2014年10月全国自考概率论与数理统计试题及答案
概率论和数理统计试题及答案

概率论和数理统计试题及答案概率论和数理统计试题及答案⼀、填空题:1、设A 与B 相互独⽴,P(A) =31, P(B) =21, 则P (B-A) = . 解:111()()[1()](1)233P B A P B P A -=-=?-=2、设~[1,3]X U (均匀分布),则2()E X = ,(2)D X = .(52)E X -= ,解:()2;()1/3E X D X ==22()()()13/3E X D X E X =+= (2)4()4/3D X D X ==(52)5()21028E X E X -=-=-=3、设随机变量X 服从指数分布,即 ~(2),X E 定义随机变量2,31,31,3X Y X X >??==??-则 Y 的分布列为。
解:3322620()()(1)(3)21Y x xF Y P Y y P Y P X e dx e e σσσ-----+=≤=≤-=<==-=-?33226()()(11)(3)21Y x xF Y P Y y P Y P X e dx e e ---=≤=-<≤=≤==-=-?3322620()()(12)(3)21Y xx F Y P Y y P Y P X edx ee σσσ++----=≤=<≤=>==-=-?其中σ是与y ⽆关的量4、设~(200,0.1)X B ~(3)Y P ,2~(3,2)Z N ,且X ,,Y Z 相互独⽴, 则(235)E X Y Z --+= , (235)D X Y Z --+=解:(235)2()3()()522000.1333533E X Y Z E X E Y E Z --+=--+=??-?-+=(235)4()9()()72274103D X Y Z D X D Y D Z --+=++=++=5、设总体2~(,)X N µσ,123,,x x x 为来⾃X 的样本,123?0.50.1x x ax µ=+-是未知参数µ的⽆偏估计,则a =。
《概率论与数理统计》习题及答案 第二章

《概率论与数理统计》习题及答案第 二 章1.假设一批产品中一、二、三等品各占60%,30%,10%,从中任取一件,发现它不是三等品,求它是一等品的概率.解 设i A =‘任取一件是i 等品’ 1,2,3i =,所求概率为13133()(|)()P A A P A A P A =,因为 312A A A =+所以 312()()()0.60.30.9P A P A P A =+=+=131()()0.6P A A P A ==故1362(|)93P A A ==. 2.设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.解 设A =‘所取两件中有一件是不合格品’i B =‘所取两件中恰有i 件不合格’ 1, 2.i = 则12A B B =+11246412221010()()()C C C P A P B P B C C =+=+, 所求概率为2242112464()1(|)()5P B C P B A P A C C C ===+. 3.袋中有5只白球6只黑球,从袋中一次取出3个球,发现都是同一颜色,求这颜色是黑色的概率.解 设A =‘发现是同一颜色’,B =‘全是白色’,C =‘全是黑色’,则 A B C =+, 所求概率为336113333611511/()()2(|)()()//3C C P AC P C P C A P A P B C C C C C ====++ 4.从52张朴克牌中任意抽取5张,求在至少有3张黑桃的条件下,5张都是黑桃的概率.解 设A =‘至少有3张黑桃’,i B =‘5张中恰有i 张黑桃’,3,4,5i =, 则345A B B B =++, 所求概率为555345()()(|)()()P AB P B P B A P A P B B B ==++51332415133********1686C C C C C C ==++. 5.设()0.5,()0.6,(|)0.8P A P B P B A ===求()P A B 与()P B A -.解 ()()()() 1.1()(|) 1.10P AB P A P B P A B P A P B A =+-=-=-= ()()()0.60.40.2P B A P B P AB -=-=-=.6.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
年10月全国自考概率论与数理统计真题

年10⽉全国⾃考概率论与数理统计真题全国2012年10⽉⾼等教育⾃学考试《概率论与数理统计》(经管类)真题课程代码:04183请考⽣按规定⽤笔将所有试题的答案涂、写在答题纸上。
选择题部分注意事项:1. 答题前,考⽣务必将⾃⼰的考试课程名称、姓名、准考证号⽤⿊⾊字迹的签字笔或钢笔填写在答题纸规定的位置上。
2. 每⼩题选出答案后,⽤2B 铅笔把答题纸上对应题⽬的答案标号涂⿊。
如需改动,⽤橡⽪擦⼲净后,再选涂其他答案标号。
不能答在试题卷上。
⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共20分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将其选出并将“答题纸”的相应代码涂⿊。
错涂、多涂或未涂均⽆分。
1.已知事件A ,B ,A ∪B 的概率分别为0.5,0.4,0.6,则P (A )= A.0.1 B.0.2 C.0.3 D.0.52.设F(x)为随机变量X 的分布函数,则有 A.F (-∞)=0,F (+∞)=0 B.F (-∞)=1,F (+∞)=0 C.F (-∞)=0,F (+∞)=1 D.F (-∞)=1,F (+∞)=13.设⼆维随机变量(X ,Y )服从区域D :x 2+y 2≤1上的均匀分布,则(X ,Y )的概率密度为 A.f(x ,y)=1B. 1(,)0,x y D f x y ∈?=?,(,),其他C.f(x ,y)=1πD. 1(,)0,x y D f x y π?∈?=,(,),其他4.设随机变量X 服从参数为2的指数分布,则E (2X -1)=A.0B.1C.3D.4 5.设⼆维随机变量(X ,Y )的分布律则D (3X )= A.29B.2C.46.设X 1,X 2,…,X n …为相互独⽴同分布的随机变量序列,且E (X 1)=0,D (X 1)=1,则1lim 0n i n i P X →∞=??≤=∑A.0B.0.25C.0.5D.17.设x 1,x 2,…,x n 为来⾃总体N (µ,σ2)的样本,µ,σ2是未知参数,则下列样本函数为统计量的是 A.1ni i x µ=-∑B.211nii x σ=∑C. 211()ni i x n µ=-∑D. 211n i i x n =∑8.对总体参数进⾏区间估计,则下列结论正确的是 A.置信度越⼤,置信区间越长 B.置信度越⼤,置信区间越短 C.置信度越⼩,置信区间越长 D.置信度⼤⼩与置信区间长度⽆关 9.在假设检验中,H 0为原假设,H 1为备择假设,则第⼀类错误是 A. H 1成⽴,拒绝H 0 B.H 0成⽴,拒绝H 0 C.H 1成⽴,拒绝H 1 D.H 0成⽴,拒绝H 110.设⼀元线性回归模型:201(1,2,),~(0,)i i i i y x i n N ββεεσ=++=…,且各相互独⽴.依据样本(,)(1,2,,)i i x y i n =…得到⼀元线性回归⽅程01y x ββ=+,由此得对应的回归值为,的平均值11(0)ni i y y y n ==≠∑,则回归平⽅和为A .21(-)ii y y =∑ B .21?(-)niii y y=∑C .21(-)nii yy =∑ D .21nii y=∑⾮选择题部分注意事项:⽤⿊⾊字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
10月自考概率论与数理统计(二)(02197)试题及答案解析

20XX年10月高等教育自学考试全国统一命题考试概率论与数理统计(二) 试卷(课程代码 02197)本试卷共4页,满分l00分,考试时间l50分钟。
考生答题注意事项:1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间,超出答题区域无效。
第一部分选择题(共20分)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。
错涂、多涂或未涂均无分。
1.设A与B是两个随机事件,则P(A-B)=2.设随机变量石的分布律为A.O.1 B.O.2 C.O.3 D.0.63.设二维随机变量∽,n的分布律为且X与y相互独立,则下列结论正确的是A.d=0.2,b=0,2 B.a=0-3,b=0.3C.a=0.4,b=0.2 D.a=0.2,b=0.44.设二维随机变量(x,D的概率密度为5.设随机变量X~N(0,9),Y~N(0,4),且X与Y相互独立,记Z=X-Y,则Z~6.设随机变量x服从参数为jl的指数分布,贝JJ D(X)=7.设随机变量2服从二项分布召(10,0.6),Y服从均匀分布U(0.2),则E(X-2Y)= A.4 B.5 C.8 D.108.设(X,Y)为二维随机变量,且D(.固>0,D(功>0,为X与y的相关系数,则第二部分非选择题(共80分)二、填空题(本大题共l5小题,每小题2分,共30分)11.设随机事件A,B互不相容,P(A)=0.6,P(B)=0.4,则P(AB)=_______。
12.设随机事件A,B相互独立,且P(A)=0.5,P(B)=0.6,则=________。
13.已知10件产品中有1件次品,从中任取2件,则末取到次品的概率为_____.14.设随机变量x的分布律为,则常数a=_______.15.设随机变量石的概率密度,X的分布函数F(x)=_________.16.设随机变量,则_______.17.设二维随机变量(X,Y)的分布律为18.设二维随机变量(X,Y)的概率密度为分布函数f(x,y),则f(3,2)=________。
2013~2014年全国自考概率论与数理统计试题及答案要点

全国2013年1月高等教育自学考试概率论与数理统计(经管类)试题一、单项选择题(本大题共10小题,每小题2分,共20分)二、填空题(本大题共15小题,每小题2分,共30分)三、计算题(本大题共2小题,每小题8分,共16分)四、综合题(本大题共2小题,每小题12分,共24分)五、应用题(10分)全国2013年1月高等教育自学考试 概率论与数理统计(经管类)答案1、本题考查的是和事件的概率公式,答案为C.2、解:()()(|)1()()P B AB P AB P B AB P AB P AB ⋂===()()()0.50.15(|)0.5()()1()0.7P BA P B P AB P B A P B P A P A --=====- ()()0.15(|)0.3()()()0.5P B AB P AB P AB B P A P B P B ⋂=====()()(|)1()()P A AB P AB P A AB P AB P AB ⋂=== ,故选B.3、解:本题考查的是分布函数的性质。
由()1F +∞=可知,A 、B 不能作为分布函数。
再由分布函数的单调不减性,可知D 不是分布函数。
所以答案为C 。
4、解:选A 。
{||2}{2}{2}1{2}{2}1(2)(2)1(2)1(2)22(2)P X P X P X P X P X >=>+<-=-≤+<-=-Φ+Φ-=-Φ+-Φ=-Φ 5、解:因为(2)0.20.16P Y c ===+,所以0.04c =又(2)10.80.20.02P X c d ==-==++,所以10.020.040.14d =--= ,故选D 。
6、解:若~()X P λ,则()()E X D X λ==,故 D 。
7、解:由方差的性质和二项分布的期望和方差:1512(1)()()3695276633D X Y D X D Y -+=+=⨯⨯+⨯⨯=+= ,选A8、解:由切比雪夫不等式2(){|()|}1D X P X E X εε-<>-,可得21600{78008200}{|8000|200}10.96200P X P X <<=-<>-= ,选C 。
自考概率论真题答案及解析
自考概率论真题答案及解析概率论是数学中的一个重要分支,研究的是随机事件的发生规律以及概率的计算方法。
对于自考概率论的学习,掌握真题并进行解析是非常重要的。
本文将为大家提供一些自考概率论真题的答案及解析,希望能够帮助大家加深对概率论知识的理解。
1. 随机变量的定义是什么?请结合实际举一个例子。
答:随机变量是指一个随机试验的结果所对应的数值。
例如,掷一枚硬币,当硬币正面朝上时,随机变量X的取值为1;当硬币反面朝上时,随机变量X的取值为0。
在这个例子中,随机变量X可以表示硬币正面朝上的次数。
解析:通过这个例子,我们可以看到随机变量的定义是将试验结果与数值相对应起来。
通过定义随机变量,我们可以对随机事件的结果进行量化,进而进行概率计算和统计分析。
2. 离散型随机变量和连续型随机变量有什么区别?请结合实例说明。
答:离散型随机变量是指随机变量的取值只能是有限个或可数个的数值,而连续型随机变量是指随机变量的取值可以是一个区间内的任意值。
例如,掷一颗骰子,随机变量X表示得到的点数。
在这个例子中,X的取值为1、2、3、4、5、6,这是一个离散型随机变量。
而如果我们测量一个学生身高,随机变量X表示学生的身高,它可以是任意一个非负实数,这是一个连续型随机变量。
解析:离散型随机变量和连续型随机变量的区别在于其取值的不同。
离散型随机变量的取值只能是有限个或可数个的数值,而连续型随机变量的取值可以是一个连续区间内的任意值。
理解这两者的特点对于概率计算和统计分析是非常重要的。
3. 事件的概率是如何计算的?请结合公式和实例进行说明。
答:事件的概率可以通过事件发生的次数与总次数的比值来计算。
用P(A)表示事件A的概率,n(A)表示事件A发生的次数,n(S)表示随机试验总共进行的次数,则事件A的概率P(A)可以通过以下公式计算:P(A) = n(A)/n(S)例如,如果我们掷一枚硬币,事件A表示硬币正面朝上,n(A)为1,n(S)为2(因为硬币有两面),则事件A发生的概率可以计算为:P(A) = 1/2 = 0.5解析:通过这个公式,我们可以通过对事件发生次数和总次数的比值进行计算,得到事件发生的概率。
概率论与数理统计(二)(02197)
概率论与数理统计(二)(02197)1[计算题]设随机变量X的概率密度为2[计算题]设随机变量X服从[0,0.2]上的均匀分布,随机变量Y的概率密度为且X与Y相互独立,求(X,Y)的概率密度。
综合题]设(X,Y)的分布律为:且X与Y相互独立,求常数和的值。
[综合题]设随机变量X与Y相互独立,且X,Y的分布律分别为求二维随机变量(X,Y)的分布律。
[应用题]五家商店联营,它们每两周售出的某种农产品的数量(以千克计)分别记为随机变量.已知,,,,,且它们相互独立,求这五家商店两周的总销量的均值和方差?解:设随机变量X指五家商店两周的总销量,则由已知可得(1)这五家商店两周的总销量的均值(2)这五家商店两周的总销量的方差[应用题]设电压(以计),将电压施加于一检波器,其输出电压为,求输出电压Y的均值?[计算题][计算题][综合题]设随机变量X的分布律为记综合题]设离散型随机变量X的分布律为[应用题]已知甲进行一次射击的命中率为,求:“甲进行三次独立的射击,至少一次命中”的概率?应用题]随机地取8只活塞环,测得它们的直径为(以mm计)74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002试求总体均值的矩估计值?[计算题][计算题]12把钥匙中有4把能打开门,今任取两把,求能打开门的概率。
综合题]设袋中有依次标着-1,0,1,2,3,4数字的6个球,现从中任取一球,记随机变量X为取得的球标有的数字,求:(1)X的分布律;(2)的概率分布。
[综合题]设二维随机变量(X,Y)的分布律为(1)求(X,Y)分别关于X,Y的边缘分布律;(2)试问X与Y是否相互独立,为什么?[应用题]已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,今从男女人数相等的人群中随机地挑选一个人,恰好是色盲患者,问此人是男性的概率是多少?解:设A表示“男人”,B表示“女人”,C表示“这人有色盲”,则由贝叶斯公式可得:应用题]某同学的钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别是0.7,0.2,0.1,而掉在上述三处地方被找到的概率分别是0.8,0.2,0.2,试求他找到钥匙的概率?解:设:A1 =“钥匙掉在宿舍里”,A2=“钥匙掉在教室里”,A3=“钥匙掉在路上”,B=“钥匙被找到”,已知。
2014年10月全国自考概率论及数理统计试题及答案
-5-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-6-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-7-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-8-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-9-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-1-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-2-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-3-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-4-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
- 10 -
2014 年 10 月全国自考概率论与数理统计(经管类)试题
- 11 -
2014 年 10 月全国自考概率论与数理统计(经管类)试题
ቤተ መጻሕፍቲ ባይዱ
- 12 -
2014 年 10 月全国自考概率论与数理统计(经管类)试题
- 13 -
(完整版)自考本概率论与数理统计真题10套
全国2013年10月高等教育自学考试04183LSA .B 是枉》两个f®机班件,则FCAU S )为&设随机变fi X »从参数为4的泊松分布/!1下列姑论中正《的是 A T FCX> = O.S.£>(X) =0. 5 B.蓟X) =0.5.D<X)=0. 2& CE<X)=2<DCX) = 1D.£(X)^1*DCX)=4人设a 机变* X 与 Y 相互趣立>R X-B<36,y 5.则 OCX — Y+12C.9D,10、单项选择题(本大题共 10小题,每小题2分,共20分)d 玖A) +rtB>-F<AB)PCA>+PCBJ-PUa)G, PGA)十- HMB)D. FCA)+ P<B)乱已気随机?^件仏B 満足PtA) -C.3t P(B) =0.5T HA/m. 15*则B. PUMQ M HJOn. P 3|A S> = FWK. P(3|AB>=P(J3>3.做下函®中能成为挟髓机变■分布函数的是(Z T X O I 扎F (云)=■{5 X < 0-0, J < 0.C. F (工)fl - if"",D» FCr) =40,工vm氐设^ELS«tX~NWJhXW#ft 函数为况£ .则PCI X\>2y 的值対B. sets —1C. 2—血(打D. 1 一 2e(2)£ •设二维®机变的分布律与边绦分布律为E 设隧机变盘X 的Ed) = 80001 Pi7&00 < X<fi3OO}的值为 A. 0. 04 a. 0, £0 UA )=1OT,利用切KS 夫不零式tt 计 C. 0. S6 D. 1. 00则扎 ^=0.1SC. <:™ 0.叽 M=a 14久设CX|.Xj,-^.XJ是来自总休X~N33》的一亍样本.X足样木均値•那么C.10. S信度(1 一C表达了暨信邕冏的A.播册性圧箭确度 C.显善性 D.可黨®二、填空题(本大题共15小题,每小题2分,共30分)It «肘手射击的命中舉为a 6■在4次射击扌有且仪有3狀命审的柢率広设人与5是闊个郴互观立随机車件・P<A) =0.2 . PCB)-Q. 7S'J尸(A — B)=口・设A T H是网个剧机爭件’若卩〔人)=0•趴卩(A-B) -a氣则p(a|4)三M.SffiW变ffiX W分布律抑尸CX=k)二畀口4 = 1*2・3) *則a卩严心0,15.谊X的概華密度几为IE参® 0 *vo .^P{X < 11=^0. SPljPtX < 2}=lb设Wft变*X的分布律为IX-2 -1 0 10U 0.2 0.4 0. 1忆设/<Xry>为二维陆机变* CCY)的««函数.则匸匸和jCtyldzdy le.二堆随机变》(x,y》的分布律为则P{-Z<X< 1}=则rfxY =2}=19已知®机證*兀的分布律为X—21CP1 2 1 -4 4 4已a E (;O = l 侧常載C=巴知 E(X)=-l,t)(X)-3,KiJ EQW —2)= 2L —亍二项分布的re 机变ft ”其載学期龟与方蟹之比为W 阳刑该分布的参®22,设总体XJK 从iE 态分布N 〔宀屮〉・X, 刿圧样本・则參数^1^的笔估计值23■设制造某种炉件产品所需工时(璋位訂卜时》服从正蕊分布,为了估计M 造这沖产品所需的单件平均工时.现制造4件,记录每件所帚工时如下* L0.54ML,2若确定置蓿度为0+曹5•则平均工时的淹信国间为C fi,«C5) =2* 3534* (1011(3)工 3. 1624) 24.设总从正毎分布"3, m …“皿 为K 样本.卞輕%已知,丘倉样乘均1S-SW 于服设检腔冋膻H 才尸二丹,Hp 严护H.应薜用的统计®悬 麵已知一元性回归方程为yi +恳上・耳亍=氛y=9・WR L三、计算题(本大题共2小题,每小题8分,共16分)2札对同一目标进行三ft 独立射击,第一欢、第二》:•第三次射击的命中畢分别为0"、 ①5.0.7,衆在这三RBt 击中•恰好有一次击中目标的ft 耶.2匚设髓亂变竄X 在】.2▼氛4四个誥ft 中第可能的取ffi,另一随机变■ Y 在 g X 中 爭可ft 的耽值,试求x-y 的分布律,四、综合题(本大题共2小题,每小题12分,共24分)K<0* 0< j< 1,J m*起、2.试求dD 系数片I(2>X 的《率《度(⑶ p{xXMy .2缶设连aSK 机变* X 的分布函»为尸5)-彳0, AxS A J C羽•设甲・乙两射手.他们的射击技术分别如ffi 貂佔)表.題2900表所示•其中% , Y 分别 «示甲”乙肘手射击耳数的分茹悄况1X8 9 10 Y89 】0 P0.40.20*4P :0. 10.S5 1题295〉表fiS 29(b)表现耍从中选拔一名射手去奮加比奏,试讨邈选派哪位肘手鑫赛比敦合理?五、应用题(10分)30.某《居民日tt 入®从正®幷布,现ffi 机鞠査该K 姑位居民'得知他们的平均收人 i«66. 4元*标准差$ = 15元卜试问I<1: a = 0. 05下*是否可W 认为该镇居毘日平均收人为70 3c? (23ff a = 0,OSTi 是否耶氏认为该镇居民日收入的方签为16’?^fl.MsC24) = Z, 064 ,&耐(24)* 1, 7109*%咄* = 1* 96 * 划,=】* 65 述剛住4〉=39. 4,£M24〉=36. 4述刖二24〉= 12.4,x5.ii<24)=13, 84S金国201:?年・1月高竽教存口学莆试 概率论与数理统计(经管类)试题一、《念选摄题C 本尢H 其山小騒.毎小題2分,冀加分) 在毎小《列出的四个备a 项中只有一个堆符合Hl 目豪求的r 谓将其选出并郸“菩a 壤*的相应代码涤«・»途・茅涤或未滾均无分.L 耶,乙两人向剧一a 标射击* /董示-甲脂中a 極".fl 我示“乙饰中0标”,C* 示-ft 中a 标二wc-A. JB. BC. AB2*设为fifi 机■fb 尺舟・射,2)・0乳则尺4R)-A. 0JB. 02C. OJD ・0.43. ttffi 机$*rfn 分布瞒数为尺Q. W?i(i<rcfr)=A* 恥一0) — 卜'(—0)B, F9-0)-F(G C,尸O)-FGa-O)D.柯)-尸何血设二罐融杭变》CV ■门的分布律为X0 1 2 0 00J *2 10L 403B, 0-1G 0.2W^(v-o>A. 0绝空★考试结東前全国2013年4月高等教育口学考试概率论与数理统计(经管类)试题课程代码:»41«3a 考生按规定用«将所冇试a 的答«涂■写在笞a 維上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-1-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-2-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-3-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-4-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-5-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-6-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-7-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-8-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
-9-
2014 年 10 月全国自考概率论与数理统计(经管类)试题
- 10 -
2014 年 10 月全国自考概率论与数理统计(经管类)试题
- 11 -
2014 年 10 月全国自考概率论与数理统计(经管类)试题
- 12 -
2014 年 10 月全国自考概率论与数