7月全国自考概率论与数理统计(二)试题及答案解析

合集下载

全国自考概率论与数理统计(二)试题和答案

全国自考概率论与数理统计(二)试题和答案

B)14.设随机变量X 的分布律为,F (x )是X 的分布函数,则F (1)=______.正确答案:(2分) 2/315.设随机变量X 的概率密度为f (x )=2010,x x ≤≤⎧⎨⎩,,其他,则12P X ⎧⎫>⎨⎬⎩⎭=______.正确答案:(2分)3/416.已知随机变量X ~N (4,9),P {X >c }=P {X ≤c },则常数c =______. 正确答案:(2分) 417.设二维随机变量(X ,Y )的分布律为则常数a =______. 正确答案:(2分) 0.218.设随机变量X 与Y 相互独立,且X ~N (0,l),Y ~N (-1,1),记Z =X -Y ,则Z ~______. 正确答案:(2分) N(1,2)19.设随机变量X 服从参数为2的泊松分布,则E (X 2)=______. 正确答案:(2分) 620.设X ,Y 为随机变量,且E (X )=E (Y )=1,D (X )=D (Y )=5,ρXY =0.8,则E (XY )=______. 正确答案:(2分) 521.设随机变量X 服从区间[-1,3]上的均匀分布,随机变量Y =0111X X <⎧⎨≥⎩,,,,则E (Y )=______. 正确答案:(2分) 1/222.设随机变量X ~B (100,0.2),()x Φ为标准正态分布函数,()2.5Φ=0.9938,应用中心极限定理,可得P {20≤x ≤30)≈______. 正确答案:(2分) 0.493823.设总体X ~N (0,l),x 1,x 2,x 3,x 4为来自总体X 的样本,则统计量22221234x x x x +++~______.正确答案:(2分)x2(4)24.设总体X~N(μ,1),μ未知,x1,x2,…,x n为来自该总体的样本,x为样本均值,则μ的置信度为1-α的置信区间是______.正确答案:(2分)]1,1[22nuxnuxaa+-25.某假设检验的拒绝域为W,当原假设H0成立时,样本值(x1,x2,…,x n)落入W的概率为0.1,则犯第一类错误的概率为______.正确答案:(2分)0.1三、计算题(本大题共2小题,每小题8分,共16分)26.设二维随机变量(X,Y)的概率密度为26,01,01,()0,x y x yf x⎧≤≤≤≤⎪=⎨⎪⎩ 其他.求:(1)(X,Y)关于X的边缘概率密度f X(x);(2)P{X>Y}.正确答案:27.设总体X的概率密度为1,0,()0,0,xe xf xxθθ-⎧>⎪=⎨⎪≤⎩其中未知参数θ>0,x1,x2,…,x n是来自该总体的样本,求θ的极大似然估计.四、综合题(本大题共2小题,每小题12分,共24分)正确答案:28.有甲、乙两盒,甲盒装有4个白球1个黑球,乙盒装有3个白球2个黑球,从甲盒中任取1个球,放入乙盒中,再从乙盒中任取2个球.(1)求从乙盒中取出的是2个黑球的概率;(2)已知从乙盒中取出的是2个黑球,问从甲盒中取出的是白球的概率.正确答案:29.设随机变量X~N(0,l),记Y=2X.求:(1)P{X<-1>;(2)P{|X|<1};(3)Y的概率密度.(附:Φ(1)=0.8413)正确答案:五、应用题(10分)30.某产品的次品率为0.l,检验员每天抽检10次,每次随机取3件产品进行检验,且不存在误检现象,设产品是否为次品相互独立,若在一次检验中检出次品多于1件,则调整设备,以X表示一天调整设备的次数,求E(X).正确答案:。

自考概率论与数理统计(二)(02197)及答案

自考概率论与数理统计(二)(02197)及答案

概率论与数理统计(二)(课程代码:02197)本试卷共五页,满分100分;考试时间150分钟。

一、单项选择题(每小题4分,共40分)1)、设事件A 、B 满足2.0)(=-A B P ,6.0)(=B P ,则)(AB P =( ) A )、0.12 B )、0.4 C )、0.6 D )、0.8 2)、设二维随机变量),(Y X 的分布律为 则}{Y X P ==( )A)、0.3 B )、0.5 C )、0.7 D )0.8 3)、设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A )、5.0)(,5.0)(==X D X EB )、25.0)(,5.0)(==X D X EC )、4)(,2)(==XD X ED )、2)(,2)(==X D XE 4)、设随机变量X 服从正态分布(0,4)N ,()x Φ为标准正态分布函数,则{36}( ).P X ≤≤=. (6)(3) . (3)(1.5) 3. (1.5)(1) . (3)()4A B C D Φ-ΦΦ-ΦΦ-ΦΦ-Φ5)、设随机变量)2,1( ~2-N X ,则X 的概率密度=)(x f ( ) A )、4)1(241+-x eπB )、8)1(241+-x eπC )、8)1(2221+-x eπD )、8)1(2221--x eπ6)、设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22Y X +( )A )、)2,0(NB )、)2(2χC )、)2(tD )、)1,1(F7)、设)2,1( ~2N X ,n X X ,,1 为X 的样本,记∑==n i i X n X 11则有( ) A )、)1,0(~/21N n X - B )、)1,0(~41N X - C )、)1,0(~21N X - D )、)1,0(~21N X - 8)、设总体),( ~2σμN X ,其中μ未知,4321,,,x x x x 为来自总体X的一个样本,则以下关于μ的四个估计:3211513151ˆx x x ++=μ,)(41ˆ43212x x x x +++=μ,1371ˆx =μ,2147261ˆx x +=μ中,哪一个是无偏估计?( )A )、1ˆμB )、2ˆμC )、3ˆμD )4ˆμ 9)、对随机变量X 来说,如果 EX DX ≠,则可断定X 不服从( )分布。

全国自学考试概率论与数理统计二历年真题及答案

全国自学考试概率论与数理统计二历年真题及答案

全国 2010 年 7 月高等教育自学考试概率论与数理统计(二)试题课程代码: 02197一、单项选择题(本大题共 10 小题,每小题2 分,共 20 分 )在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设 A、B 为两事件,已知P(B)= 1,P(A B)= 2,若事件 A, B 相互独立,则P(A)=( )2 3A .1B .19 6C.1 D .13 2 2.对于事件 A, B,下列命题正确的是( )A .如果 A,B 互不相容,则 A , B 也互不相容B.如果 A B,则 A BC.如果 A B,则 A BD.如果 A,B 对立,则 A , B 也对立3.每次试验成功率为p(0< p<1) ,则在3 次重复试验中至少失败一次的概率为( )3 B . 1-p 3A . (1-p)C. 3(1-p) D . (1- p)3+p(1- p) 2+p2(1-p)4.已知离散型随机变量X 的概率分布如下表所示:X -1 0 1 2 4P 1/ 10 1/5 1/10 1/5 2/5 则下列概率计算结果正确的是( )A . P(X=3)=0B . P(X=0)= 0C. P(X>-1)=1 D . P(X<4)= 15.已知连续型随机变量X 服从区间 [a,b] 上的均匀分布,则概率P X2a b( )3A . 0B .13C.2 D . 1 36.设 (X,Y)的概率分布如下表所示,当X 与 Y 相互独立时 ,(p,q)=( )Y-1 1 X0 1p 151 1 Q51 3 2510A.(1,1 ) B.(1,1)5 15 15 5C.(1,2) D.(2,1)10 15 15107.设 (X,Y)的联合概率密度为f(x,y)= k( xy),0 x 2,0 y 1, 则k=() 0, 其他 ,A .1B .13 2C. 1 D . 38.已知随机变量 X~ N (0, 1),则随机变量Y=2X+10 的方差为 ( ) A . 1 B . 2C. 4 D.149.设随机变量 X 服从参数为0.5 的指数分布,用切比雪夫不等式估计P(|X-2| ≥ 3) ≤ ( )A .1B .29 9C.1 D .43 910.由来自正态总体 X~ N (μ, 22)、容量为400 的简单随机样本,样本均值为45,则未知参数μ的置信度为0.95的置信区间是 (u0.025=1.96,u0.05=1.645)( )A . (44, 46)B . (44.804,45.196)C. (44.8355, 45.1645) D . (44.9, 45.1) 二、填空题 (本大题共15 小题,每小题2分,共 30 分)请在每小题的空格中填上正确答案。

全国2011年7月高等教育自学考试概率论与数理统计(二)试题

全国2011年7月高等教育自学考试概率论与数理统计(二)试题

全国2011年7月高等教育自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A={2,4,6,8},B={1,2,3,4},则A-B=()A.{2,4} B.{6,8}C.{1,3} D.{1,2,3,4}2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为()A. B.C. D.3.设事件A,B相互独立,,则=()A.0.2 B.0.3C.0.4 D.0.54.设某试验成功的概率为p,独立地做5次该试验,成功3次的概率为()A. B.C. D.5.设随机变量X服从[0,1]上的均匀分布,Y=2X-1,则Y的概率密度为()A. B.C. D.6.设二维随机变量(X,Y)的联合概率分布为()则c=A. B.C. D.7.已知随机变量X的数学期望E(X)存在,则下列等式中不恒成立的是()A.E[E(X)]=E(X) B.E[X+E(X)]=2E(X)C.E[X-E(X)]=0 D.E(X2)=[E(X)]28.设X为随机变量,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤()A. B.C. D.9.设0,1,0,1,1来自X~0-1分布总体的样本观测值,且有P{X=1}=p,P{X=0}=q,其中0<p<1,q=1-p,则p的矩估计值为()A.1/5 B.2/5C.3/5 D.4/510.假设检验中,显著水平表示()A.H0不真,接受H0的概率 B.H0不真,拒绝H0的概率C.H0为真,拒绝H0的概率 D.H0为真,接受H0的概率二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

错填、不填均无分。

11.盒中共有3个黑球2个白球,从中任取2个,则取到的2个球同色的概率为________.12.有5条线段,其长度分别为1,3,5,7,9,从这5条线段中任取3条,所取的3条线段能拼成三角形的概率为________.13.袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为________. 14.掷一枚均匀的骰子,记X为出现的点数,则P{2<X<5}=________. 15.设随机变量X的概率密度为,则常数C=________.16.设随机变量X服从正态分布N(2,9),已知标准正态分布函数值Φ(1)=0.8413,则P{X>5}=________.17.设二维随机变量(X,Y)的联合概率分布为则P(X>1)=________.18.设二维随机变量(X,Y)服从区域D上的均匀分布,其中D为x轴、y轴和直线x+y≤1所围成的三角形区域,则P{X<Y}=________. 19.设X与Y为相互独立的随机变量,X在[0,2]上服从均匀分布,Y服从参数的指数分布,则(X,Y)的联合概率密度为________.20.已知连续型随机变量X的概率密度为,则E(X)=________.21.设随机变量X,Y相互独立,且有如下分布律COV(X,Y)=________.22.设随机变量X~B(200,0.5),用切比雪夫不等式估计P{80<X<120}≥________.23.设随机变量t~t(n),其概率密度为f t(n)(x),若,则有________.24.设分别是假设检验中犯第一、二类错误的概率,H0,H1分别为原假设和备择假设,则P{接受H0|H0不真}=________.25.对正态总体,取显著水平=________时,原假设H0∶=1的接受域为.三、计算题(本大题共2小题,每小题8分,共16分)26.设某地区地区男性居民中肥胖者占25%,中等者占60%,瘦者占15%,又知肥胖者患高血压病的概率为20%,中等者患高血压病的概率为8%,瘦者患高血压病的概率为2%,试求:(1)该地区成年男性居民患高血压病的概率;(2)若知某成年男性居民患高血压病,则他属于肥胖者的概率有多大?27.设随机变量X在区间[-1,2]上服从均匀分布,随机变量求E(Y),D(Y).四、综合题(本大题共2小题,每小题12分,共24分)28.设随机变量X的概率密度函数为求(1)求知参数k;(2)概率P(X>0);(3)写出随机变量X的分布函数.29.设二维随机变量(X,Y)的概率密度为试求:E(X);E(XY);X与Y的相关系数.(取到小数3位)五、应用题(本大题共1小题,10分)30.假定某商店中一种商品的月销售量X~N(),均未知。

概率论与数理统计(二)(02197)

概率论与数理统计(二)(02197)

概率论与数理统计(二)(02197)1[计算题]设随机变量X的概率密度为2[计算题]设随机变量X服从[0,0.2]上的均匀分布,随机变量Y的概率密度为且X与Y相互独立,求(X,Y)的概率密度。

综合题]设(X,Y)的分布律为:且X与Y相互独立,求常数和的值。

[综合题]设随机变量X与Y相互独立,且X,Y的分布律分别为求二维随机变量(X,Y)的分布律。

[应用题]五家商店联营,它们每两周售出的某种农产品的数量(以千克计)分别记为随机变量.已知,,,,,且它们相互独立,求这五家商店两周的总销量的均值和方差?解:设随机变量X指五家商店两周的总销量,则由已知可得(1)这五家商店两周的总销量的均值(2)这五家商店两周的总销量的方差[应用题]设电压(以计),将电压施加于一检波器,其输出电压为,求输出电压Y的均值?[计算题][计算题][综合题]设随机变量X的分布律为记综合题]设离散型随机变量X的分布律为[应用题]已知甲进行一次射击的命中率为,求:“甲进行三次独立的射击,至少一次命中”的概率?应用题]随机地取8只活塞环,测得它们的直径为(以mm计)74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002试求总体均值的矩估计值?[计算题][计算题]12把钥匙中有4把能打开门,今任取两把,求能打开门的概率。

综合题]设袋中有依次标着-1,0,1,2,3,4数字的6个球,现从中任取一球,记随机变量X为取得的球标有的数字,求:(1)X的分布律;(2)的概率分布。

[综合题]设二维随机变量(X,Y)的分布律为(1)求(X,Y)分别关于X,Y的边缘分布律;(2)试问X与Y是否相互独立,为什么?[应用题]已知男人中有5%是色盲患者,女人中有0.25%是色盲患者,今从男女人数相等的人群中随机地挑选一个人,恰好是色盲患者,问此人是男性的概率是多少?解:设A表示“男人”,B表示“女人”,C表示“这人有色盲”,则由贝叶斯公式可得:应用题]某同学的钥匙掉了,掉在宿舍里、掉在教室里、掉在路上的概率分别是0.7,0.2,0.1,而掉在上述三处地方被找到的概率分别是0.8,0.2,0.2,试求他找到钥匙的概率?解:设:A1 =“钥匙掉在宿舍里”,A2=“钥匙掉在教室里”,A3=“钥匙掉在路上”,B=“钥匙被找到”,已知。

历年自学考试01297概率论与数理统计(二)试题和答案

历年自学考试01297概率论与数理统计(二)试题和答案

全国2012年4月自学考试概率论与数理统计(二)试题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1. 设A ,B 为随机事件,且A ⊂B ,则AB 等于( )A. A BB. BC. AD. A2. 设A ,B 为随机事件,则P (A-B )=( ) A. P (A )-P (B )B. P (A )-P (AB )C. P (A )-P (B )+ P (AB )D. P (A )+P (B )- P (AB ) 3. 设随机变量X 的概率密度为f (x )= ⎪⎩⎪⎨⎧<<其他,,,0,6331x 则P {3<X ≤4}=( )A. P {1<X ≤2}B. P {4<X ≤5}C. P {3<X ≤5}D. P {2<X ≤7}4. 已知随机变量X 服从参数为λ的指数分布, 则X 的分布函数为 ( )A. F (x )=⎩⎨⎧≤>-.0,00,e x x λx ,λB. F (x )=⎩⎨⎧≤>--.0,00,e 1x x λx ,λC. F (x )=⎩⎨⎧≤>--.0,00,e 1x x λx ,D. F (x )=⎩⎨⎧≤>+-.0,00,e 1x x λx ,5. 已知随机变量X~N (2,2σ), P {X ≤4}=0.84, 则P {X ≤0}= ( ) A. 0.16 B. 0.32 C. 0.68 D. 0.84 6. 设随机变量X 与Y 相互独立,且都服从标准正态分布,则2X -Y +1~ ( )A. N (0,1)B. N (1,1)C. N (0,5)D. N (1,5)7. 设随机变量X 与Y 相互独立,它们的概率密度分别为f X (x ), f Y (y ), 则(X ,Y ) 的概率密度为( )A. 21[ f X (x )+f Y (y )] B. f X (x )+f Y (y ) C.21f X (x ) f Y (y ) D. f X (x ) f Y (y )8. 设随机变量X ~B (n ,p ), 且E (X )=2.4, D (X )=1.44, 则参数n ,p 的值分别为( ) A. 4和0.6 B. 6和0.4 C. 8和0.3D.3和0.89. 设随机变量X 的方差D (X )存在,且D (X )>0,令Y =-X ,则ρXY =( ) A. -1 B.0 C. 1D.210. 设总体X ~N (2,32),x 1,x 2,…,x n 为来自总体X 的样本,x 为样本均值,则下列统计量中服从标准正态分布的是( ) A.32-x B.92-x C. nx /32-D.nx /92-二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格上填上正确答案。

最新 年月全国自考概率论与数理统计(二)试题及答案

最新 年月全国自考概率论与数理统计(二)试题及答案

1 / 10全国2018年7月自学考试概率论与数理统计(二)课程代码:02197试卷来自百度文库 答案由绥化市馨蕾園的王馨磊导数提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A ={2,4,6,8},B ={1,2,3,4},则A -B =( ) A .{2,4} B .{6,8} C .{1,3}D .{1,2,3,4}.B AB A B A B A B A 中的元素,故本题选中去掉集合合说的简单一些就是在集的差事件,记作与事件不发生”为事件发生而解:称事件“-2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为( )A .15B .14C .13D .12.31789105678;844104104848410C C C P C C ,故选本题的概率件正品中取,共有从件中没有次品,则只能若种取法;件,共有件产品中任取解:从=⨯⨯⨯⨯⨯⨯== 3.设事件A ,B 相互独立,()0.4,()0.7,P A P A B =⋃=,则()P B =( ) A .0.2 B .0.3 C .0.4D .0.52 / 10()()()()()()()()()()()()()().5.04.04.07.0D B P B P B P B P A P B P A P AB P B P A P B A P B P A P AB P B A ,故选,解得代入数值,得,所以,相互独立,,解:=-+=-+=-+=⋃= 4.设某实验成功的概率为p ,独立地做5次该实验,成功3次的概率为( )A .35CB .3325(1)C p p -C .335C pD .32(1)p p -()()()()()().1335.,...2,1,0110~23355B p p C P k n n k p p C k P k A p p A n p n B X kn kk n n ,故选,所以,本题,次的概率恰好发生则事件,的概率为次检验中事件重贝努力实验中,设每定理:在,解:-====-=<<-5.设随机变量X 服从[0,1]上的均匀分布,Y =2X -1,则Y 的概率密度为( )A .1,11,()20,,Y y f y ⎧-≤≤⎪=⎨⎪⎩其他 B .1,11,()0,,Y y f y -≤≤⎧=⎨⎩其他C .1,01,()20,,Y y f y ⎧≤≤⎪=⎨⎪⎩其他D .1,01,()0,,Y y f y ≤≤⎧=⎨⎩其他()()[]()()()()()()[]()[][][]..01,121.01,1211.01,1212121.01,12121211,1212112010101110~A y y y y f y f y y h y h f y f y h y y h y y x x y x x f U X X Y X Y X 故选其他,,其他,,其他,,,得其他,,由公式,,即,其中,解得由其他,,,,,,解:⎪⎩⎪⎨⎧-∈=⎪⎩⎪⎨⎧-∈⨯=⎪⎩⎪⎨⎧-∈⎪⎭⎫ ⎝⎛+=⎩⎨⎧-∈'=='+=-∈+=-=⎪⎩⎪⎨⎧≤≤=-=3 / 106.设二维随机变量(X ,Y )的联合概率分布为( )则c =A .112B .16C .14 D .13()().611411211214161.1,...2,1,0B c c P j i P Y X jij iij ,故选,解得由性质②,得②,①:的分布律具有下列性质,解:==+++++==≥∑∑7.已知随机变量X 的数学期望E (X )存在,则下列等式中不恒成立....的是( ) A .E [E (X )]=E (X ) B .E [X +E (X )]=2E (X ) C .E [X -E (X )]=0D .E (X 2)=[E (X )]2()()()().D C B A XE X E E X E X 均恒成立,故本题选、、由此易知,即,期望的期望值不变,的期望是解:=8.设X 为随机变量2()10,()109E X E X ==,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤( )A .14 B .518 C .34D .109364 / 10()()()()(){}(){}.416961091001092222A X P X D X E X P X E X E X D ,故选所以;切比雪夫不等式:,解:=≤≥-≤≥-=-=-=εε 9.设0,1,0,1,1来自X ~0-1分布总体的样本观测值,且有P {X =1}=p ,P {X =0}=q ,其中0<p <1,q =1-p ,则p 的矩估计值为( ) A .1/5 B .2/5 C .3/5D .4/5()()().53ˆ5301ˆC px p q p X E x X EX E x ,故选,所以,本题,,即估计总体均值用样本均值矩估计的替换原理是:解:===⨯+⨯== 10.假设检验中,显著水平α表示( ) A .H 0不真,接受H 0的概率 B .H 0不真,拒绝H 0的概率 C .H 0为真,拒绝H 0的概率D .H 0为真,接受H 0的概率{}.00C H H P ,故选为真拒绝即拒真,表示第一类错误,又称解:显著水平αα=二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

概率论与数理统计(二)试题及答案.

概率论与数理统计(二)试题及答案.

全国2009年7月自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题小题,,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的在每小题列出的四个备选项中只有一个是符合题目要求的,,请将其代码填写在题后的括号内请将其代码填写在题后的括号内。

错选错选、、多选或未选均无分选均无分。

1.设A 与B 互不相容,且P(A)>0,P(B)>0,则有( )A.P(A)=1-P(B)B.P(AB)=P(A)P(B)C.P(A B )=1D.P(AUB)=P(A)+P(B)2.设A 、B 相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( )A.P(AB)=0B.P(A-B)=P(A)P(B )C.P(A)+P(B)=1D.P(A | B)=03.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( )A.0.125B.0.25C.0.375D.0.504.设函数f (x)在[a ,b]上等于sin x ,在此区间外等于零,若f (x)可以作为某连续型随机变量的概率密度,则区间[a ,b]应为( ) A.[2π−,0] B.[0,2π] C.[0,π] D.[0,2π3] 5.设随机变量X 的概率密度为≤<−≤<=其它021210)(x x x x x f ,则P(0.2<X<1.2)= ( ) A.0.5B.0.6C.0.66D.0.76.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( ) A.61 B.41 C.31 D.21 7.221 α β 则有( )A.α=91,β=92 B. α=92,β=91 C. α=31,β=32 D. α=32,β=31 8.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( )A.-2B.0C.21D.2 9.设μn 是n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中发生的概率,则对于任意的ε>0,均有}|{|lim n εµ>−∞→p n P n ( )A.=0B.=1C.>0D.不存在 10.对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H 0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H 0B.可能接受H 0,也可能拒绝H 0C.必拒绝H 0D.不接受,也不拒绝H 0二、填空题(本大题共15小题小题,,每小题2分,共30分)请在每小题的空格中填上正确答案请在每小题的空格中填上正确答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
全国2018年7月高等教育自学考试
概率论与数理统计(二)试题
课程代码:02197
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设事件A 与B 互不相容,且P(A)>0,P(B)>0,则有( )
A.P(A ⋃B)=P(A)+P(B)
B.P(AB)=P(A)P(B)
C.A=B
D.P(A|B)=P(A)
2.某人独立射击三次,其命中率为0.8,则三次中至多击中一次的概率为( )
A.0.002
B.0.008
C.0.08
D.0.104
3.设事件{X=K}表示在n 次独立重复试验中恰好成功K 次,则称随机变量X 服从( )
A.两点分布
B.二项分布
C.泊松分布
D.均匀分布
4.设随机变量X 的概率密度为f(x)=⎩⎨⎧<<-其它,02
x 1),x 2x 4(K 2 则K=( ) A.165
B.21
C.43
D.54
5.
则F(1,1) =( )
A.0.2
B.0.3
C.0.6
D.0.7
6.设随机向量(X ,Y )的联合概率密度为f(x,y)=⎪⎩⎪⎨⎧
<<<<--;
,0,4y 2,2x 0),y x 6(81
其它
则P (X<1,Y<3)=( )
2 A.8
3 B.8
4 C.8
5 D.87 7.设随机变量X 与Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )=( )
A.1
B.2
C.3
D.4
8.设X 1, X 2, …,X n ,…为独立同分布的随机变量序列,且都服从参数为
21的指数分布,则当n 充分大时,随机变量Y n =∑=n 1i i X
n 1的概率分布近似服从( )
A.N (2,4)
B.N (2,n
4) C.N (n 41,21) D.N (2n,4n )
9.设X 1,X 2,…,X n (n ≥2)为来自正态总体N (0,1)的简单随机样本,X 为样本均值,S 2为样本方差,则有( ) A.)1,0(N ~X n
B.nS 2~χ2(n)
C.)1n (t ~S X )1n (--
D.)1n ,1(F ~X
X )1n (n 2i 2i
21
--∑= 10.若θ 为未知参数θ的估计量,且满足E (θ )=θ,则称θ 是θ的( )
A.无偏估计量
B.有偏估计量
C.渐近无偏估计量
D.一致估计量
二、填空题(本大题共15小题,每小题2分,共30分)
请在每小题的空格中填上正确答案。

错填、不填均无分。

11.设P (A )=0.4,P (B )=0.5,若A 、B 互不相容,则P (AB )=___________.
12.某厂产品的次品率为5%,而正品中有80%为一等品,如果从该厂的产品中任取一件来检验,则检验结果是一等品的概率为___________.
13.设随机变量X~B (n,p ),则P (X=0)=___________.
3
14.设随机变量X 的分布函数F (x )=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<,
3x ,1;3x 1,32;1x 0,21;0x ,0 , 则P (X=1)=___________. 15.设随机变量X 在区间[1,3]上服从均匀分布,则P (1.5<X<2.5)=___________.
16.设随机变量X ,Y 相互独立,其概率密度各为
f x (x)=⎩⎨⎧≤>-;0x ,0,0x ,e x f Y (y)=⎩
⎨⎧≤>-;0y ,0,0y ,e y 则二维随机向量(X ,Y )的联合概率密度f(x,y)= ___________.
17.
则常数a=___________.
18.设二维随机向量(X ,Y )的概率密度为f(x,y)= ⎪⎩⎪⎨⎧≤≤≤≤+;,0,1y 0,2x 0),y x (31其它
则(X ,Y )关于X 的边缘概率密度f X (x)= ___________.
19.设随机变量X ,Y 相互独立,且有D (X )=3,D (Y )=1,则D (X-Y )=___________.
20.设随机变量X ,Y 的数学期望与方差都存在,若Y=-3X+5,则相关系数XY ρ=_________.
21.设(X ,Y )为二维随机向量,E (X )=E (Y )=0,D (X )=16,D (Y )=25,XY ρ=0.6,则有Cov(X,Y)=___________.
22.设随机变量X 服从参数为2的泊松分布,试由切比雪夫不等式估计P{|X-E (X )|<2}≥_____.
23.设总体X~N (2,σμ),X 1,…,X n 为X 的一个样本,若μ已知,则统计量∑=μ-σn 1i 2i 2~)X
(1_____分布.
24.设随机变量t~t(n),其概率密度为t(x;n),若P{|t|>t a/2(n)}=a ,则有⎰∞-=)
n (t 2/a dx )n ;x (t _____.
25.设总体X 服从泊松分布,即X~P (λ),则参数λ2的极大似然估计量为__________.
三、计算题(本大题共2小题,每小题8分,共16分)
26.设事件A 在5次独立试验中发生的概率为p ,当事件A 发生时,指示灯可能发出信号,以X 表示事件A 发生的次数.
(1)当P{X=1}=P{X=2}时,求p 的值;
(2)取p=0.3,只有当事件A 发生不少于3次时,指示灯才发出信号,求指示灯发出信号的概率.
4 27.设随机变量X 与Y 满足E(X)=1,E(Y)=0,D(X)=9,D(Y)=16,且21XY =
ρ,Z=2
Y 3X -,求: (1)E(Z)和D(Z);
(2)XZ ρ.
四、综合题(本大题共2小题,每小题12分,共24分)
28.设连续型随机变量X 的分布函数为
F(x)=⎪⎩⎪⎨⎧≤>+-;0x ,0,0x ,Be A 2x 2
(1)求常数A 和B ;
(2)求随机变量X 的概率密度;
(3)计算P{1<X<2}.
29.设二维随机向量(X,Y)的联合分布列为
(1)求(X ,Y )关于X ,Y 的边缘分布列;
(2)X 与Y 是否相互独立;
(3)计算P{X+Y=2}.
五、应用题(本大题共1小题,10分)
30.某工厂生产的铜丝的折断力(N )服从正态分布N (μ,82).今抽取10根铜丝,进行折断力试验,测得结果如下:
578 572 570 568 572 570 572 596 584 570
在显著水平α=0.05下,是否可以认为该日生产的铜丝的折断力的标准差显著变大?
(附:,919.16)9(205.0=χ,023.19)9(2025.0=χ,307.18)10(205.0=χ483.20)10(2025.0=χ)。

相关文档
最新文档