自考概率论与数理统计第八章真题

合集下载

概率论与数理统计(经管类)第八章课后习题答案word

概率论与数理统计(经管类)第八章课后习题答案word

习题8.11.某天开工时,需检验自动装包机工作是否正常.根据以往的经验,其装包的重量在正常情况下服从正态分布N(100,1.52)(单位:公斤).现抽测了9包,其重量为:99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.0 100.5问这天包装机工作是否正常?将这一问题化为一个假设检验问题,写出假设检验的步骤,设α=0.05.解: (1)作假设H0:μ=100,H1:μ≠100(2)选取检验统计量u=X−100σ√n⁄(3)查表知μα2=μ0.025=1.96, 拒绝域为|u|=|X−100σ√n⁄|≥1.96(4)由样本观测值有=99.97∴|u|=|X−100σ√n⁄|=|99.97−1001.5√9⁄|=0.06<1.96.不属于拒绝域,所以接受原假设H0,即认为这天包装机工作正常.2.设α,β分别是假设检验中犯第一,第二类错误的概率且H0,H1分别为原假设和备择驾驶,则(1)P{接受H0|H0不真}=β(2)P{拒绝H0|H0真}=α(3)P{拒绝H0|H0不真}=1−β(4)P{接受H0|H0真}=1−α习题8.21.某自动机生产一种铆钉,尺寸误差X~N(μ,1),该机正常工作与否的标志是检验μ=0是否成立.一日抽检容量n=10的样本,测得样本均值X=1.01.试问:在检验水平α=0.05下,该日自动机工作是否正常?解:检验假设H0:μ=μ0=0,H1:μ≠0∵X=1.01,n=10,σ=1∴|u|=|X−μσ√n⁄|=|1.01−01√10⁄|=3.194查表知μα2=μ0.025=1.96,由于|u|=3.194>1.96,故拒绝H0,即该日自动机工作不正常.2.假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了36位考生的成绩,算的平均成绩为X=66.5分,标准差S=15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?解: 检验假设H0:μ=μ0=70,H1:μ≠70选取检验统计量t =X−μ0S √n⁄−1)拒绝域为|t |=|X−70S √n ⁄≥t α2(n −1)=t 0.025(35)=2.0301将X =66.5,S =15,n =36代入得|t |=1.4<2.0301.故接受H 0.即在显著性水平0.05下, 可以认为这次考试全体考生的平均成绩为70分. 3. 某种产品的重量X~N (12,1)(单位:克).更新设备后,从新生产的产品中,随机地抽取100个,测得样本均值=12.5(克).如果方差没有变化,问设备更新后,产品的平均重量是否有显著变化(α=0.1)? 解: 检验假设H 0:μ=μ0=12,H 1:μ≠12 ∵ =12.5,n =100,σ=1∴|u |=|X −μσ√n⁄|=|12.5−121√100⁄|=5查表知μα2=μ0.05=1.645,由于|u |=5>1.645,故拒绝H 0.即设备更新后,产品的平均重量有显著变化.4. 一种燃料的辛烷等级服从正态分布,其平均等级为98.0,标准差为0.8,现从一批新油中抽25桶,算得样本均值为97.7.假定标准差与原来一样,问新油的辛烷平均等级是否比原燃料平均等级偏低(α=0.05). 解: 检验假设H 0:μ≤μ0=98,H 1:μ>98 ∵ =97.7,n =25,σ=0.8∴|u |=|X −μσ√n⁄|=|97.7−980.8√25⁄|=1.875查表知μα2=μ0.025=1.96,由于|u |=1.875<1.96,故接受H 0.即可以认为新油的辛烷平均等级比原燃料平均等级偏低.5. 从一批灯泡中随机抽取50个,分别测量其寿命,算得其平均值X =1900(小时),标准差S=490(小时).问能否认为这批灯泡的平均寿命为2000(小时)( α=0.01).(用大样本情况下的u 检验) 解: 检验假设H 0:μ=μ0=2000,H 1:μ≠2000 ∵ X =1900,n =50,s =490∴|u |=|X −μs √n⁄|=|1900−2000490√50⁄|=1.44查表知μα2=μ0.005=2.57,由于|u |=1.44<2.57,故接受H 0.即可以认为这批灯泡的平均寿命为2000(小时).6. 某批矿砂的五个样品中镍含量经测定为(%):3.25 3.27 3.24 3.263.24设测定值服从正态分布,问能否认为这批矿砂的镍含量为3.25%(α=0.05). 解: 检验假设H 0:μ=μ0=3.25,H 1:μ≠3.25 选取检验统计量t =X−μ0S √n⁄−1)经计算=3.252,S =0.013 拒绝域为|t |=|X−3.25S √n⁄|≥t α2(n −1)=t 0.025(4)=2.7764将X =66.5,S =15,n =5代入得|t |=0.344<2.7764.故接受H 0. 即可以认为这批矿砂的镍含量为3.25%.7. 有甲,乙两台机床加工同样产品,从这两台机床中随机抽取若干件,测得产品直径(单位:毫米)为:机床甲20.5 19.8 19.7 20.4 20.1 20.0 19.0 19.9 机床乙19.720.8 20.5 19.8 19.4 20.6 19.2 假定两台机床加工的产品直径都服从正态分布,且总体方差相等.问甲,乙两台车床加工的产品直径有无显著差异(α=0.05). 解:检验假设H 0:μ1=μ2,H 1:μ1≠μ2经计算X =19.925,y =20,S 12=1.5157,S 22=2.386∴|t |=|X −y S w √1m +1n|=||19.925−20√7∗1.5157+6∗2.3868+7−2∗√18+17||=0.265查表知t α2(m +n −2)=t 0.025(13)=2.1604,由于|t |=0.265<2.1604,故接受H 0.即甲,乙两台车床加工的产品直径无显著差异.8. 从甲地发送一个信号到乙地.设乙地接受到的信号值是一个服从正态分布N(μ,0.22)的随机变量,其中μ为甲地发送的真实信号值.现甲地重复发送同一信号5次,乙地接受到的信号值为 8.05 8.15 8.2 8.1 8.25 设接收方有理由猜测甲地发送的信号值为8.问能否接受这一猜测? (α=0.05) 解: 检验假设H 0:μ=μ0=8,H 1:μ≠8∵ =8.15,n =5,σ=0.2∴|u |=|X −μσ√n⁄|=|8.15−80.2√5⁄|=1.677查表知μα2=μ0.025=1.96,由于|u |=1.677<1.96,故接受H 0.即可以接受这一猜测. 习题8.31. 某纺织厂生产的某种产品的纤度用X 表示,在稳定生产时,可假定X~N(μ,σ2),其中标准差σ=0.048.现在随机抽取5跟纤维,测得其纤度为 1.32 1.55 1.36 1.40 1.44 试问总体X 的方差有无显著变化. (α=0.1) 解: 检验假设H 0:σ=0.048,H 1:σ≠0.048 检验统计量χ2=(n−1)S 2σ02~χ2(n −1)由α=0.1查表得χα22(n −1)=χ0.052(4)=9.488,χ1−α22(n −1)=χ0.952(4)=0.711于是得出拒绝域为W =(0,0.711)∪(9.488,+∞) 经计算S 2=0.31124代入χ2=(n−1)S 2σ02=4∗0.311240.048=13.51>9.488,故拒绝H 0.即总体X 的方差有显著变化.2. 设有来自正态总体X~N(μ,σ2),容量为100的样本,样本均值X =2.7,μ,σ2均未知,而∑(x i −x)2ni=1=225在α=0.05下,检验下列假设: (1) H 0:μ=3, H 1:μ≠3; (2) H 0:σ2=2.5, H 1:σ2≠2.5. 解: (1) 检验假设H 0:μ=3, H 1:μ≠3∵ X =2.7,n =100,S =√1n −1∑(x i −x)2ni=1=1.508 因此可用大样本情况的u 检验|u |=|X −μs √n⁄|=|2.7−31.508√100⁄|=1.99查表知μα2=μ0.025=1.96,由于|u |=1.99>1.96,故拒绝H 0.(同课后答案有争议)(2)该题无法查到χ0.0252(99)值故省略.(用χ2检验)3. 甲,乙两台机床加工某种零件,零件的直径服从正态分布,总体方差反映了加工精度.为比较两台机床的加工精度有无差别,现从各自加工的零件中分别抽取7件产品和8件产品,测得其直径为X(机床甲)16.2 16.4 15.8 15.5 16.7 15.6 15.8 Y(机床乙)15.9 16.0 16.4 16.1 16.5 15.8 15.7 15.0 问这两台机床的加工精度是否一致? 解:该题无α值,故省略.(用F 检验)4. 对两批同类电子元件的电阻进行测试,各抽6件,测得结果如下(单位:Ω)A 批0.140 0.138 0.143 0.141 0.144 0.137 B 批 0.135 0.140 0.142 0.136 0.138 0.141 已知元件电阻服从正态分布,设σ=0.05,问:(1) 两批电子元件电阻的方差是否相等; (2) 两批元件的平均电阻是否有差异.解: (1)检验假设H 0:σ12=σ22, H 1:σ12≠σ22经计算S 12=0.00272,S 22=0.00282由α=0.05查表得F α2(n 1−1,n 2−1)=F 0.025(5,5)=无法查F 0.025(5,5)对应值,故无法做. 习题8.4某厂使用两种不同的原料生产同一类产品,随机选取使用原料A 生产的产品22件,测得平均质量为X =2.36(kg),样本标准差S x =0.57(kg).取使用原料B 生产的样品24件,测得平均质量为y =2.55(kg),样本标准差S y =0.48(kg).设产品质量服从正态分布,这两个样本相互独立.问能否认为使用B 原料生产的产品平均质量较使用原料A 显著大?(取显著性水平α=0.05).解:检验假设H 0:μA ≥μB , H 0:μA <μB ; 选取检验统计量t =X −y S w √1m +1n+n −1)|t |=|X −y S w √1m +1n|=|2.36−2.55√21∗0.572+23∗0.48244∗√122+124|=1.226查表知t α2(m +n −2)=t 0.025(44)=2.0154,由于|t |=1.226<2.0154,故接受H 0.即使用B 原料生产的产品平均质量于使用原料A 生产的产品平均质量无显著大.自测题8 一、,选择题在假设检验问题中,显著性水平α的意义是 A . A. 在H 0成立的条件下,经检验H 0被拒绝的概率 B. 在H 0成立的条件下,经检验H 0被接受的概率 C. 在H 0不成立的条件下,经检验H 0被拒绝的概率 D. 在H 0不成立的条件下,经检验H 0被接受的概率 二、,填空题1. 设总体X 服从正态分布N (μ,σ2),其中μ未知,x 1,x 2,⋯,x n 为其样本.若假设检验问题为H 0:σ2=1, H 1:σ2≠1,则采用的检验统计量应为 χ2=(n−1)S 21.2. 设某假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值x 1,x 2,⋯,x n 落入W 的概率为0.15,则犯第一类错误的概率为 0.15 .(参考page 169)3. 设样本,x 1,x 2,⋯,x n 来自正态分布N (μ,1),假设检验问题为H 0:μ=0,H 1:μ≠0,则在H 0成立的条件下,对显著性水平α,拒绝域W 应为 |u |>u α,其中u =X √n .(参考page 181表8-4)三、某型号元件的尺寸X 服从正态分布,其均值为3.278cm,标准差为0.002cm.现用一种新工艺生产此类元件,从中随机取9个元件,测量其尺寸,算得均值X =3.2795cm ,问用新工艺生产的元件尺寸均值与以往有无显著差异.(显著发生性水平α=0.05)(附u 0.025=1.96,u 0.05=1.645) 解: 检验假设H 0:μ=μ0=3.278,H 1:μ≠3.278 ∵ X =3.2795,n =9,σ=0.002∴|u |=|X −μσ√n⁄|=|3.2795−3.2780.002√9⁄|=2.25又因μα2=μ0.025=1.96,|u |=2.25>1.96故拒绝H 0,即用新工艺生产的元件尺寸均值与以往有差异.四、用传统工艺加工的某种水果罐头中,每瓶的平均维生素C的含量为19(单位:mg).现改变了加工工艺,抽查了16瓶罐头,测得维生素C的含量的平均值X=20.8,样本标准差S=1.617.假定水果罐头中维生素C的含量服从正态分布.问在使用新工艺后,维生素C的含量是否有显著变化(显著性水平α=0.01)?(附t0.005(15)=2.9467,t0.005(16)=2.9208)解: 检验假设H0:μ=μ0=19,H1:μ≠19∵=20.8,n=16,S=1.617∴|t|=|X−μS√n⁄|=|20.8−191.617√16⁄|=4.453又因tα2(n−1)=t0.005(15)=2.9467,|t|=4.453>2.9467故拒绝H0,即使用新工艺后,维生素C的含量有显著变化.。

第八章试题答案 概率论与数理统计

第八章试题答案 概率论与数理统计

第八章试题一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是( ) A.n/s x 0μ- B.)(0μ-x n C.10-μ-n /s xD.)(10μ--x n答案:B2.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本,X为样本均值,S 2为样本方差.对假设检验问题:H 0:μ=μ0↔H 1:μ≠μ0,在σ2未知的情况下,应该选用的检验统计量为( ) A .nX σμ0- B .1--n X σμ C .nSX 0μ-D .1--n SX μ答案:C3.在假设检验问题中,犯第一类错误的概率α的意义是( ) A .在H 0不成立的条件下,经检验H 0被拒绝的概率B .在H 0不成立的条件下,经检验H 0被接受的概率C .在H 0成立的条件下,经检验H 0被拒绝的概率D .在H 0成立的条件下,经检验H 0被接受的概率 答案:C4.设总体X~N (μ,σ2),σ2未知,X为样本均值,S n 2=n1∑=-n1i iXX()2,S 2=1n 1-∑=-n1i iXX()2,检验假设H 0:μ=μ0时采用的统计量是( ) A .Z=n/X 0σμ- B .T=n/S X n 0μ- C .T=n/S X 0μ-D .T=n/X 0σμ-答案:C4. .对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H0B.可能接受H0,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0答案:A二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

概率论与数理统计第八章习题答案

概率论与数理统计第八章习题答案

第八章 假设检验部分习题解答2~(32.05,1.1)6cm 32.5629.6631.6430.0031.8731.0332.050.050.01.N ξαα==已知某种零件的长度,现从中抽查件,测得它们的长度(单位:)为:,,,,,试问这批零件的平均长度是否就是厘米?检查使用两个不同的显著性水平:,0011:32.05.~(0,1)1,.6,31.03)31.127.H N n U u µµξα==<−=+=解:()提出假设,),计算将以上数据代入得观察值/20.02510/20.005102.056.(5)0.05 1.96,|| 2.056 1.96,0.05;0.01 2.58,|| 2.58,0.01u u u H u u u H αααααα=−====>====<=作出判断。

当时,因而时,拒绝当时,因而时,接受。

0(,1)100 5.32:50.01N H µξµα===从正态总体中抽取个样品,计算得,试检验是否成立(显著性水平)?00/2/201/20.01: 5.(2)(3),(||)1.(4) 5.32.3.250.01H u P U u U u u u αααµµξαµα==<=−=======解:()提出假设,使求观察值。

已知将以上数据代入得观察值()作出判断。

当时,0510 2.58,|| 2.58,0.01u H α=>=因而时,拒绝。

26.~(100,1.2)999.3 98.7 100.5 101.2 98.3 99.7 102.1 100.5 99.5.0.05(1)2N g ξα=某公司用自动灌装机灌装营养液,设自动灌装机的正常灌装量,现测量支灌装样品的灌装量(单位:)为,,,,,,,,问在显著性水平下,灌装量是否符合标准?()灌装精度是否在标准范围内?001/20.0251():100.()~(0,1)()1,.()9,0.05.0.05 1.i H ii N iii iv n u v u u αµµξααα==−<−==−===解:()提出假设,)()作出判断。

概率论与数理统计课后习题答案第八章习题详解

概率论与数理统计课后习题答案第八章习题详解

习题八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(α=0.05)?【解】0010/20.0250.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55)3.851,0.108.H Hn Z ZxxZZZαμμμμασ==≠=======-===->所以拒绝H0,认为总体平均值有显著性变化.2. 某种矿砂的5个样品中的含镍量(%)经测定为:3.24 3.26 3.24 3.27 3.25设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25.【解】设0010/20.0050.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)0.344,0.013(4).H Hn t n tx sxtttαμμμμα==≠===-====-===<所以接受H0,认为这批矿砂的含镍量为3.25.3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s2=0.1(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).【解】设0010/20.02520.025: 1.1;: 1.1.36,0.05,(1)(35) 2.0301,36,1.008,0.1,6 1.7456,1.7456(35)2.0301.H Hn t n t nx sxtttαμμμμα==≠===-=========<=所以接受H0,认为这堆香烟(支)的重要(克)正常.4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05). 【解】0100.050.05:21.5;:21.5.21.5,6,0.05, 1.65, 2.9,20,(2021.5)1.267,2.91.65.H Hn z xxzz zμμμασ≥<======-===->-=-所以接受H0,认为电池的寿命不比该公司宣称的短.5.测量某种溶液中的水分,从它的10个测定值得出x=0.452(%),s=0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验.(1)H0:μ=0.5(%);H1:μ<0.5(%).(2):Hσ'=0.04(%);1:Hσ'<0.04(%).【解】(1)00.050.050.5;10,0.05,(1)(9) 1.8331,0.452,0.037,(0.4520.5)4.10241,0.037(9) 1.8331.n t n tx sxtt tαμα===-====-===-<-=-所以拒绝H0,接受H1.(2)2222010.9522222220.95(0.04),10,0.05,(9) 3.325,0.452,0.037,(1)90.0377.7006,0.04(9).nx sn sασαχχχσχχ-=======-⨯===>所以接受H0,拒绝H1.6.某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?【解】00102222/20.0251/20.975222220.02522:0.005;:0.005.9,0.05,0.008,(8)(8)17.535,(8)(8) 2.088,(1)80.00820.48,(8).(0.005)H Hn sn sαασσσσαχχχχχχχσ-===≠=======-⨯===>故应拒绝H0,不能认为这批导线的电阻标准差仍为0.005.7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:第一批棉纱样本:n1=200,x=0.532kg, s1=0.218kg;第二批棉纱样本:n2=200,y=0.57kg, s2=0.176kg.设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05) 【解】01211212/2120.0250.0250.025:;:.200,0.05,(2)(398) 1.96,0.1981,1.918;(398).w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=======-< 所以接受H 0,认为两批强度均值无显著差别.8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设222201:;:.A B A B H H σσσσ=≠【解】221212/2120.0250.9750.02521225,0.05,0.4322,0.5006,(1,1)(4,4)9.6,11(4,4)0.1042,(4.4)9.60.43220.8634.0.5006n n s s F n n F F F s F s αα=====--========那么0.9750.025(4,4)(4,4).F F F << 所以接受H 0,拒绝H 1. 9~12. 略。

概率论与数理统计8习题八参考答案

概率论与数理统计8习题八参考答案

概率统计——习题八参考答案8.1 设t (单位:公斤)表示进货数,],[21t t t ∈,进货t 所获利润记为Y ,则有:⎩⎨⎧<<≤<--=21,,)(t X t at t X t b X t aX Y 又X 的密度函数为 ⎪⎩⎪⎨⎧<<-=其它,0,1)(2112t x t t t x f所以 ⎰⎰-+---=21121211])([)(t t t t dx t t at dx t t b x t ax Y E 1221212]2)(2[t t t b a t at bt t b a -+-+++-= 令 dt Y dE )(0])([1221=-+++-=t t at bt t b a ,得驻点b a bt at t ++=12。

所以该店应该进ba bt at ++12公斤商品,才可使利润的数学期望最大。

8.2 设⎩⎨⎧=,,,0,1否则只球与盒配对第i X i n i ,,2,1 = 则.1∑==n i i X X ∑===∴===n i i i i X E X E n X P X E 1.1)()(,1}1{)( 8.3 ∑∑∞=∞=--=--⋅-=--=-=0121,1)]1(1[1)1()1()1()1()(k k k k p p p p p p k p p p kp X E )()]1([])1([)(2X E X X E X X X E X E +-=+-=∑∑∞=∞=--+---=-+--=02221)1)(1()1(1)1()1(k k k k p p p k k p p p p p p k k ,)2)(1(])1(2[11)]1(1[2)1(2232p p p p p p p p p p p p --=+--=-+---= .11)2)(1()]([)()(22222p p p p p p p X E X E X D -=⎪⎪⎭⎫ ⎝⎛----=-=∴ 8.4 μ+μ-===⎰⎰⎰+∞∞-μ--+∞∞-μ--+∞∞-dx e x dx e x dx x xf X E x x 21)(21)()(μ=μ+=⎰+∞∞--dt e t t 21 ⎰⎰⎰+∞∞--+∞∞-μ--+∞∞-=μ-=-=dy e y dx e x dx x f X E x X D y x 2222121)()()]([)(202==⎰+∞-dy e y y 8.5 用切比雪夫不等式即得,2)(1}2|)({|}2|{|212X D X E X P X P -≥<-=<= 故 .2)211(4)(=-≥X D 8.6 (1)1=ρXY ; (2)73.0)(=+Y X D ;(3))()(),(y F x F y x F Y X Y X =⇔相互独立与;0=ρ⇔XY Y X 不相关与;=⋂⇔B A B A 互不相容与事件∅; =⋂Ω=⋃⇔B A B A B A 且互为对立事件与事件∅或A B =;)()()(B P A P AB P B A =⇔相互独立与事件。

概率论与数理统计自考题分类模拟8

概率论与数理统计自考题分类模拟8

概率论与数理统计自考题分类模拟8(总分:99.99,做题时间:90分钟)一、计算题(总题数:9,分数:50.00)1.设二维随机变量(X,Y)的等可能值为(0,0),(0,1),(1,0)(1,1),求(X,Y)的联合分布函数.(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:(1)x<0,或y<0时,F(x,y)=P(X≤x,Y≤y)=0(2)0≤x<1,0≤y<1时,(3)0≤x<1,y≥1时,F(x,y)=P(X≤x,Y≤y)=P(0,0)+P(0,1)(4)x≥1,0≤y<1时,F(x,y)=P{X≤x,Y≤y}=P(0,0)+P(1,0)(5)x≥1,y≥1时,F(x,y)=P(X≤x,Y≤y)=P(0,0)+(0,1)+P(1,0)+P(1,1)所以(X,Y)的联合分布函数为:袋中有四个球,分别标有数字1,2,2,3,从袋中任取一球后,不放回,再取第二次,分别以X、Y记为第一次、第二次取得球上标有的数字.求:(分数:7.50)(1).X,Y的联合概率分布.(分数:2.50)__________________________________________________________________________________________ 正确答案:()(2).X,Y的边缘分布.(分数:2.50)__________________________________________________________________________________________ 正确答案:()(3).X与y是否独立?(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:由故X与Y不相互独立.设(X,Y)的联合密度求:(分数:7.50)(1).系数C.(分数:2.50)正确答案:()(2).(X,Y)落在以(0,0),(0,1),(1,0),(1,1)为顶点的正方形内的概率.(分数:2.50)__________________________________________________________________________________________ 正确答案:()(3).问X、Y是否独立?(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:y∈(-∞,+∞)∵f(x,y)=f X (x)f Y(y) ∴X与Y相互独立.设二维随机向量(X,Y)的联合密度函数为求:(分数:7.50)(1).常数a.(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:由联合密度的性质有,所以a=2.(2).边缘概率密度f X (x)和f Y (y).(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:当0≤x≤1时,有当x<0或x>1时,有所以同样可以求出(3).随机变量(X,Y)落入区域D={(x,y)|x+y<1}内的概率.(分数:2.50)__________________________________________________________________________________________ 正确答案:()2.设随机变量X和Y相互独立,而且服从相同的0—1分布B(1,p).又设试求p的值使得Z与X相互独立(0<p<1).(分数:2.50)正确答案:()解析:解:先求Z的分布律P(Z=0)=P(X+Y=0)+P(X+Y=2)=P(X=0,Y=0)+P(X=1,Y=1)=(1-p) 2 +p 2,P(Z=1)=1-P(Z=0)=2p(1-p).其次,要使Z与X独立,则必须有P(Z=i,X=j)=P(Z=i)P(X=j),i,j=0,1而且反之亦成立.将i,j分别代入计算可得解得设随机变量X与Y相互独立,且X服从[0,1]上的均匀分布,Y服从λ=1的指数分布.求:(分数:7.50)(1).X与Y的联合分布函数.(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:X~U[0,1](2).X与Y的联合密度函数.(分数:2.50)__________________________________________________________________________________________ 正确答案:()(3).P{X≥y}.(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:3.设随机变量X与Y相互独立,X的密度函数为f(x),Y的分布律为P(Y=a i )=p i,i=1,2,…,n.试求Z=X+Y的密度函数.(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:因为Z的分布函数为F Z(z)=P(Z≤z)=P(X+Y≤z)因此,Z的密度函数为4.设X与Y相互独立且同服从参数为λ的指数分布.求:Z=min{X,Y}的概率密度函数.(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:X~E(λ),密度函数为分布函数为Z=min{X,Y}的分布函数为F Z(z)=P{Z≤z}=P{min{X,Y}≤z}=1-P{min{X,Y}>z}=1-P{X>z,Y>z}=1-P{X>z}P{Y>2}=1-[1-F X (z)][1-F Y (z)]=1-[1-F X (z)] 2,Z服从参数为2λ的指数分布.设随机变量x服从区间[0,0.2]上的均匀分布,随机变量Y的概率密度为求:(分数:9.99)(1).X的概率密度.(分数:3.33)__________________________________________________________________________________________ 正确答案:()解析:解:X(2).(X,Y)的概率密度.(分数:3.33)__________________________________________________________________________________________ 正确答案:()解析:解:∵X与Y相互独立,(3).P{X>Y}.(分数:3.33)__________________________________________________________________________________________ 正确答案:()解析:解:积分区域如图二、综合题 (总题数:9,分数:33.00)设二维随机变量(X,Y)的联合概率密度求:(分数:3.00)(1).P(X>1,Y<1).(分数:1.50)__________________________________________________________________________________________ 正确答案:()(2).P(X<Y).(分数:1.50)__________________________________________________________________________________________ 正确答案:()设二维随机变量(X,Y)的概率密度试求:(分数:7.50)(1).常数k.(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:由(X,Y)的联合概率密度的性质,有,所以k=12.(2).P(0≤X≤1,0≤Y≤2).(分数:2.50)__________________________________________________________________________________________ 正确答案:()(3).(X,Y)的联合分布函数F(x,y).(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:当x<0或y<0时,F(x,y)=P(X≤x,Y≤y)=0;当x≥0且y≥0时,所以(X,y)的联合分布函数5.设随机向量(X,Y)的概率密度为求P(X+Y≥1).(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:其中积分区域G如图.所以6.设随机向量(X,Y)服从二维正态分布N(0,0,10 2,10 2,0),其概率密度P(x≤Y).(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:G如图所以7.某种商品一周需要量是一个随机变量,其概率密度需要量的概率密度.(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:设第i周(i=1,2,3)的商品需要量为T i,由已知条件,它们是相互独立且服从相同分布的随机变量.两周商品的需要量为Z=T 1 +T 2,其概率密度8.设随机向量(ξ,η)的联合密度为证明:a=2并且ξ与η不独立.(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:所以a=2.由于P ξ(x)·p η(y)≠p(x,y),所以ξ与η不独立.9.设二维随机向量(X,Y)的联合密度为证明:X与Y相互不独立.(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:当x<0或x>1时,f(x,y)=0,故f X (x)=0,当0≤x≤1时,当0≤x≤1时,所以当y>1或y<0时,,故f Y (y)=0,当0≤y≤1时,所以由于f(x,y)≠f X (x)f Y (y),所以X与Y相互不独立.若(X,Y)的联合分布律为求:(分数:7.50)(1).a+b.(分数:2.50)__________________________________________________________________________________________ 正确答案:()(2).当X与Y独立时,a,b的值.(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:X与Y独立P{X=1,Y=2}=P{X=1}·P{Y=2}即(3).E(5X-3Y).(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:E(5X-3Y)=5E(X)-3E(Y)=-3.10.已知相互独立的随机变量X,Y的概率密度分别为:求Z=X+Y的概率密度.(分数:2.50)__________________________________________________________________________________________ 正确答案:()解析:解:因故当z≤0时,f Z (z)=0;当0<z≤1时,(当0<z≤1时,z-1≤0,积分域为0至z)当z>1时,三、应用题 (总题数:5,分数:17.00)已知随机变量ξ和η的分布律分别为且已知:P{ξη=0}=1.(分数:4.50)(1).求(ξ,η)的联合分布律.(分数:2.25)__________________________________________________________________________________________ 正确答案:()解析:解:设(ξ,η)的联合分布律为:因为P{ξη=0}=1,所以P{ξη≠0}=1-P{ξη=0}=1-1=0,b=P{ξ=-1,η=1}=0,f=P{ξ=1,η=1}=0.根据联合分布与边缘分布之间的关系有:,解得,c=0,得(ξ,η)的联合分布律为:(2).ξ与η是否相互独立?为什么?(分数:2.25)__________________________________________________________________________________________ 正确答案:()P{ξ=-1,η=0}≠P{ξ=-1}P{η=0},ξ与η不相互独立.箱子里装有12件产品,其中2件是次品,每次从箱子里任取一件产品,共取两次。

自学考试 04183-概率论与数理统计(经管类) 2007-2011历年真题版

自学考试 04183-概率论与数理统计(经管类) 2007-2011历年真题版

——给所有为知识而追求的人朋友是会计专业,要参加自考2011年10月的自考,报了两门公共课:概率与数理统计/线性代数,要我给她辅导下。

回想起自己的考研经历,那时都是根据考试大纲/考点复习的,不知道为什么自考没有找到考试大纲,如果有这个东西的话希望有人分享下。

其他方面,个人觉得做真题是最有效果的,因此特意花了点时间整理了历年试题(奇怪的是没找到2011年7月全国卷)。

在此分享给大家,祝她考试顺利,也祝所有参加考试的人,考试顺利。

为了照顾2003版的朋友,以及以后的更新,这里以doc格式上传。

如果大家有新的试题,也请及时更新与共享。

谢谢!注:更新时麻烦更新目录,以方便大家查找。

其中,有个别目录出现乱码,本人没有找到原因,是手动删除的。

目录浙江省2011年7月自学考试概率论与数理统计(经管类)试题 ... 错误!未定义书签。

全国2011年1月自考概率论与数理统计(经管类)试题 ............... 错误!未定义书签。

全国2011年1月自考概率论与数理统计(经管类)参考答案 ....... 错误!未定义书签。

浙江省2011年1月自学考试概率论与数理统计(经管类)试题 ... 错误!未定义书签。

全国2010年7月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2010年4月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2010年1月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年10月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年7月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年4月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2009年1月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

全国2008年10月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。

自考概率论与数理统计各章真题

自考概率论与数理统计各章真题

第一章自测(每一个题都要写清楚过程,填空选择推导过程或者用到的公式写在题目旁边)1.设A 与B 互为对立事件,且P (A )>0,P (B )>0,则下列各式中错误..的是( ) A.P (A )=1-P (B ) B.P (AB )=P (A )P (B ) C.P 1)(=ABD.P (A ∪B )=12.设A ,B 为两个随机事件,且P (A )>0,则P (A ∪B |A )=( ) A.P (AB )B.P (A )C.P (B )D.13.从标号为1,2,…,101的101个灯泡中任取一个,则取得标号为偶数的灯泡的概率为( ) A .10150 B .10151 C .10050 D .10051 4.设事件A 、B 满足P (A B )=0.2,P (B )=0.6,则P (AB )=( )A .0.12B .0.4C .0.6D .0.8 5.设随机变量X~N (1,4),Y=2X+1,则Y 所服从的分布为( ) A .N (3,4) B .N (3,8) C .N (3,16) D .N (3,17)6.设每次试验成功的概率为p(0<p<1),则在3次独立重复试验中至少成功一次的概率为( )A .1-(1-p )3B .p(1-p)2C .213)1(p p C -D .p+p 2+P 37.设A 与B 互为对立事件,且P (A )>0,P (B )>0,下列各式中错误..的是( ) A .0)|(=B A PB .P (B |A )=0C .P (AB )=0D .P (A ∪B )=18.设A ,B 为两个随机事件,且P (AB )>0,则P (A|AB )=( ) A .P (A ) B .P (AB ) C .P (A|B ) D .19.设事件A 与B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( ) A.AB=φ B.P(A B )=P(A)P(B ) C.P(B)=1-P(A)D.P(B |A )=010.设A 、B 、C 为三事件,则事件=C B A ( ) A.A C BB.A B CC.( A B )CD.( A B )C11.一批产品共10件,其中有2件次品,从这批产品中任取3件,则取出的3件中恰有一 件次品的概率为( ) A .601 B .457C .51 D .157 12.设随机事件A 与B 互不相容,P (A )=0.2,P(B)=0.4,则P (B|A )=( )A .0B .0.2C .0.4D .1 13.设事件A ,B 互不相容,已知P (A )=0.4,P(B)=0.5,则P(A B )=( ) A .0.1 B .0.4 C .0.9 D .114.已知事件A ,B 相互独立,且P (A )>0,P(B)>0,则下列等式成立的是( )A .P(A B)=P(A)+P(B)B .P(A B)=1-P(A )P(B )C .P(A B)=P(A)P(B)D .P(A B)=115.某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为( )A .0.002B .0.04C .0.08D .0.10416.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件 B .A 与A 互不相容 C .Ω=⋃A AD .A A =17.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2 B .0.4C .0.6D .0.818.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为( ) A.0.125 B.0.25 C.0.375 D.0.5 19.设A 、B 为任意两个事件,则有( ) A.(A ∪B )-B=A B.(A-B)∪B=A C.(A ∪B)-B ⊂A D.(A-B)∪B ⊂A20.某人射击三次,其命中率为0.7,则三次中至多击中一次的概率为( ) A.0.027 B.0.081 C.0.189 D.0.216 21.设A ,B 为两个互不相容事件,则下列各式错误..的是( ) A .P (AB )=0B .P (A ∪B )=P (A )+P (B )C .P (AB )=P (A )P (B )D .P (B-A )=P (B )22.设事件A ,B 相互独立,且P (A )=31,P (B )>0,则P (A|B )=( )A .151 B .51 C .154 D .31 23.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ) A .P (AB )=lB .P (A )=1-P (B )C .P (AB )=P (A )P (B )D .P (A ∪B )=124.设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) A .P (AB )=0B .P (A -B )=P (A )P (B )C .P (A )+P (B )=1D .P (A |B )=025.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ) A .0.125 B .0.25 C .0.375 D .0.5026.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( ) A .61 B .41 C .31 D .2127.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅 第一次射击命中目标”,则B =( ) A .A 1A 2 B .21A C .21A AD .21A A28.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( ) A .p 2 B .(1-p )2 C .1-2p D .p (1-p )29.已知P (A )=0.4,P (B )=0.5,且A ⊂B ,则P (A |B )=( ) A .0 B .0.4 C .0.8 D .130.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( ) A .0.20 B .0.30 C .0.38 D .0.57 31.若A 与B 互为对立事件,则下式成立的是( ) A.P (A ⋃B )=Ω B.P (AB )=P (A )P (B ) C.P (A )=1-P (B )D.P (AB )=φ32.将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( )A.81B.41C.83 D.21 33.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,53)A |B (P =,则P (B )=( )A. 51B.52 C.53 D. 54 34.设A 与B 是任意两个互不相容事件,则下列结论中正确的是( ) A .P (A )=1-P (B ) B .P (A -B )=P (B ) C .P (AB )=P (A )P (B )D .P (A -B )=P (A )35.设A ,B 为两个随机事件,且0)(,>⊂B P A B ,则P (A |B )=( ) A .1 B .P (A )C .P (B )D .P (AB )35.设A 、B 为两事件,已知P (B )=21,P (B A )=32,若事件A ,B 相互独立,则P (A )=( ) A .91 B .61 C .31 D .2136.对于事件A ,B ,下列命题正确的是( ) A .如果A ,B 互不相容,则B ,A 也互不相容 B .如果B A ⊂,则B A ⊂ C .如果B A ⊃,则B A ⊃D .如果A ,B 对立,则B ,A 也对立37.每次试验成功率为p (0<p <1),则在3次重复试验中至少失败一次的概率为( ) A .(1-p )3 B .1-p 3 C .3(1-p ) D .(1-p )3+p (1-p )2+p 2(1-p )38.设事件A ,B 相互独立,且P (A )=0.2,P (B )=0.4,则P (A ∪B )=___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

07.4 10.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是( ) A.n/s x 0μ-B.)(0μ-x nC.10-μ-n /s xD.)(10μ--x n23.设样本x 1,x 2,…,x n 来自正态总体N (μ,9),假设检验问题为H 0∶μ=0,H 1∶μ≠0,则在显著性水平α下,检验的拒绝域W=___________。

24.设0.05是假设检验中犯第一类错误的概率,H 0为原假设,则P {拒绝H 0|H 0真}= ___________。

07.725.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本.对假设检验问题2212020::σσσσ≠↔=H H ,在μ未知的情况下,应该选用的检验统计量为___________. 9.在假设检验问题中,犯第一类错误的概率α的意义是( )A .在H 0不成立的条件下,经检验H 0被拒绝的概率B .在H 0不成立的条件下,经检验H 0被接受的概率C .在H 0成立的条件下,经检验H 0被拒绝的概率D .在H 0成立的条件下,经检验H 0被接受的概率24.设总体X~N (μ,σ2),x 1,x 2,x 3,x 4为来自总体X 的体本,且241241)(,41σ∑∑==-=i ii i x xx x 则服从自由度为____________的2χ分布.27.假设某校考生数学成绩服从正态分布,随机抽取25位考生的数学成绩,算得平均成绩61=x 分,标准差s=15分.若在显著性水平0.05下是否可以认为全体考生的数学平均成绩为70分?(附:t 0.025(24)=2.0639)08.123.当随机变量F~F(m,n )时,对给定的.)),((),10(ααα=><<n m F F P a 若F~F(10,5),则P(F<)10,5(195.0F )= ___________。

五、应用题(本大题共1小题,10分)30. 假设某城市购房业主的年龄服从正态分布,根据长期统计资料表明业主年龄X~N(35,52).今年随机抽取400名业主进行统计调研,业主平均年龄为30岁.在01.0=α下检验业主年龄是否显著减小.(58.2,32.2005.001.0==u u )08.710.设总体X~N (μ,σ2),σ2未知,X为样本均值,S n 2=n1∑=-n1i i X X ()2,S 2=1n 1-∑=-n1i iX X()2,检验假设H 0:μ=μ0时采用的统计量是( )A .Z=n /X 0σμ- B .T=n /S X n 0μ-C .T=n/S X 0μ- D .T=n/X 0σμ-五、应用题(本大题共1小题,10分)30.设某商场的日营业额为X 万元,已知在正常情况下X 服从正态分布N (3.864,0.2十一黄金周的前五天营业额分别为:4.28、4.40、4.42、4.35、4.37(万元) 假设标准差不变,问十一黄金周是否显著增加了商场的营业额.(取α=0.01, μ0.01=2.32,μ0.005=2.58)08.109.设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( ) A .)2,0(N B .)2(2χ C .)2(t D .)1,1(F. .23.设随机变量),(~21n n F F ,则~1F_______. 由来自总体X 的一个样本n x x x ,,,21 算得样本平均值9=x ,则参数λ的矩估计λˆ=_______.五、应用题(本大题10分)30.设某厂生产的食盐的袋装重量服从正态分布),(2σμN (单位:g ),已知92=σ.在生产过程中随机抽取16袋食盐,测得平均袋装重量496=x .问在显著性水平05.0=α下,是否可以认为该厂生产的袋装食盐的平均袋重为500g ?(96.1025.0=u )09.123.设总体X~N ),(2σμ,X 1,…,X 20为来自总体X 的样本,则∑=σμ-201i 22i )X (服从参数为___________的2χ分布。

10.记F 1-α(m,n)为自由度m 与n 的F 分布的1-α分位数,则有( )A.)n ,m (F 1)m ,n (F 1α-α=B.)n ,m (F 1)m ,n (F 11α-α-=C.)n ,m (F 1)m ,n (F αα=D.)m ,n (F 1)m ,n (F 1α-α=五、应用题(本大题共1小题,10分)30.某城市每天因交通事故伤亡的人数服从泊松分布,根据长期统计资料,每天伤亡人数均值为3人. 近一年来,采用交通管理措施,据300天的统计,每天平均伤亡人数为2.7人. 问能否认为每天平均伤亡人数显著减少?(u 0.025=1.96 u 0.05=1.645)09.49.设x 1, x 2, …, x 100为来自总体X ~ N (0,42)的一个样本,以x 表示样本均值,则x ~( ) A .N (0,16) B .N (0,0.16) C .N (0,0.04) D .N (0,1.6)10.要检验变量y 和x 之间的线性关系是否显著,即考察由一组观测数据(x i ,y i ),i =1,2,…,n ,得到的回归方程x y 10ˆˆˆββ+=是否有实际意义,需要检验假设( ) A .0∶,00100≠=ββH H ∶B .0∶,0∶1110≠=ββH HC .0ˆ∶,0ˆ∶0100≠=ββH HD .0ˆ∶,0ˆ∶1110≠=ββH H五、应用题(10分)30.已知某厂生产的一种元件,其寿命服从均值0μ=120,方差920=σ的正态分布.现采用一种新工艺生产该种元件,并随机取16个元件,测得样本均值x =123,从生产情况看,寿命波动无变化.试判断采用新工艺生产的元件平均寿命较以往有无显著变化.(05.0=α)(附:u 0.025=1.96)09.710.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H 0 :μ=μ0,那么在显著水平0.01下,下列结论中正确的是( ) A .不接受,也不拒绝H 0 B .可能接受H 0,也可能拒绝H 0 C .必拒绝H 0 D .必接受H 020.设X 1、X 2、X 3、X 4为来自总体X ~N (0,1)的样本,设Y =(X 1+X 2)2+(X 3+X 4)2,则当C =______时,CY ~)2(2χ. 21.设随机变量X ~N (μ,22),Y ~)(2n χ,T =n YX 2μ-,则T 服从自由度为______的t 分布.9.设n μ是n 次独立重复试验中事件A 出现的次数,P 是事件A 在每次试验中发生的概率,则对于任意的0>ε,均有}|{|lim εμ>-∞→p nP nn ( )A .=0B .=1C .> 0D .不存在 229.假定暑假市场上对冰淇淋的需求量是随机变量X 盒,它服从区间[200,400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得1元,但假如销售不出而屯积于冰箱,则每盒赔3元。

问小店应组织多少货源,才能使平均收益最大?五、应用题(本大题共1小题,10分)30.某公司对产品价格进行市场调查,如果顾客估价的调查结果与公司定价有较大差异,则需要调整产品定价。

假定顾客对产品估价为X 元,根据以往长期统计资料表明顾客对产品估价X ~N (35,102),所以公司定价为35元。

今年随机抽取400个顾客进行统计调查,平均估价为31元。

在α=0.01下检验估价是否显著减小,是否需要调整产品价格?(u 0.01=2.32,u 0.005=2.58)09.10五、应用题(10分)30.设某厂生产的零件长度X ~N (2,σμ)(单位:mm),现从生产出的一批零件中随机抽取了16件,经测量并算得零件长度的平均值x =1960,标准差s =120,如果2σ未知,在显著水平05.0=α下,是否可以认为该厂生产的零件的平均长度是2050mm? (t 0.025(15)=2.131)10.19.设x 1,x 2,…,x 5是来自正态总体N (2,σμ)的样本,其样本均值和样本方差分别为∑==51i i x 51x 和251i i2)x x(41s ∑=-=,则s)x (5μ-服从( ) A.t(4) B.t(5) C.)4(2χD. )5(2χ10.设总体X~N (2,σμ),2σ未知,x 1,x 2,…,x n 为样本,∑=--=n1i 2i 2)x x (1n 1s ,检验假设H 0∶2σ=20σ时采用的统计量是( )A.)1n (t ~n/s x t -μ-=B. )n (t ~n/s x t μ-=C )1n (~s )1n (22022-χσ-=χ D. )n (~s )1n (2222χσ-=χ 21.设随机变量X~N (0,1),Y~(0,22)相互独立,设Z=X 2+C1Y 2,则当C=___________时,Z~)2(2χ.22.设总体X 服从区间(0,θ)上的均匀分布,x 1,x 2,…,x n 是来自总体X 的样本,x 为样本均值,0>θ为未知参数,则θ的矩估计θˆ= ___________. 23.在假设检验中,在原假设H 0不成立的情况下,样本值未落入拒绝域W ,从而接受H 0,称这种错误为第___________类错误.24.设两个正态总体X~N (211,σμ),Y~N(222,σμ),其中22221σ=σ=σ未知,检验H 0:21μ=μ,H 1:21μ≠μ,分别从X ,Y 两个总体中取出9个和16个样本,其中,计算得x =572.3, 1.569y =,样本方差25.149s 21=,2.141s 22=,则t 检验中统计量t=___________(要求计算出具体数值). .10.410.设总体X 服从正态分布N(2,σμ),其中2σ未知.x 1,x 2,…,x n 为来自该总体的样本,x 为样本均值,s 为样本标准差,欲检验假设H 0:μ=μ0,H 1:μ≠μ0,则检验统计量为( )A .σμ0-x nB .sx nμ- C .)(10μ--x n D .)(0μ-x n21.设总体X ~N (1,4),x 1,x 2,…,x 10为来自该总体的样本,∑==101101i ixx ,则)(x D = ______.·22.设总体X ~N (0,1),x 1,x 2,…,x 5为来自该总体的样本,则∑=512i ix服从自由度为______的2χ分布.23.设总体X 服从均匀分布U (θθ2,),x 1,x 2,…,x n 是来自该总体的样本,则θ的矩估计θˆ=______.24.设样本x 1,x 2,…,x n 来自总体N (μ,25),假设检验问题为H 0:μ=μ0,H 1:μ≠μ0,则检验统计量为______.‘25.对假设检验问题H 0:μ=μ0,H 1:μ≠μ0,若给定显著水平0.05,则该检验犯第一类错误的概率为______.10.724.设某个假设检验的拒绝域为W ,当原假设H 0成立时,样本(x 1,x 2,…,x n )落入W 的概率是0.1,则犯第一类错误的概率为________. 五、应用题(本大题共1小题,10分)30.按照质量要求,某果汁中的维生素含量应该超过50(单位:毫克),现随机抽取9件同型号的产品进行测量,得到结果如下:45.1,47.6,52.2,46.9,49.4,50.3,44.6,47.5,48.4根据长期经验和质量要求,该产品维生素含量服从正态分布N(μ,1.52),在α=0.01下检验该产品维生素含量是否显著低于质量要求?(u 0.01=2.32,u 0.05=2.58)。

相关文档
最新文档