全国2018年4月自考概率论与数理统计(二)(真题+解析)
历年自考概率论与数理统计(经管类)真题及参考答案(全套)

2007年4月份全国自考概率论与数理统计(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A. P(AB)B. P(A)C. P(B)D. 1答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3.下列各函数可作为随机变量分布函数的是()A. AB. BC. CD. D答案:B解析:分布函数须满足如下性质:(1)F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选项A、C、D中F(x)都不是随机变量的分布函数,由排除法知B正确,事实上B满足随机变量分布函数的所有性质.4.设随机变量X的概率密度为A. AB. BC. CD. D答案:A5.设二维随机变量(X,Y)的分布律为(如下图)则P{X+Y=0}=()A. 0.2B. 0.3C. 0.5D. 0.7答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=0.3+0.2=0.5.6.设二维随机变量(X,Y)的概率密度为A. AB. BC. CD. D答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A. E(X)=0.5,D(X)=0.5B. E(X)=0.5,D(X)=0.25C. E(X)=2,D(X)=4D. E(X)=2,D(X)=2答案:D解析:X~P(2),故E(X)=2,D(X)=2.8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则D(Z)=()A. 1B. 3C. 5D. 6答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.9.A. 0.004B. 0.04C. 0.4D. 4答案:C10.A. AB. BC. CD. D答案:B二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
20184月概率论大自学考试真题

2017年4月高等教育自学考试全国统一命题考试概率论与数理统计<经管类> 试卷<课程代码04183>本试卷共4页,满分l00分,考试时间l50分钟。
考生答题注意事项:1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸.2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将"答题卡"的相应代码涂黑.3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间。
超出答题区域无效。
第一部分选择题一、单项选择题<本大题共l0小题,每小题2分,共20分>在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将"答题卡" 的相应代码涂黑。
未涂、错涂或多涂均无分。
1.设A,B为随机事件,则事件"A,B中至少有一个发生"是A.ABB.C.D.2.设随机变量X的分布函数为,则3.设二维随机变量〔X,Y的概率密度为,则常数c=A.1B.2C.3D.44.设随机变量X与Y相互独立,且二维随机变量〔X,Y概率密度为则当0时,A. B.x C.2x D.4x5.设随机变量X的概率密度为A.0B.C.D.6.设随机变量A.1B.2C.3D.47.设〔X,Y为二维随机变量,且8.设为来自总体X的样本〔n>1,且,则的无偏估计为A. B.C. D.9.设总体X的概率密度为为来自X的样本,为样本均值,则参数的无偏估计为A. B. C. D.10.在一元线性回归的数学模型中,其正规方程组为已知,则=A. B. C. D.第二部分非选择题二、填空题<本大题共l5小题,每小题2分,共30分>请在答题卡上作答。
11.同时掷两枚均匀硬币,则都出现正面的概率为__________12.设A,B为随机事件,_______13.已知10件产品中有2件次品,从该产品中任取2件,则恰好取到两件次品的概率为__________14.设随机变量X的分布律为X -2 1 2P 0.2c 0.4c c则常数c=__________15.设随机变量X服从上的均匀分布,则X在的概率密度为_____16.设随机变量X服从参数为的泊松分布,且满足=__17.设相互独立的随机变量X,Y服从参数为的指数分布,则当时,〔X,Y的概率密度f〔x,y=__________18.设二维随机变量〔X,Y的分布律为X Y 20.10.319.设随机变量,随机变量Y服从参数为2的泊松分布,且X与Y相互独立,则E<X+Y>=__________20.设随机变量,且Y=3-2X,则D<Y>=__________21.已知D<X>=25,D<Y>=36,X与Y的相关系数D<X+Y>=__________22.设总体为来自X的样本,,则__________23.设总体X服从参数为的指数分布,为来自X的样本,其样本均值则的矩估计__________24.设样本来自总体,为样本均值,假设检验问题为,,Z则检验统计量的表达式为_________25.已知某厂生产零件直径服从.现随机取16个零件测其直径,并算得样本均值,做假设试验,则检验统计量的值为_________三、计算题<本大题共2小题,每小题8分,共16分>26.某厂甲,乙两台机床生产同一型号产品,产量分别占总产量的40%,60%,并且各自产品中的次品率分别为1%,2%求:〔1从该产品中任取一件是次品的概率〔2在人去一件是次品的条件下,它是由乙机床生产的概率27.设随机变量X服从区间上的均匀分布,随机变量Y服从参数为3的指数分布,且X,Y相互独立求:〔1〔X,Y的边缘概率密度;〔2〔X,Y的概率密度f〔x,y四、综合题<本大题共2小题,每小题l2分。
4月全国高等教育自学考试概率论与数理统计(二)试题及答案解析

全国2018年4月高等教育自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.从一批产品中随机抽两次,每次抽1件。
以A 表示事件“两次都抽得正品”,B 表示事件“至少抽得一件次品”,则下列关系式中正确的是( ) A .A ⊂B B .B ⊂A C .A=BD .A=B2.对一批次品率为p(0<p<1)的产品逐一检测,则第二次或第二次后才检测到次品的概率为( )A .pB .1-pC .(1-p)pD .(2-p)p3.设随机变量X~N (-1,22),则X 的概率密度f(x)=( ) A .8)1(2221+-x eπ B .8)1(2221--x eπC .4)1(241+-x eπ D .8)1(241+-x eπ4.设F (x )和f(x)分别为某随机变量的分布函数和概率密度,则必有( ) A .f(x)单调不减 B .⎰+∞∞-=1)(dx x FC .F (-∞)=0D .⎰+∞∞-=dx x f x F )()(5.设二维随机向量(X ,Y )的联合分布列为若X 与Y 相互独立,则( )A .α=92,β=91 B .α=91,β=92C .α=61,β=61D .α=185,β=1816.设二维随机向量(X ,Y )在区域G :0≤x ≤1,0≤y ≤2上服从均匀分布,f Y (y)为(X ,Y )关于Y 的边缘概率密度,则f Y (1)=( ) A .0 B .21 C .1D .27.设随机向量X 1,X 2…,X n 相互独立,且具有相同分布列: q=1-p,i=1,2,…,n. 令∑==ni i X n X 11,则D (X )=( ) A .2n pq B .npq C .pq D .npq8.设随机变量序列X 1,X 2,…,X n ,…独立同分布,且E (X i )=μ,D(X i )=2σ,0>σ,i=1,2,….)(x Φ为标准正态分布函数,则对于任意实数x ,=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≥-∑=∞→x n n X P n i in σμ1lim( )A .0B .Φ(x)C .1-Φ(x)D .19.设X 1,X 2,…,X 6是来自正态总体N (0,1)的样本,则统计量262524232221X X X X X X ++++服从 ( )A .正态分布B .2χ分布 C .t 分布D .F 分布10.设X 1,X 2,X 3是来自正态总体N (0,σ2)的样本,已知统计量c(2232221X XX +-)是方差σ2的无偏估计量,则常数c 等于( ),0<p<1,A .41 B .21 C .2 D .4二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
历年最全自学考试概率论与数理统计真题 (二)

2012年4月全国高等教育自学考试概率论与数理统计(二)课程代码02197试题来自省自考委 答案由绥化市馨蕾園的王馨磊导师提供()()()()()()()()()()()(){}{}{}{}{}()()()()(){}{}()()()()()()()()()[]()()()()()()()()()()()()nx D nx C x B x A x X x x x N X D C B A X Y X D X D X D C B A p n X D X E p n B X y f x f D y f x f C y f x f B y f x f A Y X y f x f Y X D C B A Y X Y X D C B A X P X P N X x x e X F D x x e X F C x x e X F B x x e X F A X X X P D X P C X P B X P A X P x x f X AB P B P A P D AB P B P A P C AB P A P B B P A P A B A P B A A D A C B B B A A AB B A B A n XY Y X Y X Y X Y X Y X x x x x 92.32.92.32....32~.102.1.0.1-.0.98.03.3.08.4.06.6.04.44.14.2~.8.21..21..75,1.5,0.1,1.10.~12.684.0.68.0.32.0.16.0.084.042~.5.0001..0001..0001..000..472.53.54.21.43.06331.3....2.....12122-----=>==+++-≤=≤⎩⎨⎧≤>+=⎩⎨⎧≤>-=⎩⎨⎧≤>-=⎩⎨⎧≤>=≤<≤<≤<≤<≤<⎪⎩⎪⎨⎧<<=-++---=-⊂----中服从正态分布的是计量为样本均值,则下列统的样本,为来自总体,,,,,设总体等于,则,令存在,且的设随机变量和和和和的值为和,则参数,,且,设的概率密度为,,则、分别为相互独立,其概率密度、设随机变量,准正态分布,则相互独立,且都服从标、设随机变量等于,则,,设,,,,,,,,的分布函数为的指数分布,则服从参数为设随机变量等于,则其他,,,的概率密度为设随机变量是随机变量,则、设等于,则是随机变量,且、设ρσλλλλλλλ选择题答案:1.C 2.B 3.B 4.C 5.A 6D 7D 8.B 9.A 10.C()()()()()()()._______.232.14___8.04.05.0.13.______3.05.0.12._________242.11一个黑球的概率为取到,每次取一个,则至少次取个白球,有放回地连续个黑球,设袋中有,则,,,且、设随机变量,则,相互独立,且、设随机变量是的书都是科技书的概率本,则选中本文艺书中任选本科技书,同学从在一次读书活动中,某=======A B P B A P B P A P Y X A P B A P A P Y X15.设则()._________12=≥X P()()()()()()._______.17._____11220.16===≤≤≤≤Y X P Y X f y x f Y X y o x D D Y X ,则、设二维离散型随机变量,,则,的概率密度为、设,,:上服从均匀分布,其中,在、设二维随机变量()()()(){}()().__0.20.______3,3.19.__________1100011.18=-==-=≤≤⎩⎨⎧>>--=--b a X E b a X X E X Y X P y x e e xy F Y X y x ,则为常数,且,的分布律为,设离散型随机变量则的泊松分布服从参数等于设随机变量,则其他,,,的分布函数为、设二维随机变量()(){}()()()().___~10~.23.______32~.22._____211~.212232221321=++=≤≥-n n x x x X x x x N X E B X X E X P N X ,则且的一个样本,为来自总体,,,,设总体,设随机变量估计概率,应用切比雪夫不等式,设随机变量χ()._____01.0.25._____3231ˆ2121ˆ1~.240021221121的概率为接受成立,,则在原假设类错误的概率为在假设检验中,犯第一是,则方差较小的估计量,,估计量为来自总体的一个样本,,,设总体H H x x x x x x N X +=+=μμμ ()99.0.25ˆ.243.236.0.2241.212.0.200.19-1.184.0.170.168.0.1564.0.1464.0.134.0.12151.11121μ-e 填空题答案:2012年4月全国自考概率论与数理统计(二)大题及答案参考答案由绥化市馨蕾園的王馨磊导师提供()()()()()()的分布律为,设二维随机变量;的分布函数;常数求,其他,,,的概率密度设随机变量Y X x P X F X c x cx x f X .27.210.3.2.1010.262⎭⎬⎫⎩⎨⎧<<⎩⎨⎧≤≤=()()()()()()()()()()()()()..2.15.0,5.0,9.022.30 (1)0101.29.21.28.2.12121p p B C B A B C C B A x x x x x x f X D D E E Y X Y X Y X Y X X Y X n 概率抽检后设备不需调试的;类产品的概率抽到两件产品都是影响。
自考04183概率论与数理统计历年真题共14套

3全国2010年7月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的 多选或未选均无分。
B .如果C .如果则下列概率计算结果正确的是 ( )A. P(X=3)=0 B . P(X=0)=0 C . P(X>-1)=ID . P(X<4)=I3. 每次试验成功率为 p(0<p<1),则在3次重复试验中至少失败一次的概率为()A.(1-p)3 B . 1-p 3C .3(1-p) D . (1-p)3+p(1-p)2+p 2(1-p)4.已知离 莓散型随机变量X 的概率分布如卜表所示:X-1 0 1 2 4D .如果 B 对立,则 A,B 也对立 A , P1/101/51/101/52/55.已知连续型随机变量 X 服从区间[a , b ]上的均匀分布,则概率 PB.,请将其代码填写在题后的括号。
错选、1. 1 _设A 、B 为两事件,已知 P(B)= 1, P(A 2B)=-,若事件A , B 相互独立,则3P(A)=B .C .2•对于事件 A , B ,下列命题正确的是( A .如果 A , B 互不相容,则 A,B 也互不相容2C .8已知随机变量 X 〜N(0, 1),则随机变量 Y=2X-1B. 2C. 39.设随机变量X 服从参数为0.5的指数分布, 1 1 A. —B.-93用切比雪夫不等式估计 P(|X-2|> 3) < (C.1 2 2 1-X 2 kX 3 ,已知T 是E(x)的无偏估计, 61 A. - 6 C.4110•设X 1, X 2, X 3,为总体 X 的样本,T -X 12C .- 3X 与Y 相互独立时,(p , q)=(C . (1 A) ‘10,15; 107. 设(X,Y )的联合概率密度为 f(x,y)k(xy),o 0, x 2 0 其他,1,则 k=(B.丄2的方差为D.1则 k=()1 B.— 3 1 D.-9、填空题(本大题共15小题,每小题2分,共30分)2请在每小题的空格中填上正确答案。
4月全国自考概率论与数理统计(二)试题及答案解析

1全国2018年4月高等教育自学考试概率论与数理统计(二)试题课程代码:02197一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设P (A )=21,P (B )=31,P (AB )=61,则事件A 与B ( )A .相互独立B .相等C .互不相容D .互为对立事件2.设随机变量X ~B (4,0.2),则P {X>3}=( ) A .0.0016 B .0.0272 C .0.4096D .0.81923.设随机变量X 的分布函数为F (x ),下列结论中不一定成立.....的是( ) A .F (+∞)=1 B .F (-∞)=0 C .0≤F (x )≤1D .F (x )为连续函数4.设随机变量X 的概率密度为f (x),且P {X ≥0}=1,则必有( ) A .f (x)在(0,+∞)内大于零 B .f (x)在(-∞,0)内小于零 C .⎰+∞=01f(x)dxD .f (x)在(0,+∞)上单调增加5.设随机变量X 的概率密度为f (x)=812221)x (e+-π,-∞<x<+∞,则X ~( )A .N (-1,2)B .N (-1,4)C .N (-1,8)D .N (-1,16)6.设(X ,Y )为二维连续随机向量,则X 与Y 不相关...的充分必要条件是( ) A .X 与Y 相互独立B .E (X +Y )=E (X )+E (Y )C .E (XY )=E (X )E (Y )D .(X ,Y )~N (μ1,μ2,21σ,22σ,0)27.设二维随机向量(X ,Y )~N (1,1,4,9,21),则Cov (X ,Y )=( ) A .21 B .3 C .18D .368.已知二维随机向量(X ,Y )的联合分布列为( )则E (X )= A .0.6 B .0.9 C .1 D .1.69.设随机变量X 1,X 2,…,X n ,…独立同分布,且i=1,2…,0<p<1.令∑===ni i n .n ,X Y 121Λ,,Φ(x )为标准正态分布函数,则=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--∞→11lim n )p (np np Y P n ( ) A .0B .Φ(1)C .1-Φ(1)D .110.设总体X ~N (μ,σ2),其中μ,σ2已知,X 1,X 2,…,X n (n ≥3)为来自总体X 的样本,X 为样本均值,S 2为样本方差,则下列统计量中服从t 分布的是( ) A .221σS)n (X - B .221σμS)n (X --C .221σσμS)n (n/X -- D .22σσμSn/X -二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
全国自学考试概率论与数理统计二历年真题及答案

全国 2010 年 7 月高等教育自学考试概率论与数理统计(二)试题课程代码: 02197一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分 )在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设 A、B 为两事件,已知P(B)= 1,P(A B)= 2,若事件 A, B 相互独立,则P(A)=( )2 3A .1B .19 6 C.1 D .13 2 2.对于事件 A, B,下列命题正确的是( )A .如果 A,B 互不相容,则 A , B 也互不相容B.如果 A B,则 A BC.如果 A B,则 A BD.如果 A,B 对立,则 A , B 也对立3.每次试验成功率为p(0< p<1) ,则在3 次重复试验中至少失败一次的概率为( )3 B . 1-p 3A . (1-p)C. 3(1-p) D . (1- p)3+p(1- p) 2+p2(1-p)4.已知离散型随机变量X 的概率分布如下表所示:X -1 0 1 2 4P 1/ 10 1/5 1/10 1/5 2/5 则下列概率计算结果正确的是( )A . P(X=3)=0B . P(X=0)= 0C. P(X>-1)=1 D . P(X<4)= 15.已知连续型随机变量X 服从区间 [a,b] 上的均匀分布,则概率P X2a b( )3A . 0B .13C.2 D . 1 36.设 (X,Y)的概率分布如下表所示,当X 与 Y 相互独立时 ,(p,q)=( )Y-1 1 X0 1p 151 1 Q51 3 2510A.(1,1 ) B.(1,1)5 15 15 5C.(1,2) D.(2,1)10 15 15107.设 (X,Y)的联合概率密度为f(x,y)= k( xy),0 x 2,0 y 1, 则k=() 0, 其他 ,A .1B .13 2C. 1 D . 38.已知随机变量 X~ N (0, 1),则随机变量Y=2X+10 的方差为 ( ) A . 1 B . 2C. 4 D.149.设随机变量 X 服从参数为0.5 的指数分布,用切比雪夫不等式估计P(|X-2| ≥ 3) ≤ ( )A .1B .29 9C.1 D .43 910.由来自正态总体 X~ N (μ, 22)、容量为400 的简单随机样本,样本均值为45,则未知参数μ的置信度为0.95的置信区间是 (u0.025=1.96,u0.05=1.645)( )A . (44, 46)B . (44.804,45.196)C. (44.8355, 45.1645) D . (44.9, 45.1) 二、填空题 (本大题共15 小题,每小题2分,共 30 分)请在每小题的空格中填上正确答案。
最新 年月全国自考概率论与数理统计(二)试题及答案

1 / 10全国2018年7月自学考试概率论与数理统计(二)课程代码:02197试卷来自百度文库 答案由绥化市馨蕾園的王馨磊导数提供一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设A ={2,4,6,8},B ={1,2,3,4},则A -B =( ) A .{2,4} B .{6,8} C .{1,3}D .{1,2,3,4}.B AB A B A B A B A 中的元素,故本题选中去掉集合合说的简单一些就是在集的差事件,记作与事件不发生”为事件发生而解:称事件“-2.已知10件产品中有2件次品,从这10件产品中任取4件,没有取出次品的概率为( )A .15B .14C .13D .12.31789105678;844104104848410C C C P C C ,故选本题的概率件正品中取,共有从件中没有次品,则只能若种取法;件,共有件产品中任取解:从=⨯⨯⨯⨯⨯⨯== 3.设事件A ,B 相互独立,()0.4,()0.7,P A P A B =⋃=,则()P B =( ) A .0.2 B .0.3 C .0.4D .0.52 / 10()()()()()()()()()()()()()().5.04.04.07.0D B P B P B P B P A P B P A P AB P B P A P B A P B P A P AB P B A ,故选,解得代入数值,得,所以,相互独立,,解:=-+=-+=-+=⋃= 4.设某实验成功的概率为p ,独立地做5次该实验,成功3次的概率为( )A .35CB .3325(1)C p p -C .335C pD .32(1)p p -()()()()()().1335.,...2,1,0110~23355B p p C P k n n k p p C k P k A p p A n p n B X kn kk n n ,故选,所以,本题,次的概率恰好发生则事件,的概率为次检验中事件重贝努力实验中,设每定理:在,解:-====-=<<-5.设随机变量X 服从[0,1]上的均匀分布,Y =2X -1,则Y 的概率密度为( )A .1,11,()20,,Y y f y ⎧-≤≤⎪=⎨⎪⎩其他 B .1,11,()0,,Y y f y -≤≤⎧=⎨⎩其他C .1,01,()20,,Y y f y ⎧≤≤⎪=⎨⎪⎩其他D .1,01,()0,,Y y f y ≤≤⎧=⎨⎩其他()()[]()()()()()()[]()[][][]..01,121.01,1211.01,1212121.01,12121211,1212112010101110~A y y y y f y f y y h y h f y f y h y y h y y x x y x x f U X X Y X Y X 故选其他,,其他,,其他,,,得其他,,由公式,,即,其中,解得由其他,,,,,,解:⎪⎩⎪⎨⎧-∈=⎪⎩⎪⎨⎧-∈⨯=⎪⎩⎪⎨⎧-∈⎪⎭⎫ ⎝⎛+=⎩⎨⎧-∈'=='+=-∈+=-=⎪⎩⎪⎨⎧≤≤=-=3 / 106.设二维随机变量(X ,Y )的联合概率分布为( )则c =A .112B .16C .14 D .13()().611411211214161.1,...2,1,0B c c P j i P Y X jij iij ,故选,解得由性质②,得②,①:的分布律具有下列性质,解:==+++++==≥∑∑7.已知随机变量X 的数学期望E (X )存在,则下列等式中不恒成立....的是( ) A .E [E (X )]=E (X ) B .E [X +E (X )]=2E (X ) C .E [X -E (X )]=0D .E (X 2)=[E (X )]2()()()().D C B A XE X E E X E X 均恒成立,故本题选、、由此易知,即,期望的期望值不变,的期望是解:=8.设X 为随机变量2()10,()109E X E X ==,则利用切比雪夫不等式估计概率P{|X-10|≥6}≤( )A .14 B .518 C .34D .109364 / 10()()()()(){}(){}.416961091001092222A X P X D X E X P X E X E X D ,故选所以;切比雪夫不等式:,解:=≤≥-≤≥-=-=-=εε 9.设0,1,0,1,1来自X ~0-1分布总体的样本观测值,且有P {X =1}=p ,P {X =0}=q ,其中0<p <1,q =1-p ,则p 的矩估计值为( ) A .1/5 B .2/5 C .3/5D .4/5()()().53ˆ5301ˆC px p q p X E x X EX E x ,故选,所以,本题,,即估计总体均值用样本均值矩估计的替换原理是:解:===⨯+⨯== 10.假设检验中,显著水平α表示( ) A .H 0不真,接受H 0的概率 B .H 0不真,拒绝H 0的概率 C .H 0为真,拒绝H 0的概率D .H 0为真,接受H 0的概率{}.00C H H P ,故选为真拒绝即拒真,表示第一类错误,又称解:显著水平αα=二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。