ) 至多是 (B )A 1B 2C 3D 46设AX=0 是n 元线性方程组,其中A 是n 阶矩阵,若条件( D )成立,则该方程组没有非零解。

A 、r (A )< nB 、A 的行向量线性相关C 、|A| =0D 、A 是行满秩矩阵7袋中有3个红球2个白球,第一次取出一球,不放回,第二次再取一球,则两次都是红球的概率是(B )A 6 / 25B 3 / 10C 3/ 20D 9 / 258设 A 、B 为n 阶矩阵(n >1),则下列等式成立的是( D )。

概率论_习题集(含答案)

概率论_习题集(含答案)

《概率论》课程习题集一、计算题1. 10只产品中有2只次品, 在其中取两次, 每次任取一只,作不放回抽样,求下列事件的概率:(1)两只都是正品;(2)一只是正品,一只是次品;(3)第二次取出的是次品。

2. 一个学生接连参加同一课程的两次考试。

第一次及格的概率为p ,若第一次及格则第二次及格的概率也为p ;若第一次不及格则第二次及格的概率为.2/p 求 (1)若至少有一次及格则他能取得某种资格,求他取得该资格的概率; (2)若已知他第二次已经及格,求他第一次及格的概率3. 用某种方法普查肝癌,设:A ={ 检验反映呈阳性 },C ={ 被检查者确实患有肝癌 },已知()()5.C A P ,.C A P 90950==()5.C P 000=且现有一人用此法检验呈阳性,求此人真正患有肝癌的概率.4. 两台机床加工同样的零件,第一台出现次品的概率是0.03, 第二台出现次品的概率是0.02,加工出来的零件放在一起,并且已知第一台加工的零件比第二台的多一倍。

(1)求随意取出的零件是合格品的概率(2)如果随意取出的零件经检验是次品,求它是由第二台机床加工的概率5. 某人有5把钥匙,但忘了开房门的是哪一把,现逐把试开,求∶(1) 恰好第三次打开房门锁的概率(2) 三次内打开房门锁的概率(3) 如5把钥匙内有2把是开房门的,三次内打开房门锁的概率6. 设X 是连续型随机变量,其密度函数为()()⎩⎨⎧<<-=其它020242x x x c x f求:(1);常数c (2){}.1>X P7. 设X ~⎩⎨⎧≤≤=其他,02,)(x o cx x f 求(1)常数c ;(2)分布函数)(x F ;8. 一工厂生产的某种元件的寿命X (以小时计)服从参数为σμ,160= 的正态分布。

若要求,80.0)200120(≥≤<X P 允许σ最大为多少?9. 证明:指数分布有无记忆性(或称无后效性),即证:如果)(~λE X ,则有)()|(t X P s X t s X P >=>+>,0,0≥≥t s10. 对球的直径作测量,设测量值均匀地分布在],[b a 内,求球的体积的概率密度.11. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤-=其他,021),11(2)(2x xx f ,求X 的分布函数。

概率统计复习题(含答案)

概率统计复习题(含答案)

概率论与数理统计复习题(一)一.填空1.3.0)(,4.0)(==B P A P 。

若A 与B 独立,则=-)(B A P ;若已知B A ,中至少有一个事件发生的概率为6.0,则=-)(B A P 。

2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。

3.设),(~2σμN X ,且3.0}42{ },2{}2{=<<≥=<X P X P X P ,则=μ ;=>}0{X P 。

4.1)()(==X D X E 。

若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。

5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。

7.)16,1(~),9,0(~N Y N X ,且X 与Y 独立,则=-<-<-}12{Y X P (用Φ表示),=XY ρ 。

8.已知X 的期望为5,而均方差为2,估计≥<<}82{X P 。

9.设1ˆθ和2ˆθ均是未知参数θ的无偏估计量,且)ˆ()ˆ(2221θθE E >,则其中的统计量 更有效。

10.在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。

但当增大置信水平时,则相应的置信区间长度总是 。

二.假设某地区位于甲、乙两河流的汇合处,当任一河流泛滥时,该地区即遭受水灾。

设某时期内甲河流泛滥的概率为0.1;乙河流泛滥的概率为0.2;当甲河流泛滥时,乙河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受水灾的概率; (2)当乙河流泛滥时,甲河流泛滥的概率。

三.高射炮向敌机发射三发炮弹(每弹击中与否相互独立),每发炮弹击中敌机的概率均为0.3,又知若敌机中一弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。

成人教育 《概率论与数理统计》期末考试复习题及参考答案

成人教育 《概率论与数理统计》期末考试复习题及参考答案

概率论与数理统计练习题A一、填空题1、已知事件A 与B 相互独立,并且3.0)(,4.0)(==B P A P ,则=)(B A P .2.在书架上任意放上20本不同的书,其中指定的两本书放在首未的概率是 .3.设随机变量X ~),2(2σN ,且{}3.042=<<X P ,则{}=<0X P .4.若二维随机变量(X , Y )的区域{}222|),(R y x y x ≤+上服从均匀分布,则(X ,Y )的密度函数为 。

5.设X 表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,则)(2X E = 。

6.设1X ,2X ,…,n X 为总体),0(~2σN X 的一个样本,则2σ 极大似然估计量为 .二、单选题1.已知====)(,8.0)|(,6.0)(,5.0)(B A P A B P B P A P ( ).A 0.5;B 0.6;C 0.7;D 0.8. 2.对于任意两事件A 和B ,)(B A P -=( ).A .)()(B P A P - ; B .)()()(AB P B P A P +-;C .)()(AB P A P -;D .)()()(B A P A P A P -+.3.设有4张卡片分别标以数字1,2,3,4,今任取一张,设事件A 为取到1或2,事件B 为取到1或3,则事件A 与B 是( ).A 互不相容;B 互为对立;C 相互独立;D 互相包含.4.设X 的为随机变量,则=-)32(X E ( ).A )(2X E ;B 3)(4-X E ;C 3)(2+X E ;D 3)(2-XE . 5.设X ,Y 是两个随机变量,则下列命题正确的是( ).A .X ,Y 不相关⇒X ,Y 不相互独立;B . X ,Y 相关⇒X ,Y 相互独立;C .X ,Y 不相关⇒X ,Y 相互独立;D .X ,Y 相互独立⇒X ,Y 不相关6.设1X ,2X ,…,n X 是总体),(2σμN 的样本,2S 是样本方差,则( ).A .)1(~)1(222--n S n χσ; B .)(~)1(222n S n χσ-; C .)1(~)1(22--n t S n σ ;D .)(~)1(22n t S n σ-.三、计算题1.已知40件产品中有3件次品,现从中随机地取出2件,求其中只有1件次品的概率和至少有1件次品的概率.2.在4重伯努力试验中,已知事件A 至少出现一次的概率为0.5,求在一次试验中事件A 出的概率.3.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律; (2) X 的分布函数。

概率论复习题 (有答案)

概率论复习题 (有答案)

选择题1.设事件A 和B 满足A B ⊂,()0P B >,则下列选项一定成立的是 ( B ) (A) ()(|)P A P A B < (B) ()(|)P A P A B ≤ (C) ()(|)P A P A B > (D) ()(|)P A P A B ≥2.掷一颗骰子600次,求“一点” 出现次数的均值为 ( B ) (A) 50 (B) 100 (C) 120 (D) 1503.随机变量X 的分布函数为()F x ,则31Y X =+的分布函数()G y =( A )(A) 11()33F y - (B) (31)F y + (C) 3()1F y + (D) 11()33F y - 4.设连续型随机变量X 的密度函数有()()f x f x -=,()F x 是X 的分布函数,则下列成立的有 ( C )(A) ()()F a F a -= (B) 1()()2F a F a -=(C) ()1()F a F a -=- (D) 1()()2F a F a -=- 5.设二维随机变量(,)X Y 服从G 上的均匀分布,G 的区域由曲线2y x =与y x =所围,则(,)X Y 的联合概率密度函数为 A .(A)6,(,)(,)0,x y G f x y ∈⎧=⎨⎩其它 (B)1/6,(,)(,)0,x y Gf x y ∈⎧=⎨⎩其它(C)2,(,)(,)0,x y G f x y ∈⎧=⎨⎩其它 (D)1/2,(,)(,)0,x y Gf x y ∈⎧=⎨⎩其它6.设随机变量X 服从正态分布()211,N μσ,随机变量Y 服从正态分布()222,N μσ,且{}{}1211P X P Y μμ-<>-<, 则必有 ( C )(A)12σσ< (B) 12σσ> (C) 12μμ< (D) 12μμ>7.设随机变量12,,,n X X X 独立同分布,且方差为20σ>.令11ni i Y X n ==∑,则. ( A ) (A) 21(,)/Cov X Y n σ= (B) 21(,)Cov X Y σ=(C) 21()(2)/D X Y n n σ+=+ (D) 21()(1)/D X Y n n σ-=+8.设随机变量X 服从正态分布()211,N μσ,随机变量Y 服从正态分布()222,N μσ,且{}{}1211P X P Y μμ-<>-<, 则必有 ( B )(A)12σσ> (B) 12σσ< (C) 12μμ> (D) 12μμ<9设随机变量n X X X 12,,,,相互独立且同服从参数为λ的指数分布,其中()x Φ是标准正态分布的分布函数,则 AA) lim ()ni n X n P x x λ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎭∑B) lim ()ni n X n P x x →∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎪⎩⎭∑C)lim ()n i n X P x x λ→∞⎧⎫-⎪⎪⎪≤=Φ⎬⎪⎪⎭∑ D) 1lim ()n i i n X P x x n λλ=→∞⎧⎫-⎪⎪⎪⎪≤=Φ⎨⎬⎪⎪⎪⎪⎩⎭∑ 11.已知()0.5,()0.4,()0.6,P A P B P A B ==⋃=则(|)P A B = A(A) 0.75 (B) 0.6 (C) 0.45 (D) 0.2 12、设二维随机变量(,)X Y 的概率密度函数为(),01,02(,)0,a x y x y f x y +<<<<⎧=⎨⎩其他,则常数a = D (A) 3 (B) 2 (C) 12 (D) 1313、已知(,)XB n p ,且8, 4.8EX DX ==,则n = B(A) 10 (B) 20 (C) 15 (D) 25 14、离散型随机变量X 的分布函数()F x 一定是 D(A) 奇函数 (B) 偶函数 (C) 周期函数 (D) 有界函数15、随机变量X 的分布函数为40,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩,则EX = A(A)144x dx ⎰(B)133x dx ⎰(C)134x dx ⎰(D)150x dx ⎰16、设~(2,4)X N ,且~(0,1)aX b N +,则 C(A) 2,2a b ==- (B) 2,1a b =-=- (C) 0.5,1a b ==- (D) 0.5,1a b ==17、设,X Y 为两个随机变量,1,4,cov(,)1DX DY X Y ===,令122,2Z X Y Z X Y =-=-,则1Z 与2Z 的相关系数为 D(A) 0 (B) 1(C)(D)18、设随机变量~(0,1)X N ,21Y X =+,则~Y A(A) (1,4)N (B) (0,1)N (C) (1,1)N (D) (1,2)N19、.以事件A 表示“甲同学考试合格,乙同学考试不合格”,则事件 A 为 D (A) 甲、乙两同学考试均合格; (B) 甲同学考试不合格,乙同学考试合格; (C) 甲同学考试合格; (D) 甲同学考试不合格或乙同学考试合格. 20设随机变量X 和Y 的关系为32011Y X =+,若3DX =,则DY = A (A) 27 (B) 9 (C) 2020 (D) 2038 21.若事件,,A B C满足()P C =A ,B ,C 不满足 A(A) A B C ==; (B) A B C ≠≠;(C) A B ==Ω,C =∅; (D) ,()0A B P C ==Ω=. 22.设随机变量()()22,4,,5XN YN μμ,{}14P X μ=≤-,{}25P Y μ=≥+,则1P 与2P 的关系是 B(A) 12P P > (B) 12P P = (C) 12P P < (D) 与μ相关23.以A 表示事件“甲种产品畅销,乙中产品滞销”则事件A 为( D ).A 甲种产品滞销,乙中产品畅销 .B 甲、乙两种产品均畅销.C 甲种产品滞销 .D 甲种产品滞销或乙种产品畅销24. n 张奖券中有m 张可以中奖,现有k 个人每人购买一张,其中至少有一个人中奖的概率为( C ).A k n k mn m C C C 11-- .B k n C m .C k n k m n C C --1 .D ∑=ki kni m C C 1 25、设随机变量X 服从参数为2的指数分布,则随机变量Xe Y 21--= A.A 服从)1,0(上的均匀分布 .B 仍服从指数分布.C 服从正态分布 .D 服从参数为2的泊松分布 26、设随机变量),(Y X 的概率分布为已知随机事件)0(=X 与)1(=+Y X 相互独立,则( C ) .A 3.0,2.0==b a .B 1.0,4.0==b a .C 2.0,3.0==b a .D 4.0,1.0==b a27、设)2.0,10(~B X ,)2.0,20(~B Y 且Y X ,相互独立,则~Y X +( C ) .A )2.0,10(B .B )4.0,30(B .C )2.0,30(B .D )4.0,10(B28、已知随机变量)4,9(~N X ,则下列随机变量中服从标准正态分布的有(B ) .A 49-X .B 29-X .C 43-X .D 23-X 29、设Y X ,为任意随机变量,若)()()(Y E X E XY E =,则下述结论中成立的是( A ) .A )()()(Y D X D Y X D +=+ .B )()()(Y D X D XY D = .C Y X ,相互独立 .D Y X ,不独立判断题1.二维正态分布的边缘分布是正态分布; T2.设有分布律:{}1(1)2/1/2(1,2,)n n np X n n +=-==,则X 的期望存在; F3.设 n 次独立重复试验中, 事件 A 出现的次数为m , 则 4n 次独立重复试验中,A 出现的次数为4m ; F4.若AB =∅,则事件,A B 一定相互独立; F5.X 与Y 相互独立且都服从指数分布()E λ,则~(2)X Y E λ+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计(经管类)》复习题一、单项选择题:1.设A ,B 为两随机事件,且A B ⊂,则下列式子正确的是( )。

A. ()()B P B A P =B. ()()B P AB P =C. ()()B P A B P =D. ()()()A P B P A B P -=-2.设随机变量X 的可能取值为21,x x , 随机变量Y 的可能取值为321,,y y y , 如果()()()1111,y Y P x X P y Y x X P =====, 则随机变量X 与Y ( )。

A.一定不相关B.一定独立C.一定不独立D.不一定独立3.下列函数为正态分布密度的是( )。

A. 2221x x e +-π B. ()2122+-x e π C. ()2221μσπ--x e D. 41221--x e π4.对随机变量X 来说,如果DX EX ≠,则可断定X 不服从( )。

A.二项分布B.指数分布C.泊松分布D.正态分布5.若二维随机变量()Y X ,的联合概率密度为()()()()0,011,22>>++=y x y x A y x p ,则系数=A ( )。

A. 24π B. π2 C. 1 D. π2- 6.事件A ,B 相互独立,且()()()=-==B A P B P A P ,2.0,7.0( )。

A.0.46B.0.42C.0.56D.0.147.设随机变量X 服从()10,N , 其分布密度函数为()x ϕ, 则()=0ϕ( )。

A.0 B.1 C. π21 D. 21 8.设X 服从参数为λ的指数分布()λe ,则( )。

A. ()λ212=+X E B. ()12122+=-λX DC. ()1212+=+λX ED. ()14122-=-λX D9.从装有2只红球,2只白球的袋中任取两球,记:{}只白球取到2=A ,则=A ( )。

A.取到2只红球B.取到1只红球C.没有取到白球D.至少取到1只红球10.设随机变量X 的密度函数为()⎪⎩⎪⎨⎧<<=其他,020,sin πx x C x p ,则=C ( )。

A.0B.2π C.1 D. π 11.设对于随机事件A 、B 、C,有()()()41===C P B P A P ,()()()41===C P B P A P ,()()0==BC P AB P ,()81=AC P ,()0=ABC P ,则三个事件A 、B 、C, 至少发生一个的概率为 ( )。

A. 83B. 85C. 43D. 45 12.设随机向量(X , Y )满足E(XY) = EX·EY ,则 ( )。

A.X 、Y 相互独立B.X 、Y 不独立C.X 、Y 相关D.X 、Y 不相关13.已知随机变量X 服从()p n B ,,且4.2=EX 44.1=DX ,则二项分布的参数n ,p 的值为( )。

A.n = 4,p = 0.6B.n = 6,p = 0.4C.n = 8,p = 0.3D.n = 24,p = 0.114.设随机变量X 的分布密度为()4221x e x p -=π ()+∞<<∞-x ,则()=-X D 2( )。

A. 2-;B. 2;C. 4-;D. 415.设随机变量与随机变量相互独立且同分布, 且()()2111=-==-=Y P X P ,()()2111====Y P X P , 则下列各式中成立的是( )。

A. ()410==+Y X P B. ()411==XY P C. ()21==Y X P D. ()1==Y X P 16.设A ,B 为随机事件,则()()=++B A A B A AB ( )。

A.AB.BC.ABD.Φ17.设随机变量X ~N(1,1),其概率密度函数为p(x)分布函数是F(x),则正确的结论是( ) 。

A.P{X≤0}=P{X≥0}B.()()11≥=≤X P X PC.F(-x)=F(x)D.p(x)=p(-x)18.设n X X X ,,,21 是个相互独立同分布的随机变量,u EX i =,4=i DX ,()n i ,,2,1 =,则对于∑==n i i X n X 11,有{}3<-u X P ( )。

A. n 94≤B. 94≤ C. n 941-≥ D. 95≥ 19.设A,B 为两个随机事件,且P(B)>0,P(A│B)=1则有( )。

A.P(A ∪B)>P(A)B.P(A ∪B)>P(B)C.P(A ∪B)=P(A)D.P(A ∪B)=P(B)20.每张奖券中尾奖的概率为101,某人购买了20张号码杂乱的奖券,设中尾奖的张数为X ,则X 服从 ( )。

A.二项分布B.泊松分布C.指数分布D.正态分布21.对掷一枚硬币的试验, “出现正面”称为( )。

A.样本空间B.必然事件C.不可能事件D.随机事件22.设随机变量X ,Y 的期望与方差都存在, 则下列各式中成立的是( )。

A. ()EY EX Y X E +=+B. ()EY EX XY E ⋅=C. ()DY DX Y X D +=+D. ()DY DX XY D ⋅=23.设随机变量X 服从正态分布()9,4N ,则{}=<4X P ( )。

A.0B.1C. 21 D. 31 24.事件A ,B 相互独立,且()7.0=A P ,()6.0=B P ,()=-B A P ( )。

A.0.28B.0.42C.0.88D.0.1825.进行一系列独立的试验,每次试验成功的概率为p ,则在成功2次之前已经失败3次的概率为( )。

A. ()321p p -B. ()314p p -C. ()3215p p -D. ()3214p p - 26.下列函数为随机变量密度的是( )。

A.B. C. D.27. 设X 为服从正态分布()2,1-N 的随机变量, 则E(2X -1)= ( )。

A.9B.6C.4D. 3-28.对于随机变量X , F (x) = P {X ≤ x } 称为随机变量X 的( )。

A.概率分布B.概率C.概率密度D.分布函数29.设随机变量X 与Y 相互独立且都服从区间[0,1]上的均匀分布,则下列随机变量中服从均匀分布的有( )。

A. 2X B. Y X + C. ()Y X , D. Y X - 30.设两个相互独立的随机变量X 和Y 分别服从正态分布()1,0N 和()1,1N ,则下列结论正确的是( )。

A. {}210=≤+Y X PB. {}211=≤+Y X P C. {}210=≤-Y X P D. {}211=≤-Y X P 二、填空题:1.若事件A 与B 互斥,P(A)=0.6,P(A ∪B)=0.8,则()=B P 。

2.随机变量X 服从区间 [1,4]上的均匀分布,则P { 0< X < 3} = . 3.设二维随机变量(X,Y )的联合分布律为:则a= ,b= 。

4.设X 服从正态分布()61,-N ,则D(-2X+1)= 。

5. 设随机变量X 的概率分布为{}()54321,,,,===K CK K X P , 则=C . 6.设A ,B ,C 是三个事件, 则A ,B ,C 中至多有2个事件发生可表示为 。

7.一批零件的次品率为0.2, 连取三次, 每次一件(有放回), 则三次中恰有两次取到次品的概率为 。

8.设随机变量X 服从泊松分布, 且P {X = 1}= P {X = 2}, 则 D X = 。

9.设随机变量X ,Y 都服从均匀分布()1,1-U , 且X 与Y 相互独立, 则随机变量()Y X ,的联合分布密度()=y x p , 。

10.设随机变量X 的数学期望为μ=EX 、方差2σ=DX ,则由切比雪夫不等式有{}≤≥-σμ2X p 。

11.设A ,B ,C 是三个事件,则A 不发生但 B ,C 中至少有1个事件发生可表示为___________12.设()7.0=A P , ()3.0=-B A P , 则()=AB P ________ 。

13.设随机变量X 与Y 相互独立,且X 服从()9,1N ,Y 服从()16,2N ,则随机变量Y X +服从__________分布。

14.设随机变量X 服从泊松分布,且P (X=1)=P (X=2),E (3X-1)= __________。

15. 设随机变量X 的概率分布为()CK K X P ==,(4,3,2,1=K ),则=C __________。

三、计算题:1.设系统由100个相互独立的部件组成, 运行期间每个部件损坏的概率为0.1, 至少有85个部件是完好时系统才能正常工作。

用中心极限定理求系统正常工作的概率。

()。

2.设打一次电话所用时间X (分钟)服从参数为101的指数分布,如果某人刚好在你前面走进公用电话亭,求你等待时间在10分钟到20分钟之间的概率。

3.已知随机向量()Y X ,的联合概率分布为(1)求Y X ,的边缘分布;(2)判断X 与Y 是否独立;(3)求{}Y X P >.4.已知袋中装有5个球,其中2个白球,3个黑球。

现从中任取3个球,设随机变量X 为取得的白球的个数。

求:(1)随机变量X 的分布;(2)数学期望()X E ,方差()X D 。

5.抽样表明某市新生儿体重(单位:公斤)近似地服从正态分布()4,3N ,求新生儿体重超过4公斤的概率。

(()6915.05.0=Φ)6.设随机变量X 服从均匀分布[]4,2U ,Y 服从指数分布()2e ,且X 与Y 相互独立。

求:(1)二维随机变量()Y X ,的联合概率密度函数;(2)()Y X D 2-. 7.一汽车沿一街道行驶,需要通过三个均设有红绿灯信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且红或绿两种信号灯显示的时间相等。

以X 表示该汽车未遇红灯而连续通过的路口数。

求:(1)X 的概率分布; (2)()12+X E 。

8.设()Y X ,的联合密度为()⎩⎨⎧<<<=其他,010,15,2y x y x y x p , (1)求边缘密度()x p X 和()y p Y ;(2)判断X 与Y 是否相互独立。

9. 某市有50%住户订日报,有65%住户订晚报,有85%住户至少订这两种报纸中的一种,求同时订这两种报纸的住户的概率。

四、应用题:1.设某产品的合格率为80% 。

检验员在检验时合格品被认为合格的概率为97%,次品被认为合格的概率为2%。

(1)求任取一产品被检验员检验合格的概率;(2)若一产品通过了检验,求该产品确为合格品的概率。

相关文档
最新文档