简单随机抽样-系统抽样
2[1]1简单随机抽样和系统抽样
![2[1]1简单随机抽样和系统抽样](https://img.taocdn.com/s3/m/93cee1712af90242a995e519.png)
总体:所要考察对象的全体。 个体:总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做 这个总体的一个样本。
样本容量:样本中个体的数目。
联系生活
要判断一锅汤的味道需要把整锅汤都 喝完吗?应该怎样判断?
将锅里的汤“搅拌均匀”,品尝一 小勺就知道汤的味道,这是一个简单 随机抽样问题.
联系生活
实 例 二要考察某公司生产的500克袋装牛奶的质 量是否达标,现从800袋牛奶中抽取60袋进行 检验。
1、将800袋牛奶编号,000,001,…,799
2、在随机数表(课本103页)中任选一数, 例如第8行第7列,是7。
3、从7开始往右读(方向随意),得到第一 个三位数785<编号799,将对应编号的牛奶 取出;继续向右读,得到916>编号799,舍 弃;如此继续下去,直至抽出60袋牛奶。
上述抽样方法称为系统抽样,一般地, 系统抽样的含义是:
将总体分成均衡的n个部分,再按照预先 定出的规则,从每一部分中抽取1个个体, 即得到容量为n的样本.
思考1:用系统抽样从含有N个个体的总 体中抽取一个容量为n的样本,要平均 分成多少段,每段各有多少个号码?
思考2:如果N不能被n整除怎么办?
从总体中随机剔除N除以n的余数个个体 后再分段.
抽签决定
开始
47名同学从1到47编号
抽
制作1到47个号签
签
法
将47个号签搅拌均匀
随机从中抽出10个签
对号码一致的学生检查
结束
抽签法的一般步骤:
(总体个数N,样本容量n)
(1)将总体中的N个个体编号;
(2)将这N个号码写在形状、 大小相 同的号签上;
(3)将号签放在同一箱中,并 搅拌均匀;
2.1 简单随机抽样、系统抽样

预习检测
4.系统抽样的概念
先将总体中的个体逐一编号,然后按号码顺序以一定的间隔 k 进行抽取,先
从第一个间隔中随机地抽取一个号码,
编号
然后按此间隔_逐__个__抽取即得到所需样
本.
5.系统抽样的步骤
N n
一般地,假设要从容量为 N 的总体
简单随机抽样
3.抽签法和随机数法的特点
优点
缺点
简单易行,当总体的个体数_不__多___时,仅适用于个体数_较__少__的总体,当总体
抽签法
使总体处于“搅拌”均匀的状态比较
容易,这时,每个个体都有_均__等___的
容量_较__大___时,费时费力又不方便,况
且,如果号签搅拌的不均匀,可能导致
机被抽中,从而能够保证样本的代
号码抽出.
达标检测
1.抽签法中确保样本代表性的关键是( B )
A.抽签
B.搅拌均匀
C.逐一抽取
D.抽取后不放回
2.某班 50 名学生中有 30 名男生,20 名女生,用简单随机抽样抽取 1 名学生参
加某项活动,则抽到女生的可能性为( A )
A.0.4 B.0.5
C.0.6
2 D.3
3.在“世界读书日”前夕,为了了解某地 5 000 名居民某天的阅读时间,从中
卷 B,其余的人做问卷 C.则抽到的人中,做问卷 B 的人数为( C )
A.7
B.9
C.10
D.15
例 2 某单位有 200 名职工,现要从中抽取 40 名职工作为样本.用系统抽样法, 将全体职工随机按 1~200 编号,并按编号顺序平均分为 40 组(1~5 号,6~10 号,…,196~200 号).若第 5 组抽出的号码为 22,则第 8 组抽出的号码应是 ____3_7___.
简单随机抽样和系统抽样

简单随机抽样和系统抽样引言在统计学和调查研究领域中,抽样是一种常用的方法,用于从总体中选择一个样本集合进行分析和推断。
在抽样过程中,有许多不同的抽样方法可供选择,其中最常见的包括简单随机抽样和系统抽样。
本文将介绍这两种抽样方法的基本原理、应用场景和计算流程。
简单随机抽样简单随机抽样是一种基本的抽样方法,它要求每个个体被选中的概率相等且相互独立。
具体步骤如下:1.定义总体:首先需要明确总体的定义,即要进行抽样的对象或样本来源。
2.确定样本容量:根据研究目的和可行性要求,确定需要抽取的样本容量。
3.编号:为了对总体个体进行抽样,需对其进行编号,通常采用标志符号或编号系统。
4.抽样:使用随机数表或计算机生成随机数,按照随机数的顺序选择相应的个体,直到达到所需的样本容量。
5.收集数据:通过对抽取得到的样本个体进行观察、测量或调查,收集相关数据。
简单随机抽样的优点是操作简单、易于理解和实施,且能够充分反映总体的抽样特征。
然而,当总体规模较大时,操作复杂度较高,且可能涉及样本重复的情况。
系统抽样系统抽样是一种基于均匀间隔的抽样方法,它的基本思想是按照固定的间隔从总体中选择样本。
具体步骤如下:1.定义总体:与简单随机抽样相同,首先需要明确总体的定义。
2.确定样本容量:同样需要确定所需的样本容量。
3.编号:对总体个体进行编号,通常采用标志符号或编号系统。
4.计算抽样间隔:根据总体容量和样本容量,计算出抽样间隔(抽样单位)。
5.随机起点:使用随机数表或计算机生成随机数,选择一个起始位置以确保样本选择的随机性。
6.抽样:从起始位置开始,每隔抽样间隔选择一个个体作为样本。
7.收集数据:同样需要通过对抽取得到的样本个体进行观察、测量或调查,收集相关数据。
系统抽样相较于简单随机抽样的优势在于操作相对简单且较为高效,可以避免样本的重复选择。
然而,如果总体中存在某种特殊的顺序或周期性,系统抽样可能导致样本存在明显的偏差。
应用场景在实际应用中,简单随机抽样和系统抽样都有各自的适用场景。
简单随机抽样系统抽样分层抽样含答案

2.1.1 简单随机抽样、系统抽样、分层抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧ 抽签法随机数法3.简单随机抽样的优点及适用类型 简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.4.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.5.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k,对编号进行分段.当Nn(n是样本容量)是整数时,取k=Nn ;(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.6.分层抽样的概念在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.7.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.一、选择题1.抽签法中确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案 B 解析由于此问题强调的是确保样本的代表性,即要求每个个体被抽到的可能性相等.所以选B.2.下列抽样实验中,用抽签法方便的有( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验答案B解析A总体容量较大,样本容量也较大不适宜用抽签法;B总体容量较小,样本容量也较小可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D总体容量较大,不适宜用抽签法.3.为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A.1 000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是100答案 D 解析:此问题研究的是运动员的年龄情况,不是运动员,故A、B、C错,故选D.4.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310答案A5.某会议室有50排座位,每排有30个座位.一次报告会坐满了听众.会后留下座号为15的所有听众50人进行座谈.这是运用了( )A.抽签法B.随机数表法C.系统抽样D.有放回抽样答案C解析从第1排到第50排每取一个人的间隔人数是相同的,符合系统抽样的定义.6.要从已经编号(1~50)的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,用系统抽样方法确定所选取的5枚导弹的编号可能是( )A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5 D.2,4,8,16,32答案B解析由题意知分段间隔为10.只有选项B中相邻编号的差为10,选B.7.有40件产品,其中一等品10件,二等品25件,次品5件,现从中抽出8件进行质量分析,问应采取何种抽样方法( )A.抽签法B.随机数表法C.系统抽样D.分层抽样答案D8.某城市有学校700所.其中大学20所,中学200所,小学480所,现用分层抽样方法从中抽取一个容量为70的样本,进行某项调查,则应抽取中学数为( )A.70 B.20 C.48 D.2答案B由于70070=10,即每10所学校抽取一所,又因中学200所,所以抽取200÷10=20(所).9.下列问题中,最适合用分层抽样方法抽样的是( )A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某乡农田有山地8 000亩,丘陵12 000亩,平地24 000亩,洼地4 000亩,现抽取农田480亩估计全乡农田平均产量D.从50个零件中抽取5个做质量检验答案C解析A的总体容量较大,宜采用系统抽样方法;B的总体容量较小,用简单随机抽样法比较方便;C总体容量较大,且各类田地的产量差别很大,宜采用分层抽样方法;D与B类似.10.要从其中有50个红球的1 000个球中,采用按颜色分层抽样的方法抽取100个进行分析,则应抽取红球的个数为( )A.5个B.10个C.20个D.45个答案A解析由题意知每1000100=10(个)球中抽取一个,现有50个红球,应抽取5010=5(个).11.在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性相等C.与第几次抽样有关,最后一次抽到的可能性大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不同答案B解析由简单随机抽样的特点知与第n次抽样无关,每次抽到的可能性相等.二、填空题12.福利彩票的中奖号码是从1~36个号码中选出7个号码来按规则确定中奖情况,这种从36个号码中选7个号码的抽样方法是________.答案抽签法13.用随机数表法进行抽样,有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定随机数表开始的数字,这些步骤的先后顺序应该是________.(填序号)答案①③②14.某班级共有学生52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号为________.答案16解析用系统抽样的方法是等距离的.42-29=13,故3+13=16.15.某农场在三种地上种玉米,其中平地210亩,河沟地120亩,山坡地180亩,估计产量时要从中抽取17亩作为样本,则平地、河沟地、山坡地应抽取的亩数分别是________.答案7,4,6解析应抽取的亩数分别为210×17510=7,120×17510=4,180×17510=6.16.将一个总体分为A、B、C三层,其个体数之比为5∶3∶2.若用分层抽样方法抽取容量为100的样本,则应从C中抽取________个个体.答案20解析由题意可设A、B、C中个体数分别为5k,3k,2k,所以C中抽取个体数为2k5k+3k+2k×100=20.17.某工厂生产A、B、C、D四种不同型号的产品,产品数量之比依次为2∶3∶5∶1.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号有16件,那么此样本的容量n为________.答案88解析在分层抽样中,每一层所抽的个体数的比例与总体中各层个体数的比例是一致的.所以,样本容量n=2+3+5+12×16=88.。
简单随机抽样和系统抽样

可以避免主观因素对抽样的干扰。 03
缺点
01 当总体容量较大时,简单随机抽样需要大量的时
间和资源,实施难度较大。
02
在某些情况下,可能存在难以编号或标识的情况, 导致无法进行简单随机抽样。
02
系统抽样
定义
系统抽样:按照某种规则从总体中抽取样本的方 法。
实施步骤
确定总体
明确研究对象的总体 范围和数量。
确定样本量
根据研究目的和资源 确定所需的样本数量。
随机编号
对总体中的每个单元 进行编号,确保每个
编号都是唯一的。
随机抽取
使用随机数表或计算 机软件生成随机数, 选择与随机数对应的
单元作为样本。
优点
每个样本被选中的概率相等,保证了样本的代表 01 性。
在一项关于消费者对某品牌手机满意度的调查中,研究者根据消费者的购买记录 ,每隔10名顾客抽取一名顾客进行调查,总共抽取了500名顾客。
比较两种抽样方法的应用实例
• 在一项关于某地区居民健康状况的研究中,研究者先采用简单随机抽样方法从该地区居民名 单中抽取了1000名居民作为样本,然后在这1000名居民中采用系统抽样方法,根据居民的年 龄分布,每隔10岁抽取一个居民进行更详细的调查。
01
如果总体分布不均匀,可能会导致样本偏差。
02
如果总体很大,抽样间隔可能很小,导致样本重复。
03
如果总体有明显的结构或分层,系统抽样可能无法 反映这些结构或分层。
简单随机抽样和系统抽样的
03
比较
定义与特点比较
简单随机抽样
从总体中随机抽取一定数量的样本,每个样本被选中的概率相等。
常见的随机抽样方法介绍

抽样方法介绍朱一军福建省产品质量检验研究院一、随机方法选择及随机数产生按照GB/T10111-2008《随机数的产生及其在产品质量抽样检验中的应用程序》的要求,并根据受检单位的产品堆放形式、基数(批量)大小,确定抽样方法通常包括简单随机抽样、分层随机抽样、系统抽样、整群抽样、全数抽样五种方法)。
随机数一般可使用随机数表、骰子或扑克牌中任选一种方式产生。
(一)简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取;优点:操作简便易行缺点:总体过大不易实行1.定义:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n 个个体作为样本(nWN),如果每次抽取式总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
2.简单随机抽样方法(1)抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
(抽签法简单易行,适用于总体中的个数不多时。
当总体中的个体数较多时,将总体“搅拌均匀”就比较困难,用抽签法产生的样本代表性差的可能性很大)(2)随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
(二)分层抽样(StratifiedRandomSampling)主要特征分层按比例抽样,主要使用于总体中的个体有明显差异。
共同点:每个个体被抽到的概率都相等N/M。
定义一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样(stratifiedsampling)。
(三)系统抽样当总体中的个体数较多时,采用简单随机抽样显得较为费事。
这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。
简单随机抽样,系统抽样,分层抽样 (2)
课 题 简单随机抽样,系统抽样,分层抽样 教学目标1.正确理解三种抽样方法的一般步骤和方法2.正确理解三中抽样方法间的区别和联系;重点、难点三种抽样方法概念的理解 2能够灵活应用三种抽样的方法解决统计问题。
考点及考试要求综合题考点一、简单随机抽样的概念一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。
【说明】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N 是有限的。
(2)简单随机样本数n 小于等于样本总体的个数N 。
(3)简单随机样本是从总体中逐个抽取的。
(4)简单随机抽样是一种不放回的抽样。
(5)简单随机抽样的每个个体入样的可能性均为Nn 。
思考:下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。
(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。
抽签法和随机数表法 1、抽签法的定义。
抽签法就是把总体中的N 个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n 次,就得到一个容量为n 的样本。
【说明】抽签法的一般步骤:(1)将总体的个体编号。
(2)连续抽签获取样本号码。
思考:你认为抽签法有什么优点和缺点:当总体中的个体数很多时,用抽签法方便吗?2、随机数表法的定义:利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法,这里仅介绍随机数表法。
【说明】随机数表法的步骤: (1)将总体的个体编号。
(2)在随机数表中选择开始数字。
(3)读数获取样本号码。
【例题精析】例1:人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?[分析] 简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样。
简单随机抽样系统抽样
当目标总体的分布规律已知时,系统抽样可以更 好地利用这些规律来抽取样本。
简单随机抽样与系统抽样的
03
比较
优缺点比较
在此添加您的文本17字
简单随机抽样
在此添加您的文本16字
优点:每个样本被选中的概率相等,因此结果相对公正; 操作简单,适用于样本数量较小的情况。
在此添加您的文本16字
应用范围比较
简单随机抽样
适用于总体数量较小、个体间差异较小的情况。
系统抽样
适用于总体数量较大、个体间差异较大或总体有序、存在周期性变化的情况。
实例分析比较
简单随机抽样实例
从100名学生中随机抽取5名进行 调查。
系统抽样实例
从一年内的所有日期中,每隔10 天抽取一个日期进行调查。
简单随机抽样与系统抽样的
和可靠性。
探索新的抽样方法和 技术,以适应日益复 杂和多样化的数据结
构和数据源。
加强抽样方法在实际 应用中的实证研究, 以验证其可行性和有
效性。
结合人工智能和大数 据技术,实现高效、 自动化的抽样设计和 数据分析,提高数据 挖掘的深度和广度。
THANKS
样本数量,并确定抽样的间隔或顺 01 序。
2. 根据确定的间隔或顺序,从总体中抽取样本。 02
3. 对抽取的样本进行调查或分析。 03
适用场景
当总体数量较大,且个体差异不大时,系统抽样可以快速、准确地提供推断结果。 在大规模调查、人口普查等领域广泛应用。
02
系统抽样
定义与特点
简单随机抽样与系统 抽样
目录
• 简单随机抽样 • 简单随机抽样 • 系统抽样 • 简单随机抽样与系统抽样的比较 • 简单随机抽样与系统抽样的应用案
简单随机抽样、系统抽样、分层抽样
专题四作业作者:卢弘观看讲座“基于课改背景的高中概率统计的教学”,提出三个说明统计抽样的方法对于科学结论的作用的实际案例简单随机抽样系统抽样分层抽样在现实生活中,会遇到很多进行抽样调查的问题,这时候我们就需要对具体问题具体分析,采用不同抽样方法来解决。
主要的抽样方法有三种:简单随机抽样,系统抽样,分层抽样。
这三种抽样方法的共同点是:抽样过程中每个个体被抽到的概率是相同的。
这三种抽样方法也具有各自的特点:简单随机抽样的特点是从总体中逐个抽取,适用的范围是总体中的个体数较少;系统抽样的特点是将总体均分为几个部分,按照事先确定的规则在各部分抽取,适用的范围是总体中的个体数较多;分层抽样的特点是将总体分成几层,分层进行抽取,适用范围是总体由差异明显的几部分组成。
三种方法之间相互联系:系统抽样在第一部分抽样是进行的是简单的随机抽样,分层抽样中各层抽样采取简单随机抽样方法。
简单随机抽样案例:在1936年美国总统选举前,一份颇有名气的杂志的工作人员对兰顿和罗斯福两位候选人做了一次民意测验.调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表.调查结果表明,兰顿当选的可能性大(57%),但实际选举结果正好相反,最后罗斯福当选(62%).你认为预测结果出错的原因是什么?系统抽样案例:从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是A.5,10,15,20,25 B、3,13,23,33,43C.1,2,3,4,5 D、2,4,6,16,32[分析]用系统抽样的方法抽取至的导弹编号应该k,k+d,k+2d,k+3d,k+4d,其中d=50/5=10,k是1到10中用简单随机抽样方法得到的数,因此只有选项B满足要求,故选B分层抽样案例:某单位有职工500人,其中35岁以下的有125人,35岁~49岁的有280人,50岁以上的有95人.为了调查职工的身体状况,要从中抽取一个容量为100的样本.第一步:该项调查应采用哪种抽样方法进行?第二步:在各年龄段具体如何抽样?怎样获得所需样本?第三步:计算样本容量与总体的个体数之比.第四步:将总体分成互不交叉的层,按比例确定各层要抽取的个体数第五步:按比例,三个年龄层次的职工分别抽取多少人?35岁以下25人,35岁~49岁56人,50岁以上19人..第六步:用简单随机抽样或系统抽样在各层中抽取相应数量的个体.第七步:将各层抽取的个体合在一起,就得到所取样本.。
随机抽样方法(简单随机抽样和系统抽样)
49 54 43 54 82 17 37 93 23 78 87 35 20 96 43
57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27
简记为:编号;选数;读数;抽样。
探究:
某校高一年级共有500名学生。为了了解 高一学生的视力状况,从这500人中抽取 一个容量为50的样本进行检查.除了用简 单随机抽样获取样本外,你能否设计其它 抽取样本的方法?
2、系统抽样:
将总体平均分成几个部分,然后按照 预先定出的规则,从每个部分中抽取一个 个体,得到所需的样本,这样的抽样方法 称为系统抽样(等距抽样)。
的个体抽出,组成样本.
练习:1、采用系统抽样的方法,从个体数为 1003的总体中抽取一个容量50的样本,则在 抽样过程中,被剔除的个体数为( 3 ), 抽样间隔为( 20 )。 2、某工厂生产产品,用传送带将产品送放下一 道工序,质检人员每隔十分钟在传送带的某一个 位置取一件检验,则这种抽样方法是( C )。
l
;
(4)将编号为 l , l k , l 2k ,..., l (n 1)k 的个体抽出。
简记为:编号;分段;在第一确定起始号;加 间隔获取样本。
例题分析: 例1:某单位在岗职工共624人,为了调查工人用于 上班途中的时间,决定抽取62的工人进行调查。如 何采用系统抽样方法完成这一抽样? 分析:因为624不能被62整除,为了保证“等距” 分段,应先剔除4人。 解: 第一步 将624名职工用简单随机抽样剔除4人; 第二步 将剩下的620名职工用随机方式进行编号; 第三步 并分成62段,每段长度k=10; 第四步 在第一段000,001,002, …,009这十个编号中用 简单随机抽样确定起始号码i; 第五步 将编号为i,i+k,i+2k, …,i+61k
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计的基本思想方法是什么?
• 统计的基本思想方法是用样本估计总 体,即当总体数量很大或检测过程具 有一定的破坏性时,不直接去研究总 体,而是通过从总体中抽取一个样本 ,根据样本的情况去估计总体的相应 情况。 • 如何进行合理的抽样呢?
那么, (1)怎样从总体中抽取样本呢? (2)如何表示样本数据呢? (3)如何从样本数据中提取基本信息 (样本分布、样本数字特征等),来 推断总体的情况呢? 这些正是本章要研究解决的问题。
开始 开始
编号 70名同学从1到70编号
制作编号为1到70的号签 制签
搅匀 将70个号签搅拌均匀 抽签 随机从中逐一抽出10个签 让对应号码的学生参加 取出个体 结束 结束
简单随机抽样的概 念 设一个总体含有N个个体 ,从中逐个不放 回地抽取n个个体作为样本 (n≤N),如果每次抽 取时总体内的各个个体被抽到的机会都相等, 这种抽样方法叫做简单随机抽样。
一.系统抽样的定义: 将总体平均分成几部分,然后按照一定的规 则,从每一部分抽取一个个体作为样本,这种抽 样的方法叫做系统抽样。
【说明】由系统抽样的定义可知系统抽样有以下特证: (1)当总体容量N较大时,采用系统抽样。 (2)将总体平均分成几部分指的是将总体分段,分段的 间隔要求相等,因此,系统抽样又称等距抽样, (3)一定的规则通常指的是:在第1段内采用简单随机 抽样确定一个起始编号,在此编号的基础上加上分段间 隔的整倍数即为抽样编号。
其中取号位置与方向具有任意性.
课堂小结
1.简单随机抽样的概念
一般地, 设一个总体含有N个个体 ,从中逐个不放 回地抽取n个个体作为样本 (n≤N),如果每次抽取时总体 内的各个个体被抽到的机会都相等,这种抽样方法叫做 简单随机抽样。
2.最常用的简单随机抽样 抽签法 随机数表法
系统抽样
【探究】:某学校为了了解高一年级学生对教师教学的 意见,打算从高一年级500名学生中抽取50名进行调查, 用简单随机抽样获取样本方便吗? 你能否设计其他抽取 样本的方法? 我们按照下面的步骤进行抽样: 第一步:将这500名学生从1开始进行编号;
统计学是干什么的?
• 现代社会是信息化的社会,人们常常需要收集数据,根据 所获得的数据提取有价值的信息,作出合理的决策。统计 是研究如何合理收集、整理、分析数据的学科,它可以为 人们制定决策提供依据。
思考
你知道这些数据是怎么来的吗? 怎么调查? 是对考察对象进行全面调查还是抽 , 怎样获得相关数据呢?需要将所有灯泡 逐一测试吗?
通常,在考生有这么多的情况下,我们只从中抽 取部分考生 (比如说1000名) ,统计他们的得分情况, 用他们的得分情况去估计所有考生的得分情况。
思 考:样本一定能准确地反应总体吗? 估计 样本 总体
在1936年美国总统选举前,一份颇有名气的杂志 的工作人员做了一次民意测验,调查兰顿 和罗斯福中 谁将当选下一届总统。为了了解公众意向,调查者通 过电话簿和车辆登记簿上的名单给一大批人发了调查 表(在1936年电话和汽车只有少数富人拥有),通过 分析收回的调查表,显示兰顿非常受欢迎。于是此杂 志预测兰顿将在选举中获胜。 实际选举结果正好相反,最后罗斯福在选举中获 胜。其数据如下:
第二步:确定分段间隔k,对编号进行分段.由于 k=500/50=10,这个间隔可以定为10; 第三步:从号码为1~10的第一个间隔中用简单随机抽样 的方法确定第一个个体编号,假如为6号;
第四步:从第6号开始,每隔10个号码抽取一个,得到 6,16,26,36,…,496.这样就得到一个样本容量 为 50的样本.
〖说明〗(1)分段间隔的确定: 当 当
N n N n
是整数时,取k=
N n
;
不是整数时,可以先从总体中随机地
N n
剔除几个个体,使得总体中剩余的个体数能被样
本容量整除.通常取k=
(2)从系统抽样的步骤可以看出,系统抽样 是把一个问题划分成若干部分分块解决,从而 把复杂问题简单化,体现了数学转化思想。
用随机数表法抽取的过程如下
第一步,先将800袋牛奶编号,可以编为000,001,…,799 第二步,在随机数表中任选一个数,例如选出第8行第7 列的数7.(为了便于说明,下面摘取了附表1的第6行至第10行)
16 22 77 94 39 84 42 17 53 31 63 01 63 78 59 33 21 12 34 29 57 60 86 32 44 49 54 43 54 82 57 24 55 06 88 16 95 55 67 19 78 64 56 07 82 09 47 27 96 54 17 37 93 23 78 77 04 74 47 67 98 10 50 71 75 52 42 07 44 38 49 17 46 09 62 87 35 20 96 43 21 76 33 50 25 12 86 73 58 07 15 51 00 13 42 90 52 84 77 27 84 26 34 91 64 83 92 12 06 76 44 39 52 38 79 99 66 02 79 54 08 02 73 43 28
第三步,从选定的数7开始向右读(读数的方向也可以是向 左、向上、向下等),得到一个 三位数 785,由于785< 799,说明号码785在总体内,将它取出;继续向右读,得到 916,由于916>799,将它去掉,按照这种方法继续向右读, 又取出567,199,507,…,依次下去,直到样本的60个号码 全部取出,这样我们就得到一个容量为60的样本.
例2、从编号为1~50的50枚最新研制 的某种型号的导弹中随机抽取5枚来进行发 射实验,若采用每部分选取的号码间隔一 样的系统抽样方法,则所选取5枚导弹的编 号可能是( B ) A.5,10,15,20,25 B、3,13,23,33,43 C、1, 2, 3, 4, 5 D、2, 4, 6, 16,32
思考:下列抽样中不是系统抽样的是 ( C ) A、从标有1~15号的15个小球中任选3个作 为样本,按从小号到大号排序,随机确定起点i, 以后为i+5, i+10(超过15则从1再数起)号入样; B、工厂生产的产品,用传送带将产品送入 包装车间前,检验人员从传送带上每隔五分钟抽 一件产品检验; C、搞某一市场调查,规定在商场门口随机 抽一个人进行询问,直到调查到事先规定的调查 人数为止; D、电影院调查观众的某一指标,通知每排 (每排人数相等)座位号为14的观众留下来座谈 。
开始 70名同学从1到70编号
抽 签 法
制作编号为1到70的号签(共70个) 将70个号签搅拌均匀 随机从中逐一抽出10个号签
与所抽取号码一致的学生即被选中
结束
抽签法的一般步骤:
(总体个数N,样本容量n)
(1)将总体中的N个个体编号;
(2)将这N个号码写在形状、 大小相 同的号签上; (3)将号签放在同一箱中,并 搅拌均匀; (4)从箱中每次抽出1个号签, 连续抽出n次; (5)将总体中与抽到的号签编 号一致的n个个体取出。
步 骤: 编号、选数(起始数)、取数、抽取.
巩固练习 1.中央电视台要从春节联欢晚会的60名热心 观众中随机抽出4名幸运观众,试用抽签法为 其设计产生这4名幸运观众的过程. 点评:抽签法—编号、制签、搅拌、抽取,
关键是“搅拌”后的随机性;
2.欲从本校100位教师中随机抽取20位参加 党的基本知识竞赛,试用随机表法确定这20位 教师 点评:随机数表法—编号、选数、取数、抽取,
【例题解析】 例1、某校高中三年级的295名学生已经编 号为1,2,……,295,为了了解学生的学习情 况,要按1:5的比例抽取一个样本,用系统抽 样的方法进行抽取,并写出过程。 解:样本容量为295÷5=59.
确定分段间隔k=5,将编号分段 1~5,6~10,…,291~295; 采用简单随机抽样的方法,从第一组5名 学生中抽出一名学生,如确定编号为3的学生, 依次取出的学生编号为3,8,13,…,288,293 , 这样就得到一个样本容量为59的样本.
简单随机抽样
总体的概念 把所要考察的对象的全体叫做总体. 个体的概念
总体中的每一个考察对象叫做个体. 样本的概念 从总体中所抽取的一部分个体叫做 总体的一个样本. 样本容量的概念 样本中所含个体的数目叫做样本容量.
联 系 生
活
在高考阅卷过程中,为了统计每一道试 题的得分情况,如平均得分、得分分布情 况等,如果将所有考生的每题的得分情况 都统计出来,再进行计算,结果是非常准 确的,但也是十分烦琐的,那么如何了解 各题的得分情况呢?
二、从容量为N的总体中抽取容量为n的样本,用 系统抽样的一般步骤为: (1)将总体中的N个个体编号.有时可直 接利用个体自身所带的号码,如学号、准考证号 、门牌号等; (2)将编号按间隔k分段(k∈N). (3)在第一段用简单随机抽样确定起始 个体的编号L(L∈N,L≤k)。 (4)按照一定的规则抽取样本,通常是 将起始编号L加上间隔k得到第2个个体编号L+K ,再加上K得到第3个个体编号L+2K,这样继续 下去,直到获取整个样本.
•
号码就可以了,这种抽样方法叫做
随机数表法
随机数表法
随机数表:
制作一个表(由数字0,1,2,...,9组成), 表中各个位置上的数都是随机产生的(随机 数)即每个数字在表中各个位置上出现的机 会都是一样。
随 机 数 表
教材103页
范例: 要考察某公司生产的500克袋装牛奶的质量 是否达标,现从800袋牛奶中抽取60袋进行检验,
注意以下四点: (1)它要求被抽取样本的总体的个体数有限; (2)它是从总体中逐个进行抽取; (3)它是一种不放回抽样; (4)它是一种等概率抽样 (每个个体入样的概率 n/N)。
抽签法(抓阄法)—— 是一种常见的简单随机抽样方法
及时检测一:
下列抽取样本的方式是属于简单随机抽样的是(C