2016年陕西省中考数学模拟试卷.pdf

合集下载

2016年陕西省中考数学试题及详细解析

2016年陕西省中考数学试题及详细解析
A.2对B.3对C.4对D.5对
9.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB,OC,若∠BAC与∠BOC互补,则弦BC的长为()
A. B. C. D.
10.已知抛物线 与x轴交于A,B两点,将这条抛物线的顶点记为C,连接AC,BC,则tan∠CAB的值为()
A. B. C. D.2
根据下面图象,回答下列问题:
(1)2千米,求他何时到家?
22.(本题满分7分)
某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动.奖品是三种瓶装饮料,它们分别是:绿茶(500 ml)、红茶(500 ml)和可乐(600 ml).抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应的奖品一瓶;不相同时,不能获得任何奖品.
如图,已知:AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.
21.(本题满分7分)
昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.
二、填空题(共4小题,每小题3分,计12分)

2016年陕西省西安市XX中学中考数学一模试卷附答案解析

2016年陕西省西安市XX中学中考数学一模试卷附答案解析

2016年陕西省西安市XX中学中考数学一模试卷一、选择题1.的平方根是()A.±3 B.3 C.±9 D.92.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b34.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.87.不等式组的解集在数轴上表示正确的是()A. B.C.D.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b二、填空题11.分解因式:ab2﹣4ab+4a=.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是.15.用科学计算器计算:cos32°≈.(精确到0.01)三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.17.解分式方程:﹣=1.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小敏从剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;(2)求点P(x,y)在函数y=﹣x+5图象上的概率.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF=AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)2016年陕西省西安市XX中学中考数学一模试卷参考答案与试题解析一、选择题1.的平方根是()A.±3 B.3 C.±9 D.9【考点】平方根;算术平方根.【分析】根据平方运算,可得平方根、算术平方根.【解答】解:∵,9的平方根是±3,故选:A.2.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图是从左边看得到的视图,结合选项即可得出答案.【解答】解:所给图形的左视图为C选项说给的图形.故选C.3.下面计算一定正确的是()A.b3+a3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3+3y5=15y8D.b9÷b3=b3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】利用合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;同底数幂的除法法则:底数不变,指数相减进行分析即可.【解答】解:A、b3+a3=2b6,计算错误;B、(﹣3pq)2=﹣9p2q2,计算错误;C、5y3+3y5=15y8,计算错误;D、b9÷b3=b3,计算正确;故选:D.4.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140° D.40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.5.若反比例函数y=的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过()A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限D.第一、二、三象限【考点】一次函数图象与系数的关系;反比例函数图象上点的坐标特征.【分析】首先利用反比例函数图象上点的坐标特征可得k的值,再根据一次函数图象与系数的关系确定一次函数y=kx﹣k的图象所过象限.【解答】解:∵反比例函数y=的图象过点(﹣2,1),∴k=﹣2×1=﹣2,∴一次函数y=kx﹣k变为y=﹣2x+2,∴图象必过一、二、四象限,故选:A.6.在平面直角坐标系中,O为坐标原点,点A的坐标为(1,),M为坐标轴上一点,且使得△MOA为等腰三角形,则满足条件的点M的个数为()A.4 B.5 C.6 D.8【考点】等腰三角形的判定;坐标与图形性质.【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点M,再作线段OA 的垂直平分线,与坐标轴的交点也是所求的点M,作出图形,利用数形结合求解即可.【解答】解:如图,满足条件的点M的个数为6.故选C.分别为:(﹣2,0),(2,0),(0,2),(0,2),(0,﹣2),(0,).7.不等式组的解集在数轴上表示正确的是()A. B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出每个不等式的解集再求出其公共解集.【解答】解:该不等式组的解集为1<x≤2,故选C.8.在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为()A.(3,4) B.(﹣4,3)C.(﹣3,4)D.(4,﹣3)【考点】坐标与图形变化﹣旋转.【分析】如图,把线段OP绕点O逆时针旋转90°到OP′位置看作是把Rt△OPA绕点O逆时针旋转90°到RtOP′A′,再根据旋转的性质得到OA′、P′A′的长,然后根据第二象限点的坐标特征确定P′点的坐标.【解答】解:如图,OA=3,PA=4,∵线段OP绕点O逆时针旋转90°到OP′位置,∴OA旋转到x轴负半轴OA′的位置,∠P′A′0=∠PAO=90°,P′A′=PA=4,∴P′点的坐标为(﹣3,4).故选C.9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF为()A.80°B.70°C.65°D.60°【考点】菱形的性质.【分析】连接BF,利用SAS判定△BCF≌△DCF,从而得到∠CBF=∠CDF,根据已知可注得∠CBF 的度数,则∠CDF也就求得了.【解答】解:如图,连接BF,在△BCF和△DCF中,∵CD=CB,∠DCF=∠BCF,CF=CF∴△BCF≌△DCF∴∠CBF=∠CDF∵FE垂直平分AB,∠BAF=×80°=40°∴∠ABF=∠BAF=40°∵∠ABC=180°﹣80°=100°,∠CBF=100°﹣40°=60°∴∠CDF=60°.故选D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣.下列结论中,正确的是()A.abc>0 B.a+b=0 C.2b+c>0 D.4a+c<2b【考点】二次函数图象与系数的关系.【分析】由二次函数的性质,即可确定a,b,c的符号,即可判定A是错误的;又由对称轴为x=﹣,即可求得a=b;由当x=1时,a+b+c<0,即可判定C错误;然后由抛物线与x轴交点坐标的特点,判定D正确.【解答】解:A、∵开口向上,∴a>0,∵抛物线与y轴交于负半轴,∴c<0,∵对称轴在y轴左侧,∴﹣<0,∴b>0,∴abc<0,故A选项错误;B、∵对称轴:x=﹣=﹣,∴a=b,故B选项错误;C、当x=1时,a+b+c=2b+c<0,故C选项错误;D、∵对称轴为x=﹣,与x轴的一个交点的取值范围为x1>1,∴与x轴的另一个交点的取值范围为x2<﹣2,∴当x=﹣2时,4a﹣2b+c<0,即4a+c<2b,故D选项正确.故选D.二、填空题11.分解因式:ab2﹣4ab+4a=a(b﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a ﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.12.如图,A是反比例函数图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,△ABP面积为2,则这个反比例函数的解析式为.【考点】反比例函数系数k的几何意义.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:设反比例函数的解析式为.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第一象限,∴k>0.∴k=4.∴这个反比例函数的解析式为.13.如图,已知点P是半径为1的⊙A上一点,延长AP到C,使PC=AP,以AC为对角线作▱ABCD.若AB=,则▱ABCD面积的最大值为2.【考点】平行四边形的性质;三角形的面积.【分析】由已知条件可知AC=2,AB=,应该是当AB、AC是直角边时三角形的面积最大,根据AB⊥AC即可求得.【解答】解:由已知条件可知,当AB⊥AC时▱ABCD的面积最大,∵AB=,AC=2,==,∴S△ABC∴S▱ABCD=2S△ABC=2,∴▱ABCD面积的最大值为2.故答案为:2.[选做题]请从以下两个小题中任选一个作答,若多选,则按第一题计分14.若一个正n边形的每个内角为156°,则这个正n边形的边数是15.【考点】多边形内角与外角.【分析】根据多边形内角和定理列出方程,解方程即可.【解答】解:由题意得,=156°,解得,n=15,故答案为:15.15.用科学计算器计算:cos32°≈ 2.68.(精确到0.01)【考点】计算器—三角函数;近似数和有效数字;计算器—数的开方.【分析】熟练应用计算器,对计算器给出的结果,根据精确度的概念用四舍五入法取近似数.【解答】解:cos32°=3.1623×0.8480≈2.68,故答案为2.68.三、解答题16.计算:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+.【考点】特殊角的三角函数值;零指数幂;负整数指数幂.【分析】涉及绝对值、特殊角的三角函数值、0指数幂、负整数指数幂、二次根式的运算等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|2﹣tan60°|﹣(π﹣3.14)0+()﹣2+,=|2﹣|﹣1+4+,=2﹣﹣1+4+,=5.17.解分式方程:﹣=1.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣5x+6﹣3x﹣9=x2﹣9,解得:x=,经检验x=是分式方程的解.18.小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).【考点】三角形的外接圆与外心.【分析】要使三棵树都在花坛的边上则应使花坛为△ABC的外接圆,故只要作出三角形两边垂直平分线的交点即为△ABC的外接圆圆心,再以此点为圆心,以此点到点A的长度为半径画圆,此圆即为花坛的位置.【解答】解:①分别以A、B为圆心,以大于AB为半径画圆,两圆相交于D、E两点,连接DE;②分别以A、C为圆心,以大于AC为半径画圆,两圆相交于G、F两点,连接GF;③直线DE与GF相交于点O,以O为圆心,以OA的长为半径画圆,则此圆即为花坛的位置.19.在某市开展的“读中华经典,做书香少年”读书月活动中,围绕学生日人均阅读时间这一问题,对初二学生进行随机抽样调查.如图是根据调查结果绘制成的统计图(不完整),请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)请将条形统计图补充完整.(3)在扇形统计图中,计算出日人均阅读时间在1~1.5小时对应的圆心角度数.(4)根据本次抽样调查,试估计该市12000名初二学生中日人均阅读时间在0.5~1.5小时的多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据第一组的人数是30,占20%,即可求得总数,即样本容量;(2)利用总数减去另外两段的人数,即可求得0.5~1小时的人数,从而作出直方图;(3)利用360°乘以日人均阅读时间在1~1.5小时的所占的比例;(4)利用总人数12000乘以对应的比例即可.【解答】解:(1)样本容量是:30÷20%=150;(2)日人均阅读时间在0.5~1小时的人数是:150﹣30﹣45=75(人).;(3)人均阅读时间在1~1.5小时对应的圆心角度数是:360°×=108°;(4)12000×=9600(人).20.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由四边形ABCD为正方形,得到AB=AD,∠B=∠D=90°,DC=CB,由E、F分别为DC、BC中点,得出DE=BF,进而证明出两三角形全等;=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF得出结果.(2)首先求出DE和CE的长度,再根据S△AEF【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠D=∠B=90°,DC=CB,∵E、F为DC、BC中点,∴DE=DC,BF=BC,∴DE=BF,在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF=×4=2,CE=CF=×4=2,=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF∴S△AEF=4×4﹣×4×2﹣×4×2﹣×2×2=6.21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.(取1.732)【考点】解直角三角形的应用﹣方向角问题.【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【解答】解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×≈108.25(米)>100米.答:消防车不需要改道行驶.22.A、B两城间的公路长为450千米,甲、乙两车同时从A城出发沿这一公路驶向B城,甲车到达B城1小时后沿原路返回.如图是它们离A城的路程y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车返回过程中y与x之间的函数解析式,并写出函数的定义域;(2)乙车行驶6小时与返回的甲车相遇,求乙车的行驶速度.【考点】一次函数的应用.【分析】(1)设出一次函数解析式,代入图象上的两个点的坐标,即可解答;(2)把x=6代入(1)中的函数解析式,求得路程(甲、乙距A城的距离),进一步求得速度即可解答.【解答】解:(1)设甲车返回过程中y 与x 之间的函数解析式y=kx +b , ∵图象过(5,450),(10,0)两点, ∴, 解得,∴y=﹣90x +900.函数的定义域为5≤x ≤10;(2)当x=6时,y=﹣90×6+900=360,(千米/小时).23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x ,小敏从剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(x ,y ).(1)请你运用画树状图或列表的方法,写出点P 所有可能的坐标; (2)求点P (x ,y )在函数y=﹣x +5图象上的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征. 【分析】(1)首先根据题意画出表格,即可得到P 的所以坐标;(2)然后由表格求得所有等可能的结果与数字x 、y 满足y=﹣x +5的情况,再利用概率公式求解即可求得答案【解答】解:列表得:(1)点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+5图象上的有4种,即:(1,4),(2,3),(3,2),(4,1)∴点P(x,y)在函数y=﹣x+5图象上的概率为:P=.24.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.【考点】切线的判定.【分析】(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.【解答】(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.25.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连结AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.【考点】二次函数综合题.【分析】(1)根据平移规律写出抛物线解析式,再求出M、A、B坐标即可.(2)首先证明△ABE∽△AMF,推出的值,∠BAM=90°,根据tan∠ABM=即可解决问题.(3)分点P在x轴上方或下方两种情形解决问题.【解答】解:(1)∵抛物线y=x2﹣3向右平移一个单位后得到的函数解析式为y=(x﹣1)2﹣3,∴顶点M(1,﹣3),令x=0,则y=(0﹣1)2﹣3=﹣2,∴点A(0,﹣2),x=3时,y=(3﹣1)2﹣3=4﹣3=1,∴点B(3,1),(2)过点B作BE⊥AO于E,过点M作MF⊥AO于M,∵EB=EA=3,∴∠EAB=∠EBA=45°,同理可求∠FAM=∠FMA=45°,∴△ABE∽△AMF,∴==,又∵∠BAM=180°﹣45°×2=90°,∴tan∠ABM==,(3)过点P作PH⊥x轴于H,∵y=(x﹣1)2﹣3=x2﹣2x﹣2,∴设点P(x,x2﹣2x﹣2),①点P在x轴的上方时,=,整理得,3x2﹣7x﹣6=0,解得x1=﹣(舍去),x2=3,∴点P的坐标为(3,1);②点P在x轴下方时,=,整理得,3x2﹣5x﹣6=0,解得x1=(舍去),x2=,x=时,y=x2﹣2x﹣2=,∴点P的坐标为(,),综上所述,点P的坐标为(3,1)或(,).26.【问题探究】(1)如图①,点E是正△ABC高AD上的一定点,请在AB上找一点F,使EF=AE,并说明理由;(2)如图②,点M是边长为2的正△ABC高AD上的一动点,求AM+MC的最小值;【问题解决】(3)如图③,A、B两地相距600km,AC是笔直地沿东西方向向两边延伸的一条铁路.点B到AC的最短距离为360km.今计划在铁路线AC上修一个中转站M,再在BM间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍.那么,为使通过铁路由A到M再通过公路由M到B的总运费达到最小值,请确定中转站M的位置,并求出AM的长.(结果保留根号)【考点】作图—应用与设计作图.【分析】(1)根据等边三角形的性质得出∠BAD=30°,得出EF=AE;(2)根据题意得出C,M,N在一条直线上时,此时最小,进而求出即可;(3)作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求,在Rt△ABD中,求出AD的长,在Rt△MBD中,得出MD的长,即可得出答案.【解答】解:(1)如图①,作EF⊥AB,垂足为点F,点F即为所求.理由如下:∵点E是正△ABC高AD上的一定点,∴∠BAD=30°,∵EF⊥AB,∴EF=AE;(2)如图②,作CN⊥AB,垂足为点N,交AD于点M,此时最小,最小为CN的长.∵△ABC是边长为2的正△ABC,∴CN=BC•sin60°=2×=,∴MN+CM=AM+MC=,即的最小值为.(3)如图③,作BD⊥AC,垂足为点D,在AC异于点B的一侧作∠CAN=30°,作BF⊥AN,垂足为点F,交AC于点M,点M即为所求.在Rt△ABD中,AD===480(km),在Rt△MBD中,∠MBD=∠MAF=30°,得MD=BD•tan30°=(km),所以AM=km.2017年3月19日。

陕西2016中考试题数学卷(解析版)

陕西2016中考试题数学卷(解析版)

牛津五年级英语上学期期末综合复习名校习题班级:_____________ 姓名:_____________【填空题】1. 选词填空。

November pick Summer play have[1]I often watch TV and _____sports with my father.[2]Her birthday is in____.[3]We ____an English class at 9 o’clock.[4]We can ____apples in autumn on the farm.[5]____ is my favourite season.2. 根据图片补全单词。

[1]The ________ is hers.[2]I’m going to buy a ________ tomorrow.[3]There are many beautiful beaches on the ________.[4]I usually ________ ________ in the sea in summer.[5]He is going to ______ ______ ______ in the park tomorrow.3. 写出单词的完全形式和中文。

[1]Jan.(______)[2]Mar.(______)[3]Jun.(______)[4]Feb. (______)[5]Apr. (______)4. 按要求写单词。

foot (复数)chid (复数)run (现在分词)write (现在分词)we (形容词性物主代词)dancing (原形)old (反义词)sit (对应词)ask (对应词)Mrs (对应词)5. 根据中文提示补全句子。

[1]Don’t run on the ______ (楼梯).[2]Look, the boy is crossing the road at the ______ ______ (安全十字路口). [3]The girl gets sick, because she ______ (吃) a bad apple last night.[4]Students should know how to ______ ______ (保持安全).[5]You can call “110” when you are ______ ______ (遇到麻烦).【单词拼写】6. 根据要求写单词。

陕西省西安市2016年中考数学三模试卷含解析

陕西省西安市2016年中考数学三模试卷含解析

2016年陕西省西安市中考数学三模试卷一、选择题1.如果a与﹣3互为相反数,那么a等于()A.3 B.﹣3 C.D.2.下列几何体中,其主视图不是中心对称图形的是()A.B.C.D.3.下列运算中,结果是a6的式子是()A.a2•a3 B.a12﹣a6C.(a3)3D.(﹣a)64.如图,AB∥CD,点E在BC上,且CD=CE,∠D=75°,则∠B的度数为()A.20° B.30° C.40° D.50°5.不等式组的解集在数轴上可表示为()A.B.C.D.6.如图,点B,C分别在直线y=2x和直线y=kx上,A,D是x轴上两点,若四边形ABCD是长方形,且AB:AD=1:2,则k的值是()A.B.C.D.7.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B. +1 C.﹣1 D. +18.如图,菱形ABCD中,点O对角线AC的三等分点,连接OB、OD,且OB=OC=OD.已知AC=3,那么菱形的边长为()A.B.2 C.D.9.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A.B.C.D.10.如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()A.1 B.2 C.3 D.4二、填空题11.比较大小:.12.如图,直线y=x﹣4与y轴交于点C,与x轴交于点B,与反比例函数y=的图象在第一象限交于点A,连接OA.若S△AOB:S△BOC=1:2,则k的值为.13.如图,在 Rt△ABC中,∠ABC是直角,AB=4,BC=2,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是.三、填空题(共2小题,每小题3分,满分6分)14.如图,正六边形ABCDEF的边长为2,则对角线AF= .15.如图,在离地面高度为5米的A处引拉线固定电线杆,要使拉线与地面α=37°,工作人员需买拉线的长度约为(精确到米).(sin37°≈0.6,cos37°≈0.8).三、解答题16.计算: +|﹣2|﹣()﹣2+(tan60°﹣1)0.17.先化简,再求值:÷(+1),其中x是的整数部分.18.如图,已知在△ABC中,∠A=90°,请用圆规和直尺作⊙P,使圆心P在AC上,且与AB、BC两边都相切.(要求保留作图痕迹,不必写出作法和证明)19.初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?20.在▱ABCD中,点E在边BC上,点F在BC的延长线上,且EF=AD.求证:∠BAE=∠CDF.21.如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长2米,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(BC),有一部分落在斜坡上(CD),他测得落在地面上影长为10米,留在斜坡上的影长为2米,∠DCE为45°,则旗杆的高度约为多少米?(参考数据:≈1.4,≈1.7)22.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?23.小明和小亮正在按以下三步做游戏:第一步:两人同时伸出一只手,小明出“剪刀”,小亮出“布”;第二步:两人再同时伸出另一只手,小明出“石头”,小亮出“剪刀”;第三步:两人同时随机撤去一只手,并按下述约定判定胜负:在两人各留下的一只手中,“剪刀”胜“布”,“布”胜“石头”,“石头”胜“剪刀”,同时手势部分胜负.(1)请利用列表法或画树状图法求小亮获胜的概率;(2)若小明想取胜,你觉得小明应留下哪种手势?24.如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D 垂直于AC的直线交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)如果AD=5,AE=4,求⊙O的半径.25.如图,二次函数y=x2+4x+c图象与x轴交于A,B两点(A在B的左边),与y轴交于点C,M为不同于A,B,C的抛物线上的点.(1)当M坐标为(﹣2,﹣1)时,求c的值;(2)当M为顶点,且MA⊥MB时,求二次函数y=x2+4x+c的解析式;(3)在(2)的条件下,E为线段AC上的点,过E作y的平行线交抛物线于F,△ACF面积是否存在最大值,若存在求出最大值,不存在说明理由.26.用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.2016年陕西省西安市交大附中中考数学三模试卷参考答案与试题解析一、选择题1.如果a与﹣3互为相反数,那么a等于()A.3 B.﹣3 C.D.【考点】相反数.【分析】根据相反数的性质进行解答.【解答】解:由题意,得:a+(﹣3)=0,解得a=3.故选A.2.下列几何体中,其主视图不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;简单几何体的三视图.【分析】先判断出各图形的主视图,然后结合中心对称的定义进行判断即可.【解答】解:A、主视图是矩形,矩形是中心对称图形,故本选项错误;B、主视图是三角形,三角形不是中心对称图形,故本选项正确;C、主视图是圆,圆是中心对称图形,故本选项错误;D、主视图是正方形,正方形是中心对称图形,故本选项错误;故选B.3.下列运算中,结果是a6的式子是()A.a2•a3 B.a12﹣a6C.(a3)3D.(﹣a)6【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;有理数的乘方的意义,对各选项计算后利用排除法求解.【解答】解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.4.如图,AB∥CD,点E在BC上,且CD=CE,∠D=75°,则∠B的度数为()A.20° B.30° C.40° D.50°【考点】平行线的性质;等腰三角形的性质.【分析】根据等腰三角形两底角相等求出∠C的度数,再根据两直线平行,内错角相等解答即可.【解答】解:∵CD=CE,∴∠D=∠DEC,∵∠D=75°,∴∠C=180°﹣75°×2=30°,∵AB∥CD,∴∠B=∠C=30°.故选B.5.不等式组的解集在数轴上可表示为()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x>1,解②得x≥2.则不等式组的解集是x≥2.故选A.6.如图,点B,C分别在直线y=2x和直线y=kx上,A,D是x轴上两点,若四边形ABCD是长方形,且AB:AD=1:2,则k的值是()A.B.C.D.【考点】一次函数综合题.【分析】根据长方形ABCD的边长AB:AD=1:2,设AB为a,则BC为2a,继而可得出B点纵坐标,代入y=2x可求得B点的坐标,然后可得出C点的坐标,将C点的坐标代入y=kx,即可求出k的值.【解答】解:设长方形的AB边的长为a,则BC边的长度为2a,B点的纵坐标是a,把点B的纵坐标代入直线y=2x的解析式得:x=,则点B的坐标为(,a),点C的坐标为(+2a,a),把点C的坐标代入y=kx中得,a=k(+2a),解得:k=.故选B.7.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B. +1 C.﹣1 D. +1【考点】勾股定理.【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=,在Rt△ADC中,DC===1,∴BC=+1.故选D.8.如图,菱形ABCD中,点O对角线AC的三等分点,连接OB、OD,且OB=OC=OD.已知AC=3,那么菱形的边长为()A.B.2 C.D.【考点】菱形的性质.【分析】由菱形的性质得出AB=BC,得出∠BAC=∠ACB,由已知条件得出OB=OC=AC=1,由等腰三角形的性质得出△BOC∽△ABC,得出对应边成比例,即可求出菱形的边长.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∴∠BAC=∠ACB,∵点O对角线AC的三等分点,∴OB=OC=AC=1,∴∠BAC=∠ACB=∠OBC,∴△BOC∽△ABC,所以,即,∴BA2=3,∴BA=;故选:A.9.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A.B.C.D.【考点】垂径定理;圆周角定理;锐角三角函数的定义.【分析】根据垂径定理得到AC=BC=AB=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中根据勾股定理得到x2=42+(x﹣2)2,解得x=5,则AE=10,OC=3,再由AE是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE,由三角函数的定义求出sin∠ECB即可.【解答】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=x,则OC=OD﹣CD=x﹣2,在Rt△ACO中,∵AO2=AC2+OC2,∴x2=42+(x﹣2)2,解得:x=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE===2,∴sin∠ECB===.故选:B.10.如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C﹣D﹣E上移动,若点C、D、E的坐标分别为(﹣1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为()A.1 B.2 C.3 D.4【考点】二次函数综合题.【分析】抛物线在平移过程中形状没有发生变化,因此函数解析式的二次项系数在平移前后不会改变.首先,当点B横坐标取最小值时,函数的顶点在C点,根据待定系数法可确定抛物线的解析式;而点A横坐标取最大值时,抛物线的顶点应移动到E点,结合前面求出的二次项系数以及E点坐标可确定此时抛物线的解析式,进一步能求出此时点A的坐标,即点A 的横坐标最大值.【解答】解:由图知:当点B的横坐标为1时,抛物线顶点取C(﹣1,4),设该抛物线的解析式为:y=a(x+1)2+4,代入点B坐标,得:0=a(1+1)2+4,a=﹣1,即:B点横坐标取最小值时,抛物线的解析式为:y=﹣(x+1)2+4.当A点横坐标取最大值时,抛物线顶点应取E(3,1),则此时抛物线的解析式:y=﹣(x﹣3)2+1=﹣x2+6x﹣8=﹣(x﹣2)(x﹣4),即与x轴的交点为(2,0)或(4,0)(舍去),∴点A的横坐标的最大值为2.故选B.二、填空题11.比较大小:<.【考点】有理数大小比较.【分析】先计算|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数越小进行大小比较.【解答】解:∵|﹣|==,|﹣|==,∴﹣<﹣.故答案为<.12.如图,直线y=x﹣4与y轴交于点C,与x轴交于点B,与反比例函数y=的图象在第一象限交于点A,连接OA.若S△AOB:S△BOC=1:2,则k的值为12 .【考点】反比例函数与一次函数的交点问题.【分析】由直线求得C的坐标,然后根据S△AOB:S△BOC=1:2,得出A的纵坐标为2,代入直线解析式求得A的坐标,代入y=即可求得k的值.【解答】解:由直线y=x﹣4可知C(0,﹣4),∴OC=4,∵S△AOB:S△BOC=1:2,∴A的纵坐标为2,把y=2代入y=x﹣4得,x=6,∴A(6,2),∴k=6×2=12;故答案为12.13.如图,在 Rt△ABC中,∠ABC是直角,AB=4,BC=2,P是BC边上的动点,设BP=x,若能在AC边上找到一点Q,使∠BQP=90°,则x的取值范围是≤x≤2.【考点】勾股定理.【分析】先根据勾股定理计算出AC=6,由于∠BQP=90°,根据圆周角定理得到点Q在以PB 为直径的圆⊙M上,而点Q在AC上,则有AC与⊙M相切于点Q,连结MQ,根据切线的性质得MQ⊥AC,MQ=BM=x,然后证明Rt△CMQ∽Rt△CAB,再利用相似比得到x:4=(2﹣x):6,最后解方程即可.【解答】解:∵∠ABC=90°,AB=4,BC=2,∴AC==6,∵∠BQP=90°,∴点Q在以PB为直径的圆⊙M上,∵点Q在AC上,∴AC与⊙M相切于点Q,连结MQ,如图,则MQ⊥AC,MQ=BM=x,∵∠QCM=∠BCA,∴Rt△CMQ∽Rt△CAB,∴QM:AB=CM:AC,即x:4=(2﹣x):6,∴x=.当P与C重合时,BP=2,∴BP=x的取值范围是:≤x≤2,故答案为:≤x≤2.三、填空题(共2小题,每小题3分,满分6分)14.如图,正六边形ABCDEF的边长为2,则对角线AF= 2.【考点】正多边形和圆.【分析】作BG⊥AF,垂足为G.构造等腰三角形ABF,在直角三角形ABG中,求出AG的长,即可得出AF.【解答】解:作BG⊥AF,垂足为G.如图所示:∵AB=BF=2,∴AG=FG,∵∠ABF=120°,∴∠BA F=30°,∴AG=AB•cos30°=2×=,∴AC=2AG=2;故答案为2.15.如图,在离地面高度为5米的A处引拉线固定电线杆,要使拉线与地面α=37°,工作人员需买拉线的长度约为8 (精确到米).(sin37°≈0.6,cos37°≈0.8).【考点】解直角三角形的应用.【分析】在直角△ABC中,利用正弦函数即可求解.【解答】解:在直角△ABC中,sin∠ABC=,∴AB=AC÷sin∠ABC=5÷sin37°=≈8(米).三、解答题16.计算: +|﹣2|﹣()﹣2+(tan60°﹣1)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】先算立方根,绝对值,负整数指数幂和0指数幂,再算加减,由此顺序计算即可.【解答】解:原式=3+﹣2﹣9+1=﹣7.17.先化简,再求值:÷(+1),其中x是的整数部分.【考点】分式的化简求值;估算无理数的大小.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,求出x的值代入计算即可求出值.【解答】解:原式=÷=•=,∵x是的整数部分,∴x=2,则原式=.18.如图,已知在△ABC中,∠A=90°,请用圆规和直尺作⊙P,使圆心P在AC上,且与AB、BC两边都相切.(要求保留作图痕迹,不必写出作法和证明)【考点】作图—复杂作图.【分析】与AB、BC两边都相切.根据角平分线的性质可知要作∠ABC的角平分线,角平分线与AC的交点就是点P的位置.【解答】解:如图所示,则⊙P为所求作的圆.19.初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了560 名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为54 度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)根据专注听讲的人数是224人,所占的比例是40%,即可求得抽查的总人数;(2)利用360乘以对应的百分比即可求解;(3)利用总人数减去其他各组的人数,即可求得讲解题目的人数,从而作出频数分布直方图;(4)利用6000乘以对应的比例即可.【解答】解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).;(4)在试卷评讲课中,“独立思考”的初三学生约有:6000×=1800(人).20.在▱ABCD中,点E在边BC上,点F在BC的延长线上,且EF=AD.求证:∠BAE=∠CDF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】根据平行四边形的性质可得AB=CD,AD=BC,AB∥CD,进而可得∠ABE=∠DCF,然后再证明BE=CF,利用SAS定理可证明△BAE≌△CDF,进而可得结论∠BAE=∠CDF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠ABE=∠DCF,又∵EF=AD,∴BC=EF,∴BE=CF,在△ABE和△DCF中,,∴△BAE≌△CDF(SAS),∴∠BAE=∠CDF.21.如图,某同学想测量旗杆的高度,他在某一时刻测得1米长的竹竿竖直放置时影长2米,在同时刻测量旗杆的影长时,旗杆的影子一部分落在地面上(BC),有一部分落在斜坡上(CD),他测得落在地面上影长为10米,留在斜坡上的影长为2米,∠DCE为45°,则旗杆的高度约为多少米?(参考数据:≈1.4,≈1.7)【考点】相似三角形的应用;解直角三角形的应用.【分析】延长AD交BC的延长线于点F,过点D作DE⊥BC于点E,根据勾股定理求出ED的长,再由同一时刻物高与影长成正比得出EF的长,根据DE∥AB可知△EDF∽△ABF,由相似三角形的对应边成比例即可得出AB的长.【解答】解:延长AD交BC的延长线于点F,过点D作DE⊥BC于点E,∵CD=2米,∠DCE=45°,∴DE=CE=,∵同一时刻物高与影长成正比,∴=,解得EF=2DE=2,∵DE⊥BC,AB⊥BC,∴△EDF∽△ABF,∴=,即=∴AB=5+≈7.1米.答:旗杆的高度约为7.1米.22.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y (米)与登山时间x(分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?【考点】一次函数的应用.【分析】(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,根据图象得到点C 的坐标,然后利用待定系数法求一次函数解析式解答;(2)根据图形写出点A、B的坐标,再利用待定系数法求出线段AB的解析式,再与OC的解析式联立求解得到交点的坐标,即为相遇时的点.【解答】解:(1)设甲登山的路程y与登山时间x之间的函数解析式为y=kx,∵点C(30,600)在函数y=kx的图象上,∴600=30k,解得k=20,∴y=20x(0≤x≤30);(2)设乙在AB段登山的路程y与登山时间x之间的函数解析式为y=ax+b(8≤x≤20),由图形可知,点A(8,120),B(20,600)所以,,解得,所以,y=40x﹣200,设点D为OC与AB的交点,联立,解得,故乙出发后10分钟追上甲,此时乙所走的路程是200米.23.小明和小亮正在按以下三步做游戏:第一步:两人同时伸出一只手,小明出“剪刀”,小亮出“布”;第二步:两人再同时伸出另一只手,小明出“石头”,小亮出“剪刀”;第三步:两人同时随机撤去一只手,并按下述约定判定胜负:在两人各留下的一只手中,“剪刀”胜“布”,“布”胜“石头”,“石头”胜“剪刀”,同时手势部分胜负.(1)请利用列表法或画树状图法求小亮获胜的概率;(2)若小明想取胜,你觉得小明应留下哪种手势?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小亮获胜的情况,再利用概率公式即可求得答案;(2)由小明留下剪刀手势时,可能取胜,也能不分胜负,当不会输;即可知小明应留下剪刀手势.【解答】解:(1)画树状图得:∵共有4种等可能的结果,小亮获胜的有1种情况,∴小亮获胜的概率为;(2)小明应留下剪刀手势.理由:∵“剪刀”胜“布”,同种手势不分胜负,∴小明留下剪刀手势时,可能取胜,也能不分胜负,当不会输;∵“布”胜“石头”,“石头”胜“剪刀”,∴小明留下石头手势时,可能取胜,但也能会输;∴小明应留下剪刀手势.24.如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D 垂直于AC的直线交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)如果AD=5,AE=4,求⊙O的半径.【考点】切线的判定.【分析】(1)连接OD,由AD为角平分线,得到一对角相等,再由OA=OD,得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行可得AE与OD平行,由两直线平行同旁内角互补,得到∠E与∠EDO互补,再由∠E为直角,可得∠EDO为直角,即DE为圆O的切线,得证;(2)连接BD,由AB为圆O的直径,根据直径所对的圆周角为直角,得到∠ADB为直角,在直角三角形ABD中,利用锐角三角函数定义得到cos∠DAB=,又在直角三角形AED中,由AE及AD的长,利用锐角三角函数定义求出cos∠EAD的值,由∠EAD=∠DAB,得到cos∠EAD=cos∠DAB,得出cos∠DAB的值,即可求出直径AB的长,进而求得半径长.【解答】(1)证明:连接OD,如图1所示:∵AD为∠CAB的平分线,∴∠CAD=∠BAD,又∵OA=OD,∴∠BAD=ODA,∴∠CAD=∠ODA,∴AC∥OD,∴∠E+∠EDO=180°,又∵AE⊥ED,即∠E=90°,∴∠EDO=90°,则ED为圆O的切线;(2)解:连接BD,如图2所示,过点A作AF⊥AC,∵AB为圆O的直径,∴∠ADB=90°,在Rt△ABD中,cos∠DAB=,在Rt△AED中,AE=4,AD=5,∴cos∠EAD==,又∠EAD=∠DAB,∴cos∠DAB=cos∠EAD==,则AB=AD=,即圆的直径为,∴半径AO=.25.如图,二次函数y=x2+4x+c图象与x轴交于A,B两点(A在B的左边),与y轴交于点C,M为不同于A,B,C的抛物线上的点.(1)当M坐标为(﹣2,﹣1)时,求c的值;(2)当M为顶点,且MA⊥MB时,求二次函数y=x2+4x+c的解析式;(3)在(2)的条件下,E为线段AC上的点,过E作y的平行线交抛物线于F,△ACF面积是否存在最大值,若存在求出最大值,不存在说明理由.【考点】二次函数综合题.【分析】(1)把M点坐标代入抛物线解析式即可求得c;(2)把抛物线解析式化为顶点式,则可用c表示出M点的坐标,由条件可用c表示出B点的坐标,代入抛物线解析式可求得c的值,则可求得抛物线解析式;(3)可设出F点坐标,则可表示出E点坐标,从而可表示出EF的长,进一步表示出△ACF 的面积,再利用二次函数的性质可求得其最大值.【解答】解:(1)∵M为不同于A,B,C的抛物线上的点,∴﹣1=4﹣8+c,解得c=3;(2)∵y=x2+4x+c=(x+2)2+c﹣4,∴M(﹣2,c﹣4),如图1,设抛物线对称轴交x轴于点D,则D(﹣2,0),∵MA⊥MB,且D为中点,∴BD=MD=4﹣c,∴OB=OD﹣BD=2﹣(4﹣c)=﹣2+c,∴B(2﹣c,0),∵B点在抛物线上,∴(2﹣c)2+4(2﹣c)+c=0,解得c=3或c=4,当c=4时,M点在x轴上,不符合题意,舍去,∴c=3,∴抛物线解析式为y=x2+4x+3;(3)由(2)可知抛物线解析式为y=x2+4x+3,令x=0可得y=3,令y=0可得x2+4x+3=0,解得x=﹣1或x=﹣3,∴A(﹣3,0),C(0,3),∴直线AC解析式为y=x+3,设F(t,t2+4t+3),则E(t,t+3),如图2,∵E为线段AC上的点,∴EF=t+3﹣(t2+4t+3)=﹣t2﹣3t,∴S△AFC=EF•OA=×3(﹣t2﹣3t)=﹣t2﹣t=﹣(t+)2+,∵﹣<0,∴当t=﹣时,S△AFC有最大值,最大值为.26.用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)如答图1所示,过点A作AG⊥BC于点G,构造Rt△APG,利用勾股定理求出AP的长度;(2)如答图2所示,符合条件的点P有两个.解直角三角形,利用特殊角的三角函数值求出角的度数;(3)如答图3所示,证明△AMD≌△CND,得AM=CN,则△AMN两直角边长度之和为定值;设AM=x,求出斜边MN的表达式,利用二次函数的性质求出MN的最小值,从而得到△AMN周长的最小值.【解答】解:探究一:(1)依题意画出图形,如答图1所示:由题意,得∠CFB=60°,FP为角平分线,则∠CFP=30°,∴CF=BC•tan30°=3×=,∴CP=CF•tan∠CFP=×=1.过点A作AG⊥BC于点G,则AG=BC=,∴PG=CG﹣CP=﹣1=.在Rt△APG中,由勾股定理得:AP===.(2)由(1)可知,FC=.如答图2所示,以点A为圆心,以FC=长为半径画弧,与BC交于点P1、P2,则AP1=AP2=.过点A过AG⊥BC于点G,则AG=BC=.在Rt△AGP1中,cos∠P1AG===,∴∠P1AG=30°,∴∠P1AB=45°﹣30°=15°;同理求得,∠P2AG=30°,∠P2AB=45°+30°=75°.∴∠PAB的度数为15°或75°.探究二:△AMN的周长存在有最小值.如答图3所示,连接AD.∵△ABC为等腰直角三角形,点D为斜边BC的中点,∴AD=CD,∠C=∠MAD=45°.∵∠EDF=90°,∠ADC=90°,∴∠MDA=∠NDC.∵在△AMD与△CND中,∴△AMD≌△CND(ASA).∴AM=CN.设AM=x,则CN=x,AN=AC﹣CN=BC﹣CN=﹣x.在Rt△AMN中,由勾股定理得:MN====.△AMN的周长为:AM+AN+MN=+,当x=时,有最小值,最小值为+=.∴△AMN周长的最小值为.。

2016年陕西省中考数学试卷(含答案解析)

2016年陕西省中考数学试卷(含答案解析)

精心整理2016年陕西省中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣42.(3分)如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A .B .C .D .3.(3分)下列计算正确的是()A.x2+3x2=4x4B.x2y?2x3=2x4y C.(6x3y2)÷(3x)=2x2D.(﹣3x)2=9x24.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°5.(3分)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=06.(3分)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.107.(3分)已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对 D.5对9.(3分)如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.610.(3分)已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A .B .C .D.2二、填空题(共4小题,每小题3分,满分12分)11.(3分)不等式﹣x+3<0的解集是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是.B.运用科学计算器计算:3sin73°52′≈.(结果精确到0.1)13.(3分)已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为.14.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.三、解答题(共11小题,满分78分)15.(5分)计算:﹣|1﹣|+(7+π)0.16.(5分)化简:(x﹣5+)÷.17.(5分)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)18.(5分)某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?19.(7分)如图,在?ABCD中,连接BD,在BD的延长线上取一点E,在DB的延长线上取一点F,使BF=DE,连接AF、CE.求证:AF∥CE.20.(7分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.21.(7x(时)(1(222.(7①“可”、“”(当”);③次“(1(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.23.(8分)如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC?BG.24.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N (3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.25.(12分)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G 分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.2016年陕西省中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)计算:(﹣)×2=()A.﹣1 B.1 C.4 D.﹣4【分析】原式利用乘法法则计算即可得到结果.【解答】解:原式=﹣×2=﹣1,故选A【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.2.(3分)如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是()A.B.C. D.【分析】根据已知几何体,确定出左视图即可.【解答】解:根据题意得到几何体的左视图为,故选C【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)下列计算正确的是()A.x2+3x2=4x4B.x2y?2x3=2x4y C.(6x3y2)÷(3x)=2x2D.(﹣3x)2=9x2【分析】A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2x2y2,错误;D、原式=9x2,正确,故选D【点评】此题考查了整式的除法,合并同类项,幂的乘方与积的乘方,以及单项式乘单项式,熟练掌握运算法则是解本题的关键.4.(3分)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.【点评】本题考查了角平分线定义和平行线性质的应用,注意:平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补.5.(3分)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0 B.2a﹣3b=0 C.3a﹣2b=0 D.3a+2b=0【分析】直接把点A(a,b)代入正比例函数y=﹣x,求出a,b的关系即可.【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选D【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.(3分)如图,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位线,延长DE 交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.10【分析】根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=8,BC=6,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=8.故选B.【点评】本题考查三角形中位线定理、等腰三角形的判定和性质、勾股定理等知识,解题的关键是灵活应用三角形中位线定理,掌握等腰三角形的判定和性质,属于中考常考题型.7.(3分)已知一次函数y=kx+5和y=k′x+7,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据k的符号来求确定一次函数y=kx+b的图象所经过的象限,然后根据b的情况即可求得交点的位置.【解答】解:∵一次函数y=kx+5中k>0,∴一次函数y=kx+5的图象经过第一、二、三象限.又∵一次函数y=k′x+7中k′<0,∴一次函数y=k′x+7的图象经过第一、二、四象限.∵5<7,∴这两个一次函数的图象的交点在第一象限,故选A.【点评】本题主要考查两直线相交问题.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.8.(3分)如图,在正方形ABCD中,连接BD,点O是BD的中点,若M、N是边AD上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A.2对B.3对C.4对 D.5对【分析】可以判断△ABD≌△BCD,△MDO≌△M′BO,△NOD≌△N′OB,△MON≌△M′ON′.由此即可得出答案.【解答】解:∵四边形ABCD是正方形,∴AB=CD=CB=AD,∠A=∠C=∠ABC=∠ADC=90°,AD∥BC,在△ABD和△BCD中,,∴△ABD≌△BCD,∵AD∥BC,∴∠MDO=∠M′BO,在△MOD和△M′OB中,,∴△MDO≌△M′BO,同理可证△NOD≌△N′OB,∴△MON≌△M′ON′,∴全等三角形一共有4对.故选C.【点评】本题考查正方形的性质、全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于基础题,中考常考题型.9.(3分)如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,则弦BC的长为()A.3B.4C.5D.6【分析】首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC 的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.【解答】解:过点O作OD⊥BC于D,则BC=2BD,∵△ABC内接于⊙O,∠BAC与∠BOC互补,∴∠BOC=2∠A,∠BOC+∠A=180°,∴∠BOC=120°,∵OB=OC,∴∠OBC=∠OCB=(180°﹣∠BOC)=30°,∵⊙O的半径为4,∴BD=OB?cos∠OBC=4×=2,∴BC=4.故选:B.【点评】此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.注意掌握辅助线的作法,注意数形结合思想的应用.10.(3分)已知抛物线y=﹣x2﹣2x+3与x轴交于A、B两点,将这条抛物线的顶点记为C,连接AC、BC,则tan∠CAB的值为()A.B.C.D.2【分析】先求出A、B、C坐标,作CD⊥AB于D,根据tan∠ACD=即可计算.【解答】解:令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,不妨设A(﹣3,0),B(1,0),∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点C(﹣1,4),如图所示,作CD⊥AB于D.在RT△ACD中,tan∠CAD===2,故答案为D.【点评】本题考查二次函数与x轴交点坐标,锐角三角函数的定义,解题的关键是熟练掌握求抛物线与x轴交点坐标的方法,记住锐角三角函数的定义,属于中考常考题型.二、填空题(共4小题,每小题3分,满分12分)11.(3分)不等式﹣x+3<0的解集是x>6.【分析】移项、系数化成1即可求解.【解答】解:移项,得﹣x<﹣3,系数化为1得x>6.故答案是:x>6.【点评】本题考查了一元一次不等式的解法,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.一个多边形的一个外角为45°,则这个正多边形的边数是8.B.运用科学计算器计算:3sin73°52′≈11.9.(结果精确到0.1)【分析】(1)根据多边形内角和为360°进行计算即可;(2)先分别求得3和sin73°52′的近似值,再相乘求得计算结果.【解答】解:(1)∵正多边形的外角和为360°∴这个正多边形的边数为:360°÷45°=8(2)3sin73°52′≈12.369×0.961≈11.9故答案为:8,11.9【点评】本题主要考查了多边形的外角和以及近似数,解决问题的关键是掌握多边形的外角和定理以及近似数的概念.在取近似值时,需要运用四舍五入法求解.13.(3分)已知一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,若这个一次函数的图象与一个反比例函数的图象在第一象限交于点C,且AB=2BC,则这个反比例函数的表达式为y=.【分析】根据已知条件得到A(﹣2,0),B(0,4),过C作CD⊥x轴于D,根据相似三角形的性质得到==,求得C(1,6),即可得到结论.【解答】解:∵一次函数y=2x+4的图象分别交x轴、y轴于A、B两点,∴A(﹣2,0),B(0,4),过C作CD⊥x轴于D,∴OB∥CD,∴△ABO∽△ACD,∴==,∴CD=6,AD=3,∴OD=1,∴C(1,6),设反比例函数的解析式为y=,∴k=6,∴反比例函数的解析式为y=.故答案为:y=.【点评】本题考查了反比例函数与一次函数的交点,相似三角形的判定和性质,求函数的解析式,正确的作出图形是解题的关键.14.(3分)如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为2﹣2.【分析】分三种情形讨论①若以边BC为底.②若以边PC为底.③若以边PB为底.分别求出PD 的最小值,即可判断.【解答】解:①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,为2;②若以边PC为底,∠PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相交于一点,则弧AC(除点C外)上的所有点都满足△PBC是等腰三角形,当点P在BD上时,PD最小,最小值为2√3﹣2;③若以边PB为底,∠PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足△PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在;综上所述,PD的最小值为2﹣2.【点评】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(共11小题,满分78分)15.(5分)计算:﹣|1﹣|+(7+π)0.【分析】直接化简二次根式、去掉绝对值、再利用零指数幂的性质化简求出答案.【解答】解:原式=2﹣(﹣1)+1=2﹣+2=+2.【点评】此题主要考查了实数运算,正确利用绝对值的性质去掉绝对值是解题关键.16.(5分)化简:(x﹣5+)÷.【分析】根据分式的除法,可得答案.【解答】解:原式=?=(x﹣1)(x﹣3)=x2﹣4x+3.【点评】本题考查了分式混合运算,利用分式的除法转化成分式的乘法是解题关键.17.(5分)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.【解答】解:如图,AD为所作.【点评】本题考查了作图﹣相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.解决本题的关键是利用有一组锐角相等的两直角三角形相似.18.(5分)某校为了进一步改进本校七年级数学教学,提高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查.我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A﹣非常喜欢”、“B﹣比较喜欢”、“C﹣不太喜欢”、“D﹣很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是比较喜欢;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?【分析】(1)根据条形统计图与扇形统计图可以得到调查的学生数,从而可以的选B的学生数和选B和选D的学生所占的百分比,从而可以将统计图补充完整;(2)根据(1)中补全的条形统计图可以得到众数;(3)根据(1)中补全的扇形统计图可以得到该年级学生中对数学学习“不太喜欢”的人数.选BBD(2(319.(7F,使求证:【分析】由平行四边形的性质得出AD∥BC,AD=BC,证出∠1=∠2,DF=BE,由SAS证明△ADF ≌△CBE,得出对应角相等,再由平行线的判定即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,∵BF=DE,∴BF+BD=DE+BD,即DF=BE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴∠AFD=∠CEB,∴AF∥CE.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(7分)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【分析】根据镜面反射原理结合相似三角形的判定方法得出△ABC∽△EDC,△ABF∽△GFH,进而利用相似三角形的性质得出AB的长.【解答】解:由题意可得:∠ABC=∠EDC=∠GFH=90°,∠ACB=∠ECD,∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=,=,即=,=,解得:AB=99,答:“望月阁”的高AB的长度为99m.【点评】此题主要考查了相似三角形的判定与性质,正确利用已知得出相似三角形是解题关键.21.(7分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【分析】(1)可设线段AB所表示的函数关系式为:y=kx+b,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB所表示的函数关系式为:y=kx+b,依题意有,解得.故线段AB所表示的函数关系式为:y=﹣96x+192(0≤x≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),(192﹣112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.【点评】本题主要考查一次函数的应用,解决本题的关键是利用待定系数法求一次函数的解析式.同时考查了速度、路程和时间之间的关系.22.(7分)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.【分析】(1)由转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客经过两次“有效随机转动”后,获得一瓶可乐的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;∴一次“有效随机转动”可获得“乐”字的概率为:;(2)画树状图得:∵共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,∴该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为:.【点评】此题考查了列表法或树状图法求概率.注意此题是放回实验;用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.求证:(1)FC=FG;(2)AB2=BC?BG.【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.【解答】证明:(1)∵EF∥BC,AB⊥BG,∴EF⊥AD,∵E是AD的中点,∴FA=FD,∴∠FAD=∠D,∵GB⊥AB,∴∠GAB+∠G=∠D+∠DCB=90°,∴∠DCB=∠G,∵∠DCB=∠GCF,∴∠GCF=∠G,∴FC=FG;(2)连接AC,如图所示:∵AB⊥BG,∴AC是⊙O的直径,∵FD是⊙O的切线,切点为C,∴∠DCB=∠CAB,∵∠DCB=∠G,∴∠CAB=∠G,∵∠CBA=∠GBA=90°,∴△ABC∽△GBA,∴=,∴AB2=BC?BG.【点评】本题考查了圆周角定理、相似三角形的判定与性质、等腰三角形的判定与性质、弦切角定理等知识;熟练掌握圆周角定理和弦切角定理,证明三角形相似是解决问题(2)的关键.24.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5经过点M(1,3)和N (3,5)(1)试判断该抛物线与x轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A(﹣2,0),且与y轴交于点B,同时满足以A、O、B为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.【分析】(1)把M、N两点的坐标代入抛物线解析式可求得a、b的值,可求得抛物线解析式,再根据一元二次方程根的判别式,可判断抛物线与x轴的交点情况;(2)利用A点坐标和等腰三角形的性质可求得B点坐标,设出平移后的抛物线的解析式,把A、B的坐标代入可求得平移后的抛物线的解析式,比较平移前后抛物线的顶点的变化即可得到平移的过程.【解答】解:(1)由抛物线过M、N两点,把M、N坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣3x+5,令y=0可得x2﹣3x+5=0,该方程的判别式为△=(﹣3)2﹣4×1×5=9﹣20=﹣11<0,∴抛物线与x轴没有交点;(2)∵△AOB是等腰直角三角形,A(﹣2,0),点B在y轴上,∴B点坐标为(0,2)或(0,﹣2),可设平移后的抛物线解析式为y=x2+mx+n,①当抛物线过点A(﹣2,0),B(0,2)时,代入可得,解得,∴平移后的抛物线为y=x2+3x+2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移3个单位,再向下平移3个单位即可获得符合条件的抛物线;②当抛物线过A(﹣2,0),B(0,﹣2)时,代入可得,解得,∴平移后的抛物线为y=x2+x﹣2,∴该抛物线的顶点坐标为(﹣,﹣),而原抛物线顶点坐标为(,),∴将原抛物线先向左平移2个单位,再向下平移5个单位即可获得符合条件的抛物线.【点评】本题为二次函数的综合应用,涉及知识点有待定系数法、函数与方程的关系、等腰三角形的性质、坐标平移和分类讨论等.在(1)中注意方程与函数的关系,在(2)中确定出B点的坐标是解题的关键,注意抛物线顶点坐标的求法.本题属于基础题,难度不大.25.(12分)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G 分别在边AD、AB、BC上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出。

精选陕西省西安市2016届九年级数学第二次模拟考试试题无答案

精选陕西省西安市2016届九年级数学第二次模拟考试试题无答案

陕西2016届第二次模拟考试数学试题第Ⅰ卷一、选择题1.2016-的倒数是()A.2016B.2016-C.12016 D.12016- 2.如图所示,下列选项中,正六棱柱的左视图是()正面看A B C D3.当x 取任意实数时,等式()()221x x x mx n +-=++恒成立,则m n +的值为()A.1B.2-C.1-D.24.如图,将一副三角板的直角重合平放,若35AOD ∠=︒,则BOC ∠为()A.35︒B.45︒C.55︒D.65︒DCB A5.直线22y x =+沿y 轴向下平移6个单位长度后与x 轴的交点坐标是()A.()4,0-B.()1,0-C.()0,2D.()2,06.如图,已知AB 是O 直径,130AOC ∠=︒,则D ∠等于()A.65︒B.25︒C.15︒D.35︒DC B OA7.如图,直线2y =+与x 轴、y 轴分别交于A 、B 两点,把AOB △沿直线AB 翻折后得到'AO B △,则点'O 的坐标是()A.)3B.C.(2,D.()48.如图A ,B 两点分别在反比例函数()10y x x =-<和()0,0k y k x x=>>的图象上,连接OA 、OB ,若OA OB ⊥,2OB OA =,则k 的值为()A.2-B.2C.4-D.49.如图,O 的半径为1,ABC △是O 的内接等边三角形,点D 、E 在圆上,四边形BCDE 为矩形,这个矩形的面积是()A.232D.10.函数2y x bx c =++与y x =的图象如图所示,有以下结论:①240b c ->;②10b c ++=;③360b c ++=;④当13x <<时,()210x b x c +-+<.其中正确的个数是()A.1B.2C.3D.4第Ⅱ卷二、填空题11.分解因式:34ax ax -=_______;12.关于x 的一元二次方程()21230a x x --+=有实数根,则整数a 的最大值是_____;13.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.在平面直角坐标系中,将点()1,1A --向左平移4个单位长度得到点'A ,点'A 关于x 轴对称点的坐标是______.B.半径为2cm 的圆内接正五边形的边长为_____cm .(用科学计算器计算,结果精确到0.01)14.如图,点C 在以AB 为直径的半圆上,8AB =,30CBA ∠=︒,点D 在线段AB 上运动,点E 与点D 关于AC 对称,DF DE ⊥于点D ,并交EC 的延长线于点F .则线段EF 的最小值为_____.三、解答题15.计算:()12013220042-⎛⎫-+--- ⎪⎝⎭16.先化简,再求值:24512111a a a a a a -⎛⎫⎛⎫+-+- ⎪ ⎪---⎝⎭⎝⎭,1a =-. 17.如图,已知ABC △,用尺规作出ABC △重心,(保留作图痕迹,不写作法)CBA18.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.剩一半左右没有剩40%剩大量剩少量 (1)这次被调查的同学共有_____名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐,据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?19.已知,如图所示,AB AC =,BD CD =,DE AB ⊥于点E ,DF AC ⊥于点F ,求证:DE DF =.CFD A20.如图,在南北方向的海岸线MN 上,有A 、B 两艘巡逻船,现均收到故障船C 的求救信号.已知A 、B两船相距)1001海里,船C 在船A 的北偏东60︒方向上,船C 在船B 的东南方向上,MN 上有一观测点D ,测得船C 正好在观测点D 的南偏东75︒方向上.(1)分别求出A 与C ,A 与D 间的距离AC 和AD .(2)已知距离观测点D 处100海里范围内有暗礁,若巡逻船A 沿直线AC 取营救船C ,在去营救的途中有无触礁的危险?1.414≈1.732≈,结果精确到0.1海里)MND C BA60°75°45°21.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第8层楼房售价为4000元/平方米,从第8层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房的面积均为120平方米. 若购买者一次性付清所有房款,开发商有两种优惠方案: 方案一:降价8%。

陕西省西安市中考数学一模试卷(含解析)(1)

2016年陕西省西安市中考数学一模试卷一、选择题1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|2.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为()A.B.C.D.3.下列计算正确的是()A.a3+a2=a5B.a3﹣a2=a C.a3•a2=a6D.a3÷a2=a4.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:则这20户家庭该月用电量的众数和中位数分别是()A.180,160 B.160,180 C.160,160 D.180,1805.如图,AC∥BD,AE平分∠BAC交BD于点E.若∠1=68°,则∠2=()A.112°B.124°C.128°D.140°6.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形 C.菱形 D.正方形7.如图,在平面直角坐标系中,有一条通过点(﹣3,﹣2)的直线L,若四点(﹣2,a)、(0,b)、(c,0)、(d,﹣1)均在直线L上,则下列数值的判断哪个是正确的()A.a=3 B.b>﹣2 C.c<﹣3 D.d=28.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是()A.h2=2h1B.h2=1.5h1C.h2=h1 D.h2=h19.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.210.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1) B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大二、填空题11.分解因式:mn2+6mn+9m= .14.如图,在直角坐标系中,直线y=6﹣x与y=(x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别为、.15.如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE= .13.用科学计算器计算:12×tan13°=(结果精确到0.01).三、解答题16.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.17.先化简,再求值:,其中.18.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)19.为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)请问这次被抽查形体测评的学生一共是多少人?(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?20.已知:如图,▱ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.21.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC 是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)23.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)24.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.25.如图,抛物线y=x2﹣x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=﹣2x 上.(1)求a的值;(2)求A,B的坐标;(3)以AC,CB为一组邻边作▱ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.26.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.2016年陕西省西安市远东一中中考数学一模试卷参考答案与试题解析一、选择题1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0 D.|﹣1|【考点】有理数大小比较.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【解答】解:因为正实数都大于0,所以>0,又因为正实数大于一切负实数,所以>﹣2,所以>﹣0.1所以最大,故D不对;又因为负实数都小于0,所以0>﹣2,0>﹣0.1,故C不对;因为两个负实数绝对值大的反而小,所以﹣2<﹣0.1,故B不对;故选A.2.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为()A .B .C .D .【考点】简单组合体的三视图.【分析】找到从上面所看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【解答】解:从上面看,这个几何体有三行四列,且第一列有3个小正方形,二、四列有1个小正方形、第三列有2个小正方形; 故选C .3.下列计算正确的是( )A .a 3+a 2=a 5B .a 3﹣a 2=a C .a 3•a 2=a 6D .a 3÷a 2=a 【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【分析】根据同类项定义;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A 、a 2与a 3不是同类项,不能合并,故本选项错误; B 、a 3与a 2不是同类项,不能合并,故本选项错误; C 、应为a 3•a 2=a 5,故本选项错误; D 、a 3÷a 2=a ,正确. 故选D .4.某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:则这20户家庭该月用电量的众数和中位数分别是( ) A .180,160 B .160,180 C .160,160 D .180,180 【考点】众数;中位数.【分析】根据众数和中位数的定义就可以解决.【解答】解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列后,处于中间位置的两个数是160,160,那么由中位数的定义可知,这组数据的中位数是÷2=160.故选:A.5.如图,AC∥BD,AE平分∠BAC交BD于点E.若∠1=68°,则∠2=()A.112°B.124°C.128°D.140°【考点】平行线的性质.【分析】根据邻补角的定义求出∠BAC,再根据角平分线的定义求出∠3,然后利用两直线平行,同旁内角互补列式求解即可.【解答】解:∵∠1=68°,∴∠BAC=180°﹣∠1=180°﹣68°=112°,∵AE平分∠BAC,∴∠3=∠BAC=×112°=56°,∵AC∥BD,∴∠2=180°﹣∠3=180°﹣56°=124°.故选B.6.将下列图形绕其对角线的交点逆时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形 C.菱形 D.正方形【考点】旋转对称图形.【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件,结合选项即可得出答案.【解答】解:由题意可得,此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形.故选D.7.如图,在平面直角坐标系中,有一条通过点(﹣3,﹣2)的直线L,若四点(﹣2,a)、(0,b)、(c,0)、(d,﹣1)均在直线L上,则下列数值的判断哪个是正确的()A.a=3 B.b>﹣2 C.c<﹣3 D.d=2【考点】一次函数图象上点的坐标特征.【分析】根据一次函数图象上点的坐标特征,根据此函数为减函数,利用增减性分析解答即可.【解答】解:如图,可得此一次函数是减函数,因为﹣2<0,所以可得a>b,因为﹣3<﹣1<0,可得c<d<﹣2,故选C.8.如图是跷跷板示意图,横板AB绕中点O上下转动,立柱OC与地面垂直,设B点的最大高度为h1.若将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则下列结论正确的是()A.h2=2h1B.h2=1.5h1C.h2=h1 D.h2=h1【考点】三角形中位线定理.【分析】直接根据三角形中位线定理进行解答即可.【解答】解:如图所示:∵O为AB的中点,OC⊥AD,BD⊥AD,∴OC∥BD,∴OC是△ABD的中位线,∴h1=2OC,同理,当将横板AB换成横板A′B′,且A′B′=2AB,O仍为A′B′的中点,设B′点的最大高度为h2,则h2=2OC,∴h1=h2.故选C.9.如图,在半径为的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=4,则OP的长为()A.1 B.C.2 D.2【考点】垂径定理;勾股定理.【分析】作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,根据垂径定理得到AE=BE=AB=2,DF=CF=CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到OP=OE=.【解答】解:作OE⊥AB于E,OF⊥CD于F,连结OD、OB,如图,则AE=BE=AB=2,DF=CF=CD=2,在Rt△OBE中,∵OB=,BE=2,∴OE==1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,而OE=OF=1,∴四边形OEPF为正方形,∴OP=OE=.故选B.10.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是()A.点C的坐标是(0,1) B.线段AB的长为2C.△ABC是等腰直角三角形D.当x>0时,y随x增大而增大【考点】抛物线与x轴的交点;二次函数的性质.【分析】判断各选项,点C的坐标可以令x=0,得到的y值即为点C的纵坐标;令y=0,得到的两个x值即为与x轴的交点坐标A、B;且AB的长也有两点坐标求得,对函数的增减性可借助函数图象进行判断.【解答】解:A,令x=0,y=1,则C点的坐标为(0,1),正确;B,令y=0,x=±1,则A(﹣1,0),B(1,0),|AB|=2,正确;C,由A、B、C三点坐标可以得出AC=BC,且AC2+BC2=AB2,则△ABC是等腰直角三角形,正确;D,当x>0时,y随x增大而减小,错误.故选D.二、填空题11.分解因式:mn2+6mn+9m= m(n+3)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式m,再对余下的多项式利用完全平方公式继续分解.【解答】解:mn2+6mn+9m=m(n2+6n+9)=m(n+3)2.故答案为:m(n+3)2.14.如图,在直角坐标系中,直线y=6﹣x与y=(x>0)的图象相交于点A,B,设点A的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别为 4 、12 .【考点】反比例函数系数k的几何意义;一次函数的图象.【分析】先求出两图象的交点坐标,从而得出矩形面积和周长.【解答】解:把y=6﹣x与y=联立到一个方程组中,解得x=3+和3﹣,y=3﹣和3+.在本题中x1=3﹣,y1=3+,所以矩形面积=x1y1=4,周长=2(x1+y1)=12.故矩形面积和周长分别为4和12.故答案为:4、12.15.如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是7.2 .【考点】切线的性质;垂线段最短.【分析】三角形ABC中,利用勾股定理的逆定理判断得到∠C为直角,利用90度的圆周角所对的弦为直径,得到EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB 时,即CD是圆的直径的时,EF长度最小,求出即可.【解答】解:∵在△ABC中,AB=15,AC=12,BC=9,∴AB2=AC2+BC2,∴△ABC为RT△,∠C=90°,即知EF为圆的直径,设圆与AB的切点为D,连接CD,当CD垂直于AB,即CD是圆的直径时,EF长度最小,最小值是=7.2.故答案为:7.2.请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.12.如图,在菱形ABCD中,对角线AC与BD相交于点O,OE⊥AB,垂足为E,若∠ADC=120°,则∠AOE= 60°.【考点】菱形的性质.【分析】先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.【解答】解:在菱形ABCD中,∠ADC=120°,∴∠BAD=180°﹣120°=60°,∴∠BAO=∠BAD=×60°=30°,∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣30°=60°.故答案为:60°.13.用科学计算器计算:12×tan13°= 2.77 (结果精确到0.01).【考点】计算器—三角函数;近似数和有效数字.【分析】正确使用计算器计算即可,注意运算顺序.【解答】解:12×tan13°≈12×0.231≈2.77.故答案为:2.77.三、解答题16.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.17.先化简,再求值:,其中.【考点】分式的化简求值;二次根式的化简求值.【分析】先将括号内通分,合并;再将除法问题转化为乘法问题;约分化简后,在原式有意义的条件下,代入计算即可【解答】解:===,当时,原式===.18.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)【考点】作图—复杂作图;角平分线的性质;垂径定理.【分析】作∠AOB的角平分线,作MN的垂直平分线,以角平分线与垂直平分线的交点为圆心,以圆心到M点(或N点)的距离为半径作圆.【解答】解:如图所示.圆P即为所作的圆.19.为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:(1)请将两幅统计图补充完整;(2)请问这次被抽查形体测评的学生一共是多少人?(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据各部分所占的百分比的和等于1求出坐姿不良所占的百分比,然后求出被抽查的学生总人数,然后求出站姿不良与三姿良好的学生人数,最后补全统计图即可;(2)根据(1)的计算即可;(3)用总人数乘以坐姿和站姿不良的学生所占的百分比,列式计算即可得解.【解答】解:(1)坐姿不良所占的百分比为:1﹣30%﹣35%﹣15%=20%,被抽查的学生总人数为:100÷20%=500名,站姿不良的学生人数:500×30%=150名,三姿良好的学生人数:500×15%=75名,补全统计图如图所示;(2)100÷20%=500(名),答:这次被抽查形体测评的学生一共是500名;(3)5万×(20%+30%)=2.5万,答:全市初中生中,坐姿和站姿不良的学生有2.5万人.20.已知:如图,▱ABCD中,点E是AD的中点,延长CE交BA的延长线于点F.求证:AB=AF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】本题考查平行四边形性质的应用,要证AB=AF,由AB=CD,可以转换为求AF=CD,只要证明△AEF≌△DEC即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD.∴∠F=∠2,∠1=∠D.∵E为AD中点,∴AE=ED.在△AEF和△DEC中∴△AEF≌△DEC.∴AF=CD.∴AB=AF.21.随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC 是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).【考点】解直角三角形的应用.【分析】首先根据AC∥ME,可得∠CAB=∠AE28°,再根据三角函数计算出BC的长,进而得到BD的长,进而求出DF即可.【解答】解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.22.某工厂生产一种产品,当生产数量至少为10吨,但不超过50吨时,每吨的成本y(万元/吨)与生产数量x(吨)的函数关系式如图所示.(1)求y关于x的函数解析式,并写出它的定义域;(2)当生产这种产品的总成本为280万元时,求该产品的生产数量.(注:总成本=每吨的成本×生产数量)【考点】一次函数的应用.【分析】(1)利用待定系数法求出一次函数解析式即可,根据当生产数量至少为10吨,但不超过50吨时,得出x的定义域;(2)根据总成本=每吨的成本×生产数量,利用(1)中所求得出即可.【解答】解:(1)利用图象设y关于x的函数解析式为y=kx+b,将(10,10)(50,6)代入解析式得:,解得:,y=﹣x+11(10≤x≤50)(2)当生产这种产品的总成本为280万元时,x(﹣x+11)=280,解得:x1=40,x2=70(不合题意舍去),故该产品的生产数量为40吨.23.一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度.棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)【考点】列表法与树状图法.【分析】先画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;即可知道棋子走到哪一点的可能性最大,根据概率的概念也可求出棋子走到该点的概率.【解答】解:画树形图:共有9种等可能的结果,其中摸出的两个小球标号之和是2的占1种,摸出的两个小球标号之和是3的占2种,摸出的两个小球标号之和是4的占3种,摸出的两个小球标号之和是5的占两种,摸出的两个小球标号之和是6的占一种;所以棋子走E点的可能性最大,棋子走到E点的概率==.24.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.【考点】切线的判定;圆周角定理.【分析】(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE 是⊙O的切线;(2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt △ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.【解答】(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA∥CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°,∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.25.如图,抛物线y=x2﹣x+a与x轴交于点A,B,与y轴交于点C,其顶点在直线y=﹣2x 上.(1)求a的值;(2)求A,B的坐标;(3)以AC,CB为一组邻边作▱ACBD,则点D关于x轴的对称点D′是否在该抛物线上?请说明理由.【考点】二次函数综合题.【分析】(1)根据二次函数的顶点坐标的求法得出顶点坐标,再代入一次函数即可求出a 的值;(2)根据二次函数解析式求出与x轴的交点坐标即是A,B两点的坐标;(3)根据平行四边形的性质得出D点的坐标,即可得出D′点的坐标,即可得出答案.【解答】解:(1)∵抛物线y=x2﹣x+a其顶点在直线y=﹣2x上.∴抛物线y=x2﹣x+a,=(x2﹣2x)+a,=(x﹣1)2﹣+a,∴顶点坐标为:(1,﹣+a),∴y=﹣2x,﹣+a=﹣2×1,∴a=﹣;(2)二次函数解析式为:y=x2﹣x﹣,∵抛物线y=x2﹣x﹣与x轴交于点A,B,∴0=x2﹣x﹣,整理得:x2﹣2x﹣3=0,解得:x=﹣1或3,A(﹣1,0),B(3,0);(3)作出平行四边形ACBD,作DE⊥AB,在△AOC和△BDE中∵∴△AOC≌△BED(AAS),∵AO=1,∴BE=1,∵二次函数解析式为:y=x2﹣x﹣,∴图象与y轴交点坐标为:(0,﹣),∴CO=,∴DE=,D点的坐标为:(2,),∴点D关于x轴的对称点D′坐标为:(2,﹣),代入解析式y=x2﹣x﹣,∵左边=﹣,右边=×4﹣2﹣=﹣,∴D′点在函数图象上.26.如图,正三角形ABC的边长为3+.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.【考点】位似变换;等边三角形的性质;勾股定理;正方形的性质.【分析】(1)利用位似图形的性质,作出正方形EFPN的位似正方形E′F′P′N′,如答图①所示;(2)根据正三角形、正方形、直角三角形相关线段之间的关系,利用等式E′F′+AE′+BF′=AB,列方程求得正方形E′F′P′N′的边长;(3)设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),求得面积和的表达式为:S=+(m﹣n)2,可见S的大小只与m、n的差有关:①当m=n时,S取得最小值;②当m最大而n最小时,S取得最大值.m最大n最小的情形见第(1)(2)问.【解答】解:(1)如图①,正方形E′F′P′N′即为所求.(2)设正方形E′F′P′N′的边长为x,∵△ABC为正三角形,∴AE′=BF′=x.∵E′F′+AE′+BF′=AB,∴x+x+x=3+,∴x=,即x=3﹣3,(x≈2.20也正确)(3)如图②,连接NE、EP、PN,则∠NEP=90°.设正方形DEMN、正方形EFPH的边长分别为m、n(m≥n),它们的面积和为S,则NE=,PE=n.∴PN2=NE2+PE2=2m2+2n2=2(m2+n2).∴S=m2+n2=PN2,延长PH交ND于点G,则PG⊥ND.在Rt△PGN中,PN2=PG2+GN2=(m+n)2+(m﹣n)2.∵AD+DE+EF+BF=AB,即m+m+n+n=+3,化简得m+n=3.∴S= [32+(m﹣n)2]= +(m﹣n)2①当(m﹣n)2=0时,即m=n时,S最小.∴S最小=;②当(m﹣n)2最大时,S最大.即当m最大且n最小时,S最大.∵m+n=3,由(2)知,m最大=3﹣3.∴S最大= [9+(m最大﹣n最小)2]= [9+(3﹣3﹣6+3)2]=99﹣54….(S最大≈5.47也正确)综上所述,S 最大=99﹣54,S 最小=.。

2016陕西中考,数学模拟试卷

1★启用前·绝密2016年陕西省初中毕业升学学业水平考试数学测试(第Ⅱ卷 非选择题) 二、填空题(共4小题,每小题3分,计12分)11.4 的算术平方根是 ..12.请从以下两小题中任选一个作答,若多选,则按第一题计分。

A.。

B.如图,有一滑梯AB ,其水平宽度AC 为12.4米,铅直高度BC 为5.2米,则∠A 的度数约为__________。

(用科学计算器计算,结果精确到0.1°)13.如图,AB ∥ED ,∠ECF =70°,则∠BAF 的度数为 .14.三、解答题(共11小题,计78分,解答应写出过程) 15.39⨯-2cos 30°+(21)-2-31-. 16.先化简,再求值:22x11x 1x 1⎛⎫÷+ ⎪--⎝⎭,其中x 21=-; 17.如图,△ABC ,求作,平面上找一点P ,使得PA=PB=PC18.榆林市镇北台的风光秀丽,历史文化源远流长,尤以站在最高台最为壮观,被誉为“万里长城第一台”.为调查我市居民对镇北台历史文化的了解程度,今年“五一”期间市文明办举办了“我所知道的镇北台”的大型问卷调查活动,在调查问卷中,分别用A 、B 、C 、D 表示了解,一般了解、了解甚少和不了解,活动进行三天,调查问卷活动取得圆满成功,市文明办将调查结果绘制成如下两幅统计图. 请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?并将不完整的条形图和扇形图补充完整. (2)经调查数据,其中位数落在 区间中(用A 、B 、C 、D 表示)(3)经调查,榆阳区2015年常驻人口约为58.4万人,根据调查数据,请估算出榆阳区(按2015年人口)2015年度居民对镇北台“了解甚少”的人数(精确到0.1)19. 如图,A 、B 、C 三点在同一条直线上,分别以AB,BC 为边做正方形ABEF 和正方形BCMN 连接FN,EC.且满足EFN MC ∠=∠E 求证:EN=MC20.凌霄塔亦名文笔塔,为榆林市重点文物保护单位.一天,身高1.5m 的小胖带着他的好朋友大胖来到凌霄广场,这时,小胖提出要通过自己所掌握的知识测量一下凌霄塔的高度,于是小胖从A 处仰视观看凌霄塔顶,其仰角为30°,这时,旁边的大胖开始记录,记录完后,小胖又向西走了30m ,测得其仰角为 45.大胖又做记录,记录完后,请你根据所学知识,帮助小胖和大胖算出凌霄塔的高度.(结果精确到0.1位)21.小明购买了一部新手机,到某通讯公司咨询移动电话资费情况,准备办理入网手续,该通讯公司工作人员向他介绍两种不同的资费方案:方案代号月租费(元)免费时间(分)超过免费时间的话费(元/分)一10 0 0.20二30 80 0.15(1)分别写出方案一,二中,月话费(月租费与通话费的总和)y(单位:元)与通话时间x(单位:分)的函数关系式;(2)若小明通话时间为200分钟左右,他应该选择哪种资费方案最省钱.22.某市教育系统举行“中国梦”演讲比赛,希望中学准备从甲、乙、丙三位教师和A、B两名学生中选取一位教师和一名学生参加比赛.(1)若随机选一位教师和一名学生,用树状图(或列表法)表示所有可能出现的结果;(2)求恰好选中有教师甲和学生A的概率.23.如图,在△ABC中,∠C=90°, AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线.(2)若AC的长为6,且OB=8,.求BC的长.24.如图,抛物线nmxx+-=231y与x轴交于A、B两点,与y轴交于点C(0.-1).且对称轴x=l.(1)求出抛物线的解析式(2)A、B两点的坐标;(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,请求出所有满足条件的点P的坐标。

2016年陕西数学中考副题

2016年陕西数学中考副题班级:________姓名:________得分:________机密★启用前试卷类型:A2016年陕西省初中毕业学业考试数学试卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至10页,全卷共120分。

考试时间为120分钟。

第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,计30分. 每小题只有一个选项是符合题意的)题号1 2 3 4 5 6 7 8 91A卷答案1.计算:(-3)×(-13)=A.-1B.1C.-9D.92.如图,下面的几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是3.计算:(-2x2y)3=A.-8x6y3B.8x6y3C.-6x6y3D.6x5y34.如图,AB∥CD.若∠1=40°,∠2=65°,则∠CAD=A.50°B.65°C.75°D.85°(第4题图)(第6题图)5.设点A (-3,a ),B (b ,12)在同一个正比例函数的图象上,则ab 的值为A.-23B.-32 C.-6 D.326.如图,在△ABC 中,∠BAC =90°,AB =20,AC =15,△ABC 的高AD 与角平分线CF 交于点E ,则AFDE 的值为 A.35 B.34 C.12D.237.已知两个一次函数y =3x +b 1和y =-3x +b 2. 若b 1<b 2<0,则它们图象的交点在A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在三边互不相等的△ABC 中,D 、E 、F 分别是AB 、AC 、BC 边的中点.连接DE ,过点C 作CM ∥AB 交DE 的延长线于点M ,连接CD 、EF 交于点N ,则图中全等三角形共有A.3对B.4对C.5对D.6对(第8题图) (第9题图)9.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D.若点P是⊙O上异于点A、B的任意一点,则∠APB=A.30°或60°B.60°或150°C.30°或150°D.60°或120°10.将抛物线M:y=-13x2+2向左平移2个单位,再向上平移1个单位,得到抛物线M′.若抛物线M′与x轴交于A、B两点,M′的顶点记为C,则∠ACB=A.45°B.60°C.90°D.120°机密★启用前2016年陕西省初中毕业学业考试数学试卷题号 二 三总分总分人 核分人15 16 17 18 19 20 21 22 23 24 25 得分注意事项:1. 答卷前请你将密封线内的项目填写清楚。

2016年陕西省西安市中考数学八模试卷附答案解析

2016年陕西省西安市中考数学八模试卷一、选择题1.5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A.﹣3吨B.+3吨C.﹣5吨D.+5吨2.下面几个几何体,主视图是圆的是()A.B.C.D.3.下列计算中,不正确的是()A.a2•a5=a10B.a2﹣2ab+b2=(a﹣b)2C.﹣(a﹣b)=b﹣a D.3a3b2÷a2b2=3a4.如图,AB∥CD,AD=CD,∠1=70°30',则∠2的度数是()A.40°30' B.39°30' C.40°D.39°5.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则S阴影=()A.πB.2πC.D.π6.若正比例函数y=(1﹣2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<D.m>7.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:18.已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B. C.D.9.如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为()A.16 B.20 C.18 D.2210.在平面直角坐标系中,二次函数图象交x轴于(﹣5,0)、(1,0)两点,将此二次函数图象向右平移m个单位,再向下平移n个单位后,发现新的二次函数图象与x轴交于(﹣1,0)、(3,0)两点,则m的值为()A.3 B.2 C.1 D.0二、填空题11.在四个实数,0,﹣1,中,最大的是.请从12,13两个小题中任选一个作答,若多选,则按第12题计分.12.正多边形的一个外角是72°,则这个多边形的内角和的度数是.13.等腰三角形中,腰和底的长分别是10和13,则三角形底角的度数约为.(用科学计算器计算,结果精确到0.1°)14.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF 的边长为.15.如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC 为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.三、解答题16.计算:•3tan60°++.17.先化简,再求值:﹣(1﹣),其中,x=﹣1.18.如图,请用尺规作出圆O的内接正方形(保留作图痕迹,不写作法)19.某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练后都进行了测训练后篮球定点投篮测试进行球赛进球统计表请你根据图表中信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为多少个?(2)选择长跑训练的人数占全班人数的百分比是,该班共有同学人;(3)根据测试资料,参加蓝球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.20.已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.21.如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)22.如表为某市居民每月用水收费标准,(单位:元/m3).(1)某用户1月用水10立方米,共交水费23元,则a=元/m3;(2)若该用户2月用水25立方米,则需交水费元;(3)若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费71元.请问该用户实际用水多少立方米?23.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到元购物券,至多可得到元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.24.如图,AB为⊙O直径,C是⊙O上一点,CO⊥AB于点O,弦CD与AB交于点F.过点D作⊙O的切线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.(1)求证:△EFD为等腰三角形;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.25.如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)判断△ADC的形状,并说明理由;(3)若点P是第四象限抛物线上的一点,是否存在一点P使以P、A、D、C为顶点的四边形面积最大?若存在,求点P的坐标及四边形的最大面积,若不存在,说明理由.26.问题探究:(1)如图①,△ABC为等腰三角形,AB=AC=a,∠BAC=120°,则△ABC的面积为(用含a 的代数式表示)(2)如图②,△AOD与△BOC为两个等腰直角三角形,两个直角顶点O重合,OA=OB=OC=OD=a.若△AOD与△BOC不重合,连接AB,CD,求四边形ABCD面积最大值.问题解决:如图③,点O为某电视台所在位置,现要在距离电视台5km的地方修建四个电视信号中转站,分别记为A、B、C、D.若要使OB与OC夹角为150°,OA与OD夹角为90°(∠AOD与∠BOC 不重合且点O、A、B、C、D在同一平面内),则符合题意的四个中转站所围成的四边形面积有无最大值?如果有,求出最大值,如果没有,请说明理由.2016年陕西省西安市中考数学八模试卷参考答案与试题解析一、选择题1.5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A.﹣3吨B.+3吨C.﹣5吨D.+5吨【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:∵+3吨表示运入仓库的樱桃吨数,∴运出5吨樱桃表示为﹣5吨.故选C.2.下面几个几何体,主视图是圆的是()A.B.C.D.【考点】简单几何体的三视图.【分析】分别判断A,B,C,D的主视图,即可解答.【解答】解:A、主视图为正方形,故错误;B、主视图为圆,正确;C、主视图为三角形,故错误;D、主视图为长方形,故错误;故选:B.3.下列计算中,不正确的是()A.a2•a5=a10B.a2﹣2ab+b2=(a﹣b)2C.﹣(a﹣b)=b﹣a D.3a3b2÷a2b2=3a【考点】整式的除法;合并同类项;去括号与添括号;同底数幂的乘法.【分析】根据同底数幂的乘法、完全平方公式、单项式的除法进行计算即可.【解答】解:A、a2•a5=a7,不合题意,故A正确;B、a2﹣2ab+b2=(a﹣b)2,符合题意,故B错误;C、﹣(a﹣b)=b﹣a,符合题意,故C错误;D、3a3b2÷a2b2=3a,符合题意,故D错误;故选A.4.如图,AB∥CD,AD=CD,∠1=70°30',则∠2的度数是()A.40°30' B.39°30' C.40°D.39°【考点】等腰三角形的性质;平行线的性质.【分析】先根据平行线的性质求出∠ACD的度数,再由AC=CD得出∠CAD的度数,根据三角形内角和定理即可得出结论.【解答】解:∵AB∥CD,∠1=70°30',∴∠ACD=∠1=70°30'.∵AD=CD,∴∠CAD=∠ACD=7030'°,∴∠2=180°﹣∠ACD﹣∠CAD=180°﹣7030'°﹣70°30'=39°.故选D.5.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则S阴影=()A.πB.2πC.D.π【考点】扇形面积的计算;勾股定理;垂径定理.=S△OEC,所以S阴影=S扇形BOC.【分析】求出CE=DE,OE=BE=1,得出S△BED【解答】解:如图,CD⊥AB,交AB于点E,∵AB是直径,∴CE=DE=CD=,又∵∠CDB=30°∴∠COE=60°,∴OE=1,OC=2,∴BE=1,=S△OEC,∴S△BED==.∴S阴影=S扇形BOC故选:D.6.若正比例函数y=(1﹣2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是()A.m<0 B.m>0 C.m<D.m>【考点】正比例函数的性质.【分析】根据正比例函数的大小变化规律判断k的符号.【解答】解:根据题意,知:y随x的增大而减小,则k<0,即1﹣2m<0,m>.故选D.7.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:1【考点】相似三角形的判定与性质;平行四边形的性质.【分析】可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.【解答】解:∵四边形ABCD为平行四边形,∴DC∥AB,∴△DFE∽△BFA,∵DE:EC=3:1,∴DE:DC=3:4,∴DE:AB=3:4,∴S△DFE :S△BFA=9:16.故选:B.8.已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B. C.D.【考点】关于原点对称的点的坐标;在数轴上表示不等式的解集.【分析】根据关于原点对称点的性质得出对应点坐标,再利用第四象限点的坐标性质得出答案.【解答】解:∵点P(a+1,﹣+1)关于原点的对称点坐标为:(﹣a﹣1,﹣1),该点在第四象限,∴,解得:a<﹣1,则a的取值范围在数轴上表示为:.故选:C.9.如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为()A.16 B.20 C.18 D.22【考点】平行四边形的判定与性质;勾股定理;三角形中位线定理.【分析】根据勾股定理先求出BC的长,再根据三角形中位线定理和直角三角形的性质求出DE 和AE的长,进而由已知可判定四边形AEDF是平行四边形,从而不难求得其周长.【解答】解:在Rt△ABC中,∵AC=6,AB=8,∴BC=10,∵E是BC的中点,∴AE=BE=5,∴∠BAE=∠B,∵∠FDA=∠B,∴∠FDA=∠BAE,∴DF∥AE,∵D、E分别是AB、BC的中点,∴DE∥AC,DE=AC=3∴四边形AEDF是平行四边形∴四边形AEDF的周长=2×(3+5)=16.故选:A.10.在平面直角坐标系中,二次函数图象交x轴于(﹣5,0)、(1,0)两点,将此二次函数图象向右平移m个单位,再向下平移n个单位后,发现新的二次函数图象与x轴交于(﹣1,0)、(3,0)两点,则m的值为()A.3 B.2 C.1 D.0【考点】抛物线与x轴的交点;二次函数图象与几何变换.【分析】根据平移前后抛物线对称轴的变化即可得出答案.【解答】解:∵二次函数图象交x轴于(﹣5,0)、(1,0)两点,∴原二次函数的对称轴为=﹣2,∵新的二次函数图象与x轴交于(﹣1,0)、(3,0)两点,∴原二次函数的对称轴为x==1,∴原抛物线向右平移了3个单位,即m=3,故选:A.二、填空题11.在四个实数,0,﹣1,中,最大的是.【考点】实数大小比较.【分析】根据实数的大小比较法则比较即可.【解答】解:四个实数,0,﹣1,中,最大的是;故答案为:.请从12,13两个小题中任选一个作答,若多选,则按第12题计分.12.正多边形的一个外角是72°,则这个多边形的内角和的度数是540°.【考点】多边形内角与外角.【分析】根据任何多边形的外角和都是360°,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:多边形的边数:360°÷72°=5,正多边形的内角和的度数是:(5﹣2)•180°=540°.故答案为:540°.13.等腰三角形中,腰和底的长分别是10和13,则三角形底角的度数约为49.5°.(用科学计算器计算,结果精确到0.1°)【考点】计算器—三角函数;近似数和有效数字;等腰三角形的性质.【分析】首先画出图形,再利用cosB==,结合计算器求出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵腰和底的长分别是10和13,∴BD=,∴cosB===,∴∠B≈49.5°.故答案为:49.5°.14.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF 的边长为2.【考点】反比例函数图象上点的坐标特征;解一元二次方程﹣因式分解法.【分析】先确定B点坐标(1,6),根据反比例函数图象上点的坐标特征得到k=6,则反比例函数解析式为y=,设AD=t,则OD=1+t,所以E点坐标为(1+t,t),再利用根据反比例函数图象上点的坐标特征得(1+t)•t=6,利用因式分解法可求出t的值.【解答】解:∵OA=1,OC=6,∴B点坐标为(1,6),∴k=1×6=6,∴反比例函数解析式为y=,设AD=t,则OD=1+t,∴E点坐标为(1+t,t),∴(1+t)•t=6,整理为t2+t﹣6=0,解得t1=﹣3(舍去),t2=2,∴正方形ADEF的边长为2.故答案为:2.15.如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.【考点】相似三角形的判定与性质;垂线段最短;勾股定理;平行四边形的性质.【分析】以PA,PC为邻边作平行四边形PAQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,然后根据△P′OC和△ABC相似,利用相似三角形的性质即可求出PQ的最小值.【解答】解:∵∠BAC=90°,AB=3,AC=4,∴BC==5,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,∴△CAB∽△CP′O,∴,∴,∴OP′=,∴则PQ的最小值为2OP′=,故答案为:.三、解答题16.计算:•3tan60°++.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣3×3+1+2=1﹣7.17.先化简,再求值:﹣(1﹣),其中,x=﹣1.【考点】分式的化简求值.【分析】先化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:﹣(1﹣)====,当x=﹣1时,原式===.18.如图,请用尺规作出圆O的内接正方形(保留作图痕迹,不写作法)【考点】作图—应用与设计作图;正多边形和圆.【分析】先作直径AC,再作AC的垂直平分线交⊙O于B、D,则四边形ABCD为圆O的内接正方形【解答】解:如图,正方形ABCD为所作.19.某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练后都进行了测训练后篮球定点投篮测试进行球赛进球统计表请你根据图表中信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为多少个?(2)选择长跑训练的人数占全班人数的百分比是10%,该班共有同学40人;(3)根据测试资料,参加蓝球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.【考点】扇形统计图;统计表.【分析】(1)根据平均数的概念计算平均进球数;(2)根据所有人数的比例和为1计算选择长跑训练的人数占全班人数的百分比;由总人数=某种运动的人数÷所占比例计算总人数;(3)通过比较训练前后的成绩,利用增长率的意义即可列方程求解.【解答】解:(1)参加篮球训练的人数是:2+1+4+7+8+2=24(人).训练后篮球定时定点投篮人均进球数==5(个);(2)由扇形图可以看出:选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%,则全班同学的人数为24÷60%=40(人),故答案是:10%,40;(3)设参加训练之前的人均进球数为x个,则x(1+25%)=5,解得x=4.即参加训练之前的人均进球数是4个.20.已知:如图,在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证:AB=AC.【考点】全等三角形的判定与性质;等腰三角形的判定.【分析】根据在△ABC中,D为BC上的一点,AD平分∠EDC,且∠E=∠B,DE=DC,求证△AED ≌△ACD,然后利用等量代换即可求的结论.【解答】证明:∵AD平分∠EDC,∴∠ADE=∠ADC,在△AED和△ACD中,∵∴△AED≌△ACD(SAS),∴∠C=∠E,又∵∠E=∠B.∴∠C=∠B,∴AB=AC.21.如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(参考数据:sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)【考点】解直角三角形的应用﹣坡度坡角问题.【分析】根据已知和余弦的概念求出DF的长,得到CG的长,根据正切的概念求出AG的长,求和得到答案.【解答】解:∵cos∠DBF=,∴BF=60×0.85=51,FH=DE=9,∴EG=HC=110﹣51﹣9=50,∵tan∠AEG=,∴AG=50×2.48=124,∵sin∠DBF=,∴DF=60×0.53=31.8,∴CG=31.8,∴AC=AG+CG=124+31.8=155.8米.22.如表为某市居民每月用水收费标准,(单位:元/m3).(1)某用户1月用水10立方米,共交水费23元,则a= 2.3元/m3;(2)若该用户2月用水25立方米,则需交水费60.8元;(3)若该用户水表3月份出了故障,只有70%的用水量记入水表中,该用户3月份交了水费71元.请问该用户实际用水多少立方米?【考点】一元一次方程的应用.【分析】(1)由单价=总价÷数量就可以得出结论;(2)设该用户2月份水费=0<x≤22的水费+x大于22部分的水费,列出算式计算即可求解;(3)设该用户3月份实际用水m吨,由70%的水量的水费为71元=单价×数量建立方程求出其解即可.【解答】解:(1)a=23÷10=2.3(元/m3);(2)2.3×22+(2.3+1.1)×(25﹣22)=50.6+3.4×3=50.6+10.2=60.8(元).答:需交水费60.8元;(3)设该用户实际用水m立方米,由题意,得2.3×22+(2.3+1.1)×(70%m﹣22)=71,解得:m=.故该用户实际用水立方米.故答案为:2.3;.23.某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元. (1)该顾客至少可得到 10 元购物券,至多可得到 50 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率. 【考点】列表法与树状图法.【分析】(1)如果摸到0元和10元的时候,得到的购物券是最少,一共10元.如果摸到20元和30元的时候,得到的购物券最多,一共是50元;(2)列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.【解答】解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果, 因此P (不低于30元)=;解法二(列表法):(以下过程同“解法一”)24.如图,AB 为⊙O 直径,C 是⊙O 上一点,CO ⊥AB 于点O ,弦CD 与AB 交于点F .过点D 作⊙O的切线交AB的延长线于点E,过点A作⊙O的切线交ED的延长线于点G.(1)求证:△EFD为等腰三角形;(2)若OF:OB=1:3,⊙O的半径为3,求AG的长.【考点】相似三角形的判定与性质;等腰三角形的判定与性质;勾股定理;垂径定理;切线的性质.【分析】(1)连接OD,只要证明∠EFD=∠EDF即可解决问题.(2)先求得EF=1,设DE=EF=x,则OF=x+1,在Rt△ODE中,根据勾股定理求得DE=4,OE=5,根据切线的性质由AG为⊙O的切线得∠GAE=90°,再证明Rt△EOD∽Rt△EGA,根据相似三角形对应边成比例即可求得.【解答】(1)证明:连接OD,∵OC=OD,∴∠C=∠ODC,∵OC⊥AB,∴∠COF=90°,∴∠OCD+∠CFO=90°,∵GE为⊙O的切线,∴∠ODC+∠EDF=90°,∵∠EFD=∠CFO,∴∠EFD=∠EDF,∴EF=ED.(2)解:∵OF:OB=1:3,⊙O的半径为3,∴OF=1,∵∠EFD=∠EDF,∴EF=ED,在Rt△ODE中,OD=3,DE=x,则EF=x,OE=1+x,∵OD2+DE2=OE2,∴32+x2=(x+1)2,解得x=4,∴DE=4,OE=5,∵AG为⊙O的切线,∴AG⊥AE,∴∠GAE=90°,而∠OED=∠GEA,∴Rt△EOD∽Rt△EGA,∴=,即=,∴AG=6.25.如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)判断△ADC的形状,并说明理由;(3)若点P是第四象限抛物线上的一点,是否存在一点P使以P、A、D、C为顶点的四边形面积最大?若存在,求点P的坐标及四边形的最大面积,若不存在,说明理由.【考点】二次函数综合题.【分析】(1)根据经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),可以求得抛物线的解析式,进而得到顶点D的坐标;(2)根据(1)中的函数解析式可以求得点A、D、C的坐标,从而可以求得AD、AC、CD的长,然后根据勾股定理的逆定理即可判断△ADC的形状;(3)先判断是否存在,然后再根据题意和题目中的数据,利用分类讨论的数学思想进行解答即可.【解答】解:(1)∵经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点,∴,得,∴抛物线的解析式为:y=x2﹣2x﹣6,∵y=x2﹣2x﹣6=,∴顶点D的坐标为(2,﹣8),即抛物线的函数关系式为y=x2﹣2x﹣6,顶点D的坐标为(2,﹣8);(2)△ACD的形状是直角三角形,理由:∵抛物线的解析式为y=x2﹣2x﹣6,∴当y=0时,0=x2﹣2x﹣6,解得,x1=﹣2,x2=6,∴点C的坐标为(6,0),又∵点A(0,﹣6),点D(2,﹣8),∴AC=,AD=,CD=,∵,∴△ACD是直角三角形,AC⊥AD,即△ADC的形状是直角三角形;(3)存在一点P使以P、A、D、C为顶点的四边形面积最大,如右图所示,当点P1在AD之间时,设P1的坐标为(a,a2﹣2a﹣6),∵AC⊥AD,AC=6,AD=2,CD=4,∴△ACD的面积是:,设过点A(0,﹣6),点D(2,﹣8)的直线解析式为y=kx+b,,得,∴过点A(0,﹣6),点D(2,﹣8)的直线解析式为y=﹣x﹣6,∴△AP1D的面积为:=||,∴=12+||,∵0<a<2,∴当a=1时,四边形面积取得最大值,此时四边形的面积是18.5,当a=1时,y=a2﹣2a﹣6=,即P1的坐标为(1,﹣7.5);当点P2在DC之间时,设P2的坐标为(m,m2﹣2m﹣6),∵AC⊥AD,AC=6,AD=2,CD=4,∴△ACD的面积是:,设过点C(6,0),点D(2,﹣8)的直线解析式为y=cx+d,,得,∴过点C(6,0),点D(2,﹣8)的直线解析式为y=2x﹣12,∴△CP2D的面积为:=2||,∴=12+2||,∵2<m<6,∴当m=4时,四边形的面积最大,此时四边形的面积是16,当m=4时,y=m2﹣2m﹣6=﹣6,即点P2的坐标为(4,﹣6);由上可得,点P的坐标为(1,﹣7.5),四边形的最大面积是18.5.26.问题探究:(1)如图①,△ABC为等腰三角形,AB=AC=a,∠BAC=120°,则△ABC的面积为(用含a的代数式表示)(2)如图②,△AOD与△BOC为两个等腰直角三角形,两个直角顶点O重合,OA=OB=OC=OD=a.若△AOD与△BOC不重合,连接AB,CD,求四边形ABCD面积最大值.问题解决:如图③,点O为某电视台所在位置,现要在距离电视台5km的地方修建四个电视信号中转站,分别记为A、B、C、D.若要使OB与OC夹角为150°,OA与OD夹角为90°(∠AOD与∠BOC 不重合且点O、A、B、C、D在同一平面内),则符合题意的四个中转站所围成的四边形面积有无最大值?如果有,求出最大值,如果没有,请说明理由.【考点】三角形综合题;等腰三角形的性质;等边三角形的判定与性质;等腰直角三角形;旋转的性质.【分析】问题探究:(1)根据等腰三角形的性质,求得底边上的高,进而得到△ABC的面积;(2)过点C作CE⊥OD于E,则CE≤CO,当点E与点O重合时,CE=CO=a,此时∠COD=90°,即△COD是等腰直角三角形,进而得到四边形ABCD是正方形,再根据OA=OB=OC=OD=a,求得四边形ABCD的面积即可;问题解决:将△COD绕着点O按顺时针方向旋转150°,得到△BOE,过A作AG⊥OB于G,过E 作EF⊥OB于F,连接AE交OB于H,则AG≤AH,EF≤EH,当点G、点F都与点H重合时,AG+EF=AE (最大),而OB长不变,故四边形ABEO的面积最大,此时OB⊥AE,进而得出△AOB和△COD都是等边三角形,最后根据△AOB和△COD的面积都为:×5×=,△AOD的面积为:×5×5=,△BOC的面积为:×5×=,求得四边形ABCD的面积的最大值.【解答】解:问题探究:(1)如图①,过A作AD⊥BC于D,则Rt△ABD中,AD=AB=a,BD=a,∴BC=a,∴△ABC的面积=BC×AD=×a×a=,故答案为:;(2)如图②,过点C作CE⊥OD于E,则CE≤CO,当点E与点O重合时,CE=CO=a,此时∠COD=90°,即△COD是等腰直角三角形,∴∠AOB=360°﹣3×90°=90°,∴△AOB是等腰直角三角形,∴四边形ABCD是正方形,∵OA=OB=OC=OD=a,∴AB=BC=CD=AD=a,∴四边形ABCD面积最大值为:(a)2=2a2;问题解决:四边形ABCD面积有最大值.如图所示,将△COD绕着点O按顺时针方向旋转150°,得到△BOE,∵OB与OC夹角为150°,OA与OD夹角为90°,∴∠AOB+∠COD=120°,∴∠AOB+∠BOE=120°,即∠AOE=120°,过A作AG⊥OB于G,过E作EF⊥OB于F,连接AE交OB于H,则AG≤AH,EF≤EH,∴当点G、点F都与点H重合时,AG+EF=AE(最大),而OB长不变,故四边形ABEO的面积最大,此时,OB⊥AE,又∵OA=OE,∴等腰三角形AOE中,OH平分∠AOE,∴∠AOB=60°,∠COD=60°,又∵OA=OB=OC=OD=5,∴△AOB和△COD都是等边三角形,∵△AOB和△COD的面积都为:×5×=,△AOD的面积为:×5×5=,△BOC的面积为:×5×=,∴四边形ABCD的面积=×2++=+.2017年4月7日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Байду номын сангаас,其中

17.(5 分)如图,有一块三角形材料(△ABC),请你画出一个圆,使其 与△ABC 的各边都相切(保留作图痕迹,不要求写作法).
18.(6 分)已知:如图,AB⊥BC,AD⊥DC,AB=AD,若 E 是 AC 上的一点,求证:EB=ED.
19.(7 分)我市建设森林城市需要大量的树苗,某生态示范园负责对甲、乙、丙、丁四个 品种的树苗共 500 株进行树苗成活率试验,从中选择成活率高的品种进行推广.通过实验得 知:丙种树苗的成活率为 89.6%,把实验数据绘制成下面两幅统计图(部分信息未给出). (1)实验所用的乙种树苗的数量是 _________ 株. (2)求出丙种树苗的成活数,并把图 2 补充完整. (3)你认为应选哪种树苗进行推广?请通 过计算说明理由.
元销售,售出了 200 副.十月份如果销售单价不变,预计仍可售出 200 副,鑫都小商品市场
为增加销售量,决定降价销售,根据市场调查,销售单价每降低 5 元,可多售出 10 副,但
最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,
清仓时销售单价为 50 元.设十月份销售单价降低 x 元.
23.(8 分)如图,四边形 ABCD 是平行四边形,以 AB 为直径的圆 O 经过点 D,E 是⊙O 上一点,且∠AED=45°. (1)判断 CD 与⊙O 的位置关系,并说明理由; (2)若⊙O 半径为 6cm,AE=10cm,求∠ADE 的正弦值.
学海无涯
24.(8 分)如图,已知抛物线与 x 轴交于点 A(﹣2,0),B(4,0),与 y 轴交于点 C(0, 8). (1)求抛物线的解析式及其顶点 D 的坐标; (2)设直线 CD 交 x 轴于点 E.在线段 OB 的垂直平分线上是否存在点 P,使得点 P 到直线 CD 的距离等于点 P 到原点 O 的距离?如果存在,求出点 P 的坐标;如果不存在,请说明理 由; (3)过点 B 作 x 轴的垂线,交直线 CD 于点 F,将抛物线沿其对称轴平移,使抛物线与线 段 EF 总有公共点.试探究:抛物线向上最多可平移多少个单位长 度?向下最多可平移多少个单位长度?
D. x2 + x2 = x4
4.若分式
的值为 0,则 x 的值为( )
A.﹣1
B.3
C.﹣1 或 3
D.﹣3 或 1
5.某班 50 名学生的年龄统计结果如下表所示,这个班学生年龄的众数、中位数是( )
年龄 13
14
15
16
人数 4
22
23
1
A.23,15
B.23,22
C.1,22
D.15,14
6.把直线 y=﹣3x 向上平移后得到直线 AB,直线 AB 经过点(m、n),且 3m+n=10,则直
14.如图,线段 AB 的长为 2,C 为 AB 上一个动点,分别以 AC、BC 为斜边在 AB 的同侧作两个等腰直角三角形△ACD 和△BCE,那么 DE 长的最小值是 _________ . 三、解答题(共 9 小题,计 78 分,解答应写出过程) 15.(5 分)计算: |﹣4|﹣
学海无涯
16.(5 分)先化简,再求值:
端点 O,A),过 P、O 两点的二次函数 y1 和过 P、A 两点的二次函数 y2 的图象
开口均向下,它们的顶点分别为 B、C,射线 OB 与 AC 相交于点 D.当 OD=AD=3
时,这两个二次函数的最大值之和等于( )
A.
B.
C.3
D.4
二、填空题(共 4 小题、每题 3 分、共计 12 分) 11.分解因式:a2﹣b2﹣2a+1=________________________。 12.在一次社会实践活动中,某班可筹集到的活动经费最多 900 元.此次活动租车需 300 元,每个学生活动期间所需经费 15 元,则参加这次活动的学生人数最多为 _________ . 13.如图,双曲线 y= 经过 Rt△OMN 斜边上的点 A,与直角边 MN 相交于点 B,已知 OA=2AN, △OAB 的面积为 5,则 k 的值是 _________ .
(1)填表:
月份
九月
十月
清仓
销售单 价(元)100
50
销售量(件) 200
(2)如果鑫都小商品市场希望通过销售这批羽毛球拍获利 9200 元,那么十月份的销售单价
应是多少元?
学海无涯
22.(8 分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有 4 个 相同的小球,球上分别标有“0 元”、“10 元”、“20 元”和“30 元”的字样.规定:顾客在本商场 同一日内,每消费满 200 元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商 场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消 费 200 元. (1)该顾客至少可得到 _________ 元购物券,至多可得到 _________ 元购物券; (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于 30 元的概率.
学海无涯
25.(10 分)在平面直角坐标系 xOy 中,对于任意两点 P1(x1,y1)与 P2(x2,y2)的“非 常距离”,给出如下定义: 若|x1﹣x2|≥|y1﹣y2|,则点 P1 与点 P2 的“非常距离”为|x1﹣x2|; 若|x1﹣x2|<|y1﹣y2|,则点 P1 与点 P2 的“非常距离”为|y1﹣y2|. 例如:点 P1(1,2),点 P2(3,5),因为|1﹣3|<|2﹣5|,所以点 P1 与点 P2 的“非常距离” 为|2﹣5|=3,也就是图 1 中线段 P1Q 与线段 P2Q 长度的较大值(点 Q 为垂直于 y 轴的直线 P1Q 与垂直于 x 轴的直线 P2Q 交点). (1)已知点 A(﹣ ,0),B 为 y 轴上的一个动点, ①若点 A 与点 B 的“非常距离”为 2,写出一个满足条件的点 B 的坐标; ②直接写出点 A 与点 B 的“非常距离”的最小值; (2)已知 C 是直线 y= x+3 上的一个动点, ①如图 2,点 D 的坐标是(0,1),求点 C 与点 D 的“非常距离”的最小值及相应的点 C 的坐 标; ②如图 3,E 是以原点 O 为圆心,1 为半径的圆上的一个动点,求点 C 与点 E 的“非常距离” 的最小值及相应的点 E 与点 C 的坐标.
取值范围是( A.m<
) B.m> 且 m≠2
C.m≤
D.m≥ 且 m≠2
9.如图,菱形 ABCD 的边长为 8cm,∠A=60°,DE⊥AB 于点 E,DF⊥BC 于点 F,则四边
形 BEDF 的面积为(
)cm2.
A. 16
B,64
C.8 .
D.8
10.如图,已知点 A(4,0),O 为坐标原点,P 是线段 OA 上任意一点(不含
学海无涯
中考数学模拟试卷
一、选择题(共 10 小题、每题 3 分,计 30 分)
1.﹣2 的相反数是( )
A.﹣
B.
C.2
2.如图所示,下列选项中,正六棱柱的左视图是( )
D.±2
A.
B.
C.
D.
3.下列计算正确的是
A. x x2 = x2 B. (xy)2 = xy2 C. (x2 )3 = x6
线 AB 的解析式( )
A.y=﹣3x﹣5
B.y=﹣3x﹣10
C.y=﹣3x+5
D.y=﹣3x+10
7.如图,△ABC 是⊙O 的内接三角形,AC 是⊙O 的直径,∠C=50°,∠ABC 的平分线 BD
交⊙O 于点 D,则∠BAD 的度数是( )
A.45°
B.85°
C. 90°
D.95°
学海无涯
8.关于 x 的一元二次方程(m﹣2)2x2+(2m+1)x+1=0 有两个不相等的实数根,则 m 的
学海无涯
20.(8 分)如图,在电线杆上的 C 处引拉线 CE、CF 固定 电线杆,拉线 CE 和地面成 60°角,在离电线杆 6 米的 B 处 安置测角仪,在 A 处测得电线杆上 C 处的仰角为 30°,已 知测角仪高 AB 为 1.5 米,求拉线 CE 的长(结果保留根号).
21.(8 分)泰兴鑫都小商品市场以每副 60 元的价格购进 800 副羽毛球拍.九月份以单价 100
相关文档
最新文档