2009年10月自考《概率论与数理统计》(经管类)试题
历年自考概率论与数理统计(经管类)真题及参考答案(全套)

2007年4月份全国自考概率论与数理统计(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A. P(AB)B. P(A)C. P(B)D. 1答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3.下列各函数可作为随机变量分布函数的是()A. AB. BC. CD. D答案:B解析:分布函数须满足如下性质:(1)F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选项A、C、D中F(x)都不是随机变量的分布函数,由排除法知B正确,事实上B满足随机变量分布函数的所有性质.4.设随机变量X的概率密度为A. AB. BC. CD. D答案:A5.设二维随机变量(X,Y)的分布律为(如下图)则P{X+Y=0}=()A. 0.2B. 0.3C. 0.5D. 0.7答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=0.3+0.2=0.5.6.设二维随机变量(X,Y)的概率密度为A. AB. BC. CD. D答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A. E(X)=0.5,D(X)=0.5B. E(X)=0.5,D(X)=0.25C. E(X)=2,D(X)=4D. E(X)=2,D(X)=2答案:D解析:X~P(2),故E(X)=2,D(X)=2.8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则D(Z)=()A. 1B. 3C. 5D. 6答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.9.A. 0.004B. 0.04C. 0.4D. 4答案:C10.A. AB. BC. CD. D答案:B二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
《概率论与数理统计(经管类)》综合测验题库

《线性代数(经管类)》综合测验题库一、单项选择题1.α=0.01,请根据下表推断显著性( )(已知F 0.05(1,8)=5.32)A.无法判断B.显著C.不显著D.不显著,但在α=0.01显著2.某批产品中有20%的次品,现取5件进行重复抽样检查,那么所取5件中有3件正品的概率为( )3.已知二维随机变量(X ,Y )的分布密度为,那么概率=( )A.1/18B.4/18C.5/18D.7/184.已知二维随机变量(X ,Y )的分布密度为那么=()A.1/24B.2/24C.3/24D.5/245.已知二维随机变量(X,Y)的分布密度为那么=()A.1/8B.2/8C.3/8D.4/86.设随机变量(X,Y)的概率密度为那么()A.3/5B.2/5C.4/5D.17.随机变量(X,Y)的概率密度为那么=()A.0.65B.0.75C.0.85D.0.958.设随机变量(X,Y)的概率密度为那么(X,Y)的分布函数为()9.在线性回归模型,则对固定的x,随机变量y的方差D(y)=()10.某种金属的抗拉程度y与硬度x之间存在相关关系,现观测得20对数据(x i,y i)(i=1,2,…,20),算得求y对x的回归直线()11.设正态总体()12.设总体X的分布中含有未知参数,由样本确定的两个统计量,如对给定的,能满足,则称区间()为的置信区间13.设是来自总体X样本,则是().A.二阶原点矩B.二阶中心矩C.总体方差D.总体方差的无偏估计量14.下类结论中正确的是()A.假设检验是以小概率原理为依据B.由一组样本值就能得出零假设是否真正正确C.假设检验的结构总是正确的D.对同一总体,用不同的样本,对同一统计假设进行检验,其结构是完全相同的15.统计推断的内容是()A.用样本指标推断总体指标B.检验统计上的“假设”C.A、B均不是D.A、B均是16.关于假设检验,下列那一项说法是正确的()A.单侧检验优于双侧检验B.采用配对t检验还是成组t检验是由实验设计方法决定的C.检验结果若P值大于0.05,则接受H0犯错误的可能性很小D.用u检验进行两样本总体均数比较时,要求方差相等17.以下关于参数估计的说法正确的是()A.区间估计优于点估计B.样本含量越大,参数估计准确的可能性越大C.样本含量越大,参数估计越精确D.对于一个参数只能有一个估计值18.设总体,x1,x2,x3是来自X的样本,则当常数a=()时候,=1/3x1+ax2+1/6x3是未知参数的无偏估计A.-1/2B.1/2C.0D.119.矩估计具有()A.矩估计有唯一性B.矩估计具有“不变性”C.矩估计不具有“不变性”D.矩估计具有“稳定性”20.区间的含义是()A.99%的总体均数在此范围内B.样本均数的99%可信区间C.99%的样本均数在此范围内D.总体均数的99%可信区间21.当样本含量增大时,以下说法正确的是()A.标准差会变小B.样本均数标准差会变小C.均数标准差会变大D.标准差会变大22.设X1,X2独立,且X1~N(2,3),X2~N(3,6),那么服从()分布A.B.C.正态分布D.t(2)23.如果X~F(3,5),那么1/ F(3,5)服从()分布A.F(5,2)B.F(2,5)C.F(5,3)D.无法知道24.一部件包括10部分,每部分的长度是一个随机变量,它们相互独立,且服从同一分布,其数学期望为2mm,均方差为0.05mm,规定总长度为(20时产品合格,试求产品合格的概率()A.0.2714B.0.3714C.0.4714D.0.571425.有一批建筑房屋用的木柱,其中80%的长度不小于3米,现从这批木柱中随机取出100根,问其中至少有30根短于3米的概率是()A.0.0052B.0.0062C.0.0072D.0.008226.设各零件的重量是随机变量,它们相互独立,且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总重量超过2510kg的概率是()A.0.0593B.0.0693C.0.0793D.0.089327.计算器在进行加法时,将每个加数舍入最靠近它的整数。
历年自考概率论与数理统计(经管类)真题及参考答案(全套)

2007年4月份全国自考概率论与数理统计(经管类)真题参考答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D答案:B解析:A,B互为对立事件,且P(A)>0,P(B)>0,则P(AB)=0P(A∪B)=1,P(A)=1-P(B),P(AB)=1-P(AB)=1.2.设A,B为两个随机事件,且P(A)>0,则P(A∪B|A)=()A. P(AB)B. P(A)C. P(B)D. 1答案:D解析:A,B为两个随机事件,且P(A)>0,P(A∪B|A)表示在A发生的条件下,A或B发生的概率,因为A发生,则必有A∪B发生,故P(A∪B|A)=1.3.下列各函数可作为随机变量分布函数的是()A. AB. BC. CD. D答案:B解析:分布函数须满足如下性质:(1)F(+∞)=1,F(-∞)=0,(2)F(x)右连续,(3)F(x)是不减函数,(4)0≤F(x)≤1.而题中F1(+∞)=0;F3(-∞)=-1;F4(+∞)=2.因此选项A、C、D中F(x)都不是随机变量的分布函数,由排除法知B正确,事实上B满足随机变量分布函数的所有性质.4.设随机变量X的概率密度为A. AB. BC. CD. D答案:A5.设二维随机变量(X,Y)的分布律为(如下图)则P{X+Y=0}=()A. 0.2B. 0.3C. 0.5D. 0.7答案:C解析:因为X可取0,1,Y可取-1,0,1,故P{X+Y=0}=P{X=0,Y=0}+P{X=1,Y=-1}=0.3+0.2=0.5.6.设二维随机变量(X,Y)的概率密度为A. AB. BC. CD. D答案:A7.设随机变量X服从参数为2的泊松分布,则下列结论中正确的是()A. E(X)=0.5,D(X)=0.5B. E(X)=0.5,D(X)=0.25C. E(X)=2,D(X)=4D. E(X)=2,D(X)=2答案:D解析:X~P(2),故E(X)=2,D(X)=2.8.设随机变量X与Y相互独立,且X~N(1,4),Y~N(0,1),令Z=X-Y,则D(Z)=()A. 1B. 3C. 5D. 6答案:C解析:X~N(1,4),Y~N(0,1),X与Y相互独立,故D(Z)=D(X-Y)=D(X)+D(Y)=4+1=5.9.A. 0.004B. 0.04C. 0.4D. 4答案:C10.A. AB. BC. CD. D答案:B二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
全国2009年1月自考概率论与数理统计(经管类)试题

全国2009年1月自考概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为()A.0.125B.0.25C.0.375D.0.52.设A、B为任意两个事件,则有()A.(A∪B)-B=AB.(A-B)∪B=AC.(A∪B)-B⊂AD.(A-B)∪B⊂A3.设随机变量X的概率密度为f(x)=⎪⎩⎪⎨⎧≤<-≤<.,0;2x1,x2;1x,x其它则P{0.2<X<1.2}的值是()A.0.5B.0.6C.0.66D.0.74.某人射击三次,其命中率为0.7,则三次中至多击中一次的概率为()A.0.027B.0.081C.0.189D.0.2165.设二维随机变量(X,Y)的联合分布函数为F(x,y). 其联合概率分布为()则F(0,1)=A.0.2B.0.6第 1 页第 2 页C.0.7D.0.86.设二维随机变量(X ,Y )的联合概率密度为f(x,y)=⎩⎨⎧≤≤≤≤+.,0;1y 0,2x 0),y x (k 其它则k=( )A.41B.31C.21D.327.设X~B(10, 31), 则=)X (E )X (D ( )A.31 B .32C.1D.3108.已知随机变量X 的分布函数为F(x)=⎩⎨⎧>--.0;0x e 1x 2其它则X 的均值和方差分别为( )A.E(X)=2, D(X)=4B.E(X)=4, D(x)=2C.E(X)=41,D(X)=21D.E(X)=21, D(X)=419.设随机变量X 的E (X )=μ,D(X)=2σ,用切比雪夫不等式估计≥σ≤-)3|)X (E X (|P ( )A.91B.31C.98D.110.记F1-α(m,n)为自由度m 与n 的F 分布的1-α分位数,则有( )A.)n ,m (F 1)m ,n (F 1α-α=B.)n ,m (F 1)m ,n (F 11α-α-=C.)n ,m (F 1)m ,n (F αα=D.)m ,n (F 1)m ,n (F 1α-α=二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。
(完整版)自考本概率论与数理统计真题10套

2.设F(x)为随机变量X的分布函数,则有
A.F(-∞)=0,F(+∞)=0B.F(-∞)=1,F(+∞)=0
C.F(-∞)=0,F(+∞)=1D.F(-∞)=1,F(+∞)=1
3.设二维随机变量(X,Y)服从区域D:x2+y2≤1上的均匀分布,则(X,Y)的概率密度为
19. 设随机变量X与Y相互独立,且X~N(0,5),Y~X2(5),则随机变量 服从
自由度为5的_______________分布。
20. 设随机变量X与Y相互独立,且D(X)=2,D(Y)=1,则D(X-2Y+3)=___________.
21. 已知二维随机向量(X,Y)服从区域G:0≤x≤1, 0≤y≤2上的均匀分布,则 _______________.
Y
X
-1
0
1
0
0.3
0.2
0.1
1
0.1
0.3
0
求:(1)X和Y的分布律;(2)Cov(X,Y).
四、综合题(本大题共2小题,每小题12分,共24分)
28.某次抽样结果表明,考生的数学成绩(百分制)近似地服从正态分布N(75,σ2),已知85分以上的考生数占考生总数的5%,试求考生成绩在65分至85分之间的概率.
22. 设总体X~N( …,Xn为来自总体X的样本, 为样本均值,则D( )=.
23. 设二维随机向量(X,Y)的概率密度为f(x,y)= 则当
0≤y≤1时,(X,Y)关于Y的边缘概率密度fY(y)=.
24. 设总体X的分布列为
X
0
1
P
1-p
P
其中p为未知参数,且X1,X2,…,Xn为其样本,则p的矩估计 =___________.
自考概率论与数理统计2009年10月真题及详解答案

. . . .全国2009年10月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号。
错选、多选或未选均无分。
1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( B ) A .A 1A 2 B .21A A C .21A AD .21A A2.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( D ) A .p 2B .(1-p )2C .1-2pD .p (1-p )3.已知P (A )=0.4,P (B )=0.5,且A ⊂B ,则P (A |B )=( C ) A .0 B .0.4 C .0.8D .1解:(P14)∵A ⊂B ,∴()()P AB P A =,()()()()()0.40.80.5P AB P A P A B P B P B ====。
4.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( D ) A .0.20 B .0.30 C .0.38D .0.57解:(P14)设A 为取到不合格品的事件,B 为取到一等品的事件; 则A 为取到合格品的事件,∴()()()5%,195%P A P A P A ==-= 合格品中一等品概率为:()60%P B A =,显然,()0P B A =. . . .由全概率公式得:()()()()()5%095%60%57%P B P A P B A P A P B A =+=⨯+⨯= 5.设随机变量X 的分布律为,则P {X <1}=( C )A .0B .0.2C .0.3D .0.5解(P?):6.下列函数中可作为某随机变量的概率密度的是( A )A .⎪⎩⎪⎨⎧≤>100,0,100,1002x x xB .⎪⎩⎪⎨⎧≤>0,0,0,10x x xC .⎩⎨⎧≤≤-其他,0,20,1x D .⎪⎩⎪⎨⎧≤≤其他,0,232121x ,解:(P39)∵()1f x dx +∞-∞=⎰∴(A)()210010010010010001100f x dx dx x x +∞+∞+∞-∞⎛⎫==-=--= ⎪⎝⎭⎰⎰; (B)()01010ln 1f x dx dx x x+∞+∞+∞-∞==≠⎰⎰;(D)()33221122111311112222222f x dx dx x +∞-∞===⨯-⨯=≠⎰⎰; 7.设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B (6,21),则E(X-Y)= ( A )A .25- B .21 C .2D .5解:(P ?)∵()12E X =,()1632E Y =⨯=,()()()15322E X Y E X E Y -=-=-=-。
10月概率论与数理统计(经管类)试题及答案

全国2010年10月高等教育自学考试 概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设随机事件A 与B 互不相容,且P (A )>0,P (B )>0,则( ) (事件的关系与运算) A.P (B |A )=0 B.P (A |B )>0 C.P (A |B )=P (A ) D.P (AB )=P (A )P (B )解:A 。
因为P (AB )=0.2.设随机变量X ~N (1,4),F (x )为X 的分布函数,Φ(x )为标准正态分布函数,则F (3)=( ) A.Φ(0.5) B.Φ(0.75) C.Φ(1) D.Φ(3)(正态分布) 解:C 。
因为F(3)=)1()213(Φ=-Φ 3.设随机变量X 的概率密度为f (x )=⎩⎨⎧≤≤,,0,10 ,2其他x x 则P {0≤X ≤}21=( )A.41 B.31C.21D.43 (连续型随机变量概率的计算)解:A。
因为P {0≤X ≤}21412210==⎰xdx4.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤≤-+, ,0 ,01,21其他x cx 则常数c =( ) A.-3 B.-1 C.-21D.1解:D.(求连续型随机变量密度函数中的未知数) 由于1)(=⎰+∞∞-dx x f112121212121)(01201=⇒=-=⎥⎦⎤⎢⎣⎡+=+=--∞+∞-⎰⎰c c x cx dx cx dx x f5.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是( ) A. f (x )=-e -x B. f (x )=e -x C. f (x )=||-e 21xD. f (x )=||-e x解:选C。
(概率密度函数性质)A .0<--x e 不满足密度函数性质 由于1)(=⎰+∞∞-dx x f ,B 选项∞=-=+∞∞--+∞∞--⎰xx e dx eC选项12122100||||=-===+∞-+∞-+∞-+∞∞--⎰⎰⎰xx x x e dx e dx e dx eD选项2220||||=-===+∞-+∞-+∞-+∞∞--⎰⎰⎰x xx x edx e dx e dx e6.设二维随机变量(X ,Y )~N (μ1,μ2,ρσσ,,2221),则Y ~( )(二维正态分布)A.N (211,σμ) B.N (221,σμ) C.N (212,σμ)D.N (222,σμ)解:D 。
自学考试 04183-概率论与数理统计(经管类) 2007-2011历年真题版

——给所有为知识而追求的人朋友是会计专业,要参加自考2011年10月的自考,报了两门公共课:概率与数理统计/线性代数,要我给她辅导下。
回想起自己的考研经历,那时都是根据考试大纲/考点复习的,不知道为什么自考没有找到考试大纲,如果有这个东西的话希望有人分享下。
其他方面,个人觉得做真题是最有效果的,因此特意花了点时间整理了历年试题(奇怪的是没找到2011年7月全国卷)。
在此分享给大家,祝她考试顺利,也祝所有参加考试的人,考试顺利。
为了照顾2003版的朋友,以及以后的更新,这里以doc格式上传。
如果大家有新的试题,也请及时更新与共享。
谢谢!注:更新时麻烦更新目录,以方便大家查找。
其中,有个别目录出现乱码,本人没有找到原因,是手动删除的。
目录浙江省2011年7月自学考试概率论与数理统计(经管类)试题 ... 错误!未定义书签。
全国2011年1月自考概率论与数理统计(经管类)试题 ............... 错误!未定义书签。
全国2011年1月自考概率论与数理统计(经管类)参考答案 ....... 错误!未定义书签。
浙江省2011年1月自学考试概率论与数理统计(经管类)试题 ... 错误!未定义书签。
全国2010年7月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2010年4月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2010年1月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2009年10月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2009年7月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2009年4月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2009年1月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
全国2008年10月高等教育自学考试概率论与数理统计(经管类)试题错误!未定义书签。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国2009年10月高等教育自学考试
概率论与数理统计(经管类)试题
课程代码:04183
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )
A .A 1A 2
B .21A A
C .21A A
D .21A A
2.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( )
A .p 2
B .(1-p )2
C .1-2p
D .p (1-p )
3.已知P (A )=0.4,P (B )=0.5,且A ⊂B ,则P (A |B )=( )
A .0
B .0.4
C .0.8
D .1
4.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( )
A .0.20
B .0.30
C .0.38
5.设随机变量X 的分布律为 ,则P {X <1}=( )
A .0
B .0.2
C .0.3
D .0.5
6.下列函数中可作为某随机变量的概率密度的是( )
A .⎪⎩⎪⎨⎧≤>100,0,100,1002x x x
B .⎪⎩⎪⎨⎧≤>0
,0,0,10x x x
C .⎩
⎨⎧≤≤-其他,0,20,1x D .⎪⎩⎪⎨⎧≤≤其他,0,232121x ,
7.设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B (6,
21),则E(X-Y)=( ) A .25-
B .
21 C .2 D .5 8.设二维随机变量(X ,Y )的协方差Cov(X ,Y )=6
1,且D (X )=4,D (Y )=9,则X 与Y 的相关系数XY ρ为( )
A .
2161 B .361 C .61 D .1
9.设总体X ~N (2,σμ),X 1,X 2,…,X 10为来自总体X 的样本,X 为样本均值,则X ~( )
A .)10(2σμ,N
B .)(2σμ,N
C .)10(2
σμ,N D .)10(2σμ,N
10.设X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则样本方差S 2=( )
A .∑=-n i i X X
n 12)(1 B .∑=--n i i X X
n 12)(11
C .∑=-n i i X X
n 12)(1 D .∑=--n i i X X
n 12)(11
二、填空题(本大题共15小题,每小题2分,共30分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
11.同时扔3枚均匀硬币,则至多有一枚硬币正面向上的概率为________.
12.设随机事件A 与B 互不相容,且P (A )=0.2,P (A ∪B )=0.6,则P (B )= ________.
13.设事件A 与B 相互独立,且P (A ∪B )=0.6,P (A )=0.2,则P (B )=________.
14.设3.0)(=A P ,P (B |A )=0.6,则P (AB )=________.
15.10件同类产品中有1件次品,现从中不放回地接连取2件产品,则在第一次取得正品的条件下,第二次取得次
品的概率是________.
16.某工厂一班组共有男工6人、女工4人,从中任选2名代表,则其中恰有1名女工的概率为________.
17.设连续型随机变量X 的分布函数为
⎪⎪⎪⎩
⎪⎪⎪⎨⎧≥<≤<=,2π1,,2π0sin 00)(x x x ,,x ,x F 其概率密度为f (x ),则f (
6
π)=________. 18.设随机变量X ~U (0,5),且Y =2X ,则当0≤y ≤10时,Y 的概率密度f Y (y )=________.
19.设相互独立的随机变量X ,Y 均服从参数为1的指数分布,则当x >0,y >0时,(X ,Y )的概率密度f (x ,y )=________. 20.设二维随机变量(X ,Y )的概率密度f (x ,y )=⎩
⎨⎧≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 21.设二维随机变量(X ,Y )的概率密度为f (x ,y )= ⎩
⎨⎧≤≤≤≤,y x axy ,其他,0,10,10则常数a =_______.
22.设二维随机变量(X ,Y )的概率密度f (x ,y )=)(21
22e π21y x +-,则(X ,Y )关于X 的边缘概率密度f X (x )=________. 23.设随机变量X 与Y 相互独立,其分布律分别为
则E (XY )=________.
24.设X ,Y 为随机变量,已知协方差Cov(X ,Y )=3,则Cov(2X ,3Y )=________.
25.设总体X ~N (211,σμ),X 1,X 2,…,X n 为来自总体X 的样本,X 为其样本均值;设总体Y ~N (222,σμ),Y 1,
Y 2,…,Y n 为来自总体Y 的样本,Y 为其样本均值,且X 与Y 相互独立,则D (Y X +)=________.
三、计算题(本大题共2小题,每小题8分,共16分)
26.设二维随机变量(X ,Y )只能取下列数组中的值:
(0,0),(-1,1),(-1,3
1),(2,0), 且取这些值的概率依次为
61,31,121,12
5. (1)写出(X ,Y )的分布律;
(2)分别求(X ,Y )关于X ,Y 的边缘分布律. 27.设总体X 的概率密度为⎪⎩
⎪⎨⎧<≥=-,0,0,0,e 1),(x x x f x
θθθ其中0>θ,X 1,X 2,…,X n 为来自总体X 的样本.(1)求E (X );
(2)求未知参数θ的矩估计^θ.
四、综合题(本大题共2小题,每小题12分,共24分)
28.设随机变量X 的概率密度为
⎩⎨⎧<<+=,x b ax x f 其他,0,10,)(
且E (X )=
12
7.求:(1)常数a ,b ;(2)D (X ). 29.设测量距离时产生的随机误差X ~N (0,102)(单位:m),现作三次独立测量,记Y 为三次测量中误差绝对值大于
19.6的次数,已知Φ(1.96)=0.975.
(1)求每次测量中误差绝对值大于19.6的概率p ;
(2)问Y 服从何种分布,并写出其分布律;
(3)求E (Y ).
五、应用题(10分) 30.设某厂生产的零件长度X ~N (2,σμ)(单位:mm),现从生产出的一批零件中随机抽取了16件,经测量并算得零件长度的平均值x =1960,标准差s =120,如果2σ未知,在显著水平05.0=α下,是否可以认为该厂生产的零件的平均长度是2050mm?
(t 0.025(15)=2.131)。