STM32各模块学习笔记

合集下载

《STM32Cube高效开发教程》笔记

《STM32Cube高效开发教程》笔记

《STM32Cube高效开发教程》读书笔记目录一、前言 (2)1.1 书籍简介 (3)1.2 编写目的 (4)二、STM32Cube概述 (5)2.1 STM32Cube的意义 (6)2.2 STM32Cube的主要特点 (7)三、安装与配置 (9)3.1 STM32Cube的安装 (10)3.2 开发环境的配置 (11)四、创建项目 (12)4.1 新建项目 (13)4.2 项目设置 (14)五、HAL库介绍 (15)5.1 HAL库简介 (16)5.2 HAL库的主要组件 (18)六、STM32最小系统 (19)6.1 STM32最小系统的组成 (21)6.2 STM32最小系统的应用 (22)七、GPIO操作 (24)7.1 GPIO的基本概念 (25)7.2 GPIO的操作方法 (26)八、中断系统 (28)8.1 中断的基本概念 (29)8.2 中断的处理过程 (31)九、定时器 (33)9.1 定时器的功能介绍 (34)9.2 定时器的操作方法 (36)十五、文件系统 (37)一、前言随着科技的飞速发展,嵌入式系统已广泛应用于我们生活的方方面面,从智能手机到自动驾驶汽车,其重要性不言而喻。

而STM32作为一款广泛应用的微控制器系列,以其高性能、低功耗和丰富的外设资源赢得了广大开发者的青睐。

为了帮助开发者更好地掌握STM32系列微控制器的开发技巧,提升开发效率,我们特别推出了《STM32Cube 高效开发教程》。

本书以STM32Cube为核心,通过生动的实例和详细的讲解,全面介绍了STM32系列微控制器的开发过程。

无论是初学者还是有一定基础的开发者,都能从中找到适合自己的学习内容。

通过本书的学习,读者将能够更加深入地理解STM32的内部结构和工作原理,掌握其编程方法和调试技巧,从而更加高效地进行嵌入式系统的开发和应用。

在科技日新月异的今天,STM32系列微控制器将继续扮演着举足轻重的角色。

STM32学习笔记:读写内部Flash(介绍+附代码)

STM32学习笔记:读写内部Flash(介绍+附代码)

STM32学习笔记:读写内部Flash(介绍+附代码)⼀、介绍⾸先我们需要了解⼀个内存映射:stm32的flash地址起始于0x0800 0000,结束地址是0x0800 0000加上芯⽚实际的flash⼤⼩,不同的芯⽚flash⼤⼩不同。

RAM起始地址是0x2000 0000,结束地址是0x2000 0000加上芯⽚的RAM⼤⼩。

不同的芯⽚RAM也不同。

Flash中的内容⼀般⽤来存储代码和⼀些定义为const的数据,断电不丢失,RAM可以理解为内存,⽤来存储代码运⾏时的数据,变量等等。

掉电数据丢失。

STM32将外设等都映射为地址的形式,对地址的操作就是对外设的操作。

stm32的外设地址从0x4000 0000开始,可以看到在库⽂件中,是通过基于0x4000 0000地址的偏移量来操作寄存器以及外设的。

⼀般情况下,程序⽂件是从 0x0800 0000 地址写⼊,这个是STM32开始执⾏的地⽅,0x0800 0004是STM32的中断向量表的起始地址。

在使⽤keil进⾏编写程序时,其编程地址的设置⼀般是这样的:程序的写⼊地址从0x08000000(数好零的个数)开始的,其⼤⼩为0x80000也就是512K的空间,换句话说就是告诉编译器flash的空间是从0x08000000-0x08080000,RAM的地址从0x20000000开始,⼤⼩为0x10000也就是64K的RAM。

这与STM32的内存地址映射关系是对应的。

M3复位后,从0x08000004取出复位中断的地址,并且跳转到复位中断程序,中断执⾏完之后会跳到我们的main函数,main函数⾥边⼀般是⼀个死循环,进去后就不会再退出,当有中断发⽣的时候,M3将PC指针强制跳转回中断向量表,然后根据中断源进⼊对应的中断函数,执⾏完中断函数之后,再次返回main函数中。

⼤致的流程就是这样。

1.1、内部Flash的构成:STM32F429 的内部 FLASH 包含主存储器、系统存储器、 OTP 区域以及选项字节区域,它们的地址分布及⼤⼩如下:STM32F103的中容量内部 FLASH 包含主存储器、系统存储器、 OTP 区域以及选项字节区域,它们的地址分布及⼤⼩如下:注意STM32F105VC的是有64K或128页x2K=256k字节的内置闪存存储器,⽤于存放程序和数据。

STM32自学笔记

STM32自学笔记

STM32⾃学笔记⼀、原⼦位操作:原⼦位操作定义在⽂件中。

令⼈感到奇怪的是位操作函数是对普通的内存地址进⾏操作的。

原⼦位操作在多数情况下是对⼀个字长的内存访问,因⽽位号该位于0-31之间(在64位机器上是0-63之间),但是对位号的范围没有限制。

原⼦操作中的位操作部分函数如下:void set_bit(int nr, void *addr)原⼦设置addr所指的第nr位void clear_bit(int nr, void *addr)原⼦的清空所指对象的第nr位void change_bit(nr, void *addr)原⼦的翻转addr所指的第nr位int test_bit(nr, void *addr)原⼦的返回addr位所指对象nr位inttest_and_set_bit(nr, void *addr)原⼦设置addr所指对象的第nr位,并返回原先的值int test_and_clear_bit(nr, void *addr)原⼦清空addr所指对象的第nr位,并返回原先的值int test_and_change_bit(nr, void *addr)原⼦翻转addr所指对象的第nr位,并返回原先的值unsigned long word = 0;set_bit(0, &word); /*第0位被设置*/set_bit(1, &word); /*第1位被设置*/clear_bit(1, &word); /*第1位被清空*/change_bit(0, &word); /*翻转第0位*/⼆、STM32的GPIO锁定:三、中断挂起:因为某种原因,中断不能马上执⾏,所以“挂起”等待。

⽐如有⾼、低级别的中断同时发⽣,就挂起低级别中断,等⾼级别中断程序执⾏完,在执⾏低级别中断。

四、固⽂件:固件(Firmware)就是写⼊EROM(可擦写只读存储器)或EEPROM(电可擦可编程只读存储器)中的程序。

STM32学习笔记及勘误手册

STM32学习笔记及勘误手册

/******************************************************************* 文件名:书写程序中一些特别需要留意的地方文件编辑人:张恒编辑日期:15/11/23功能:快速查阅巩固知识点*******************************************************************/ 版本说明:v1.0版本:1.开始编辑书写整个文档,开始用的为TXT文档的形式,整理了部分学习到的东西和一些在书写常用程序中容易出错的地方,以及经常忽视细节而导致程序运行失败,是巩固知识点,提醒值得注意地方的工具文档。

2.添加的功能上基本涵盖了所有的模块,除了串口通信中的SPI和I2C、I2S等,应用是比较简单后续可能会添加。

3.对一些特定的功能综合应用并未加入进去,这是一个不好的地方,后续应该会随着学习总结更新,每次更新记录为一个版本。

// 2015/11/24;v1.1版本:1.将所有的TXT版本的文档全部转换为DOC模式,并且更新的加入了目录显示,显示为1级目录,方便查阅相关内容。

2.更新了SysTick书写中值得注意的地方3.更新了FSMC的一些细微操作,后续继续追捕更新书写细节。

V1.2版本:1.更新了FSMC部分功能显示,详细了FSMC的使用注意事项2.添加了RTC实时时钟的一些注意事项。

//2015/12/1;V1.3版本:1.更新RTC部分注意事项。

//2015/12/11V1.4版本:1.更新ADC校准标志部分注意事项。

2.更新了TIM1和TIM8的高级定时器特殊功能说明。

//2015/12/13V1.5版本:1.优化了部分注意事项,SysTick的写法上重新的定制写法。

2.优化了ADC在使用过程的一些细节注意地方。

3.面对最近出现的浮点数运算错误,配合AD数据进行总结。

4.RTC细节的把握-配置正确顺序的错误。

stm32自学笔记共20页

stm32自学笔记共20页


LED0=1;

LED1=0;

delay_ms(300);

}
•}
第二章 跑马灯实验
• Led.c函数
• void LED_Init(void)
•{

RCC->APB2ENR|=1<<2; //使能PORTA时钟

GPIOA->CRH|=0XFFFFFFFF3;//PA8 推挽输出

GPIOA->ODR|=1<<8; //PA8 输出高
• JTAG_Set(JTAG_SWD_DISABLE);//关闭JTAG和SWD,在原理图上可以看 到PA13和PA15为键盘和JTAG与SWD所共用,而这两种方针接口,他们 和普通的IO口公用,当想使用普通IO口时,必须先把他们关闭。在这 个函数里面设置参数,如果为二进制数00,则代表全部使能,如果是 二进制数01,则是能SWD,如果是10,则表示全部关闭。JTAG是一种 国际标准测试协议,主要用于芯片内部的测试。
• }要想实现一个点亮led小灯的功能,最少只需对3个寄存器进行设 置,第一步是设置外设时钟使能先把PORTA时钟使能,接下来把IO
口设置为输出,在接下来设置输出为高电平还是低电平,这里使用 推挽输出(3.3v),推挽输出主要是增强驱动能力,为外部提供大电 流。
第二章 跑马灯实验
• #ifndef __LED_H • #define __LED_H • #include "sys.h" • #define LED0 PAout(8)// PA8 • #define LED1 PDout(2)// PD2 • void LED_Init(void);//初始化

stm32相关笔记——ADC部分

stm32相关笔记——ADC部分

stm32相关笔记——ADC部分我们在学习⼀门技术的时候,应该对它的理论部分有所了解,然后才能在实践中进⼀步加深理解,进⽽掌握。

对于stm32来说,我认为学习的时候应该先仔细阅读相关的参考⼿册,然后再动⼿实践,这样才能理解得更加透彻,掌握得更加牢固!今天记录⼀下我学习stm32的ADC部分的了解。

1.介绍⼩结:stm32的ADC有18个通道(16个外部通道+2个内部通道),有单次、连续、扫描和间断四种模式,ADC的结果可以左对齐和右对齐的⽅式存储在16位的数据寄存器中(⼀般我们都是使⽤右对齐的⽅式)2、特征3、框图框图应该是最重要的部分了,理解了框图,对这个外设的理解就⽐较透彻了。

①模拟⾄数字转换器中有两个通道,⼀个是注⼊通道,⼀个是规则通道,对应的转换结果也是存储到注⼊通道数据寄存器和规则通道数据寄存器中(都是16位的);②注⼊通道数据寄存器有4个,规则通道数据寄存器只有1个,规则通道最多可以转化16个通道的数据,⽽结果都是存储在⼀个规则通道数据寄存器中,为了避免数据丢失,可以采⽤DMA搬运数据,提⾼效率。

③触发注⼊通道开始转化的外部触发信号有8种,如图所⽰,其中TIM8_CH4及其重映射只存在于⼤容量的产品中。

④类似于注⼊通道,触发规则通道的外部触发信号也有8种,如图所⽰,其中TIM8_TRGO及其重映射也只存在于⼤容量产品中。

⑤以上的两点只针对ADC1和ADC2,ADC3的触发信号有所不同,如图所⽰:⑥转换的过程如图,ADCx_IN0~ADCx_IN15共16个外部通道,通过GPIO端⼝将模拟量传达到模拟⾄数字转化器中的注⼊通道或者规则通道,另外还有两个内部通道温度传感器和V REFINT,同样也可以将模拟量传送到模拟⾄数字转化器中的注⼊通道或者规则通道,注⼊通道最多可以转换4个通道的模拟量,转换结果存储到注⼊通道数据寄存器中,转换完成后会产⽣JEOC标志位,规则通道最多可以转换16个通道,转换结果存储到规则通道数据寄存器中,转换完成后会产⽣EOC标志位。

stm32学习笔记--spi与iic

stm32学习笔记--spi与iic

stm32学习笔记--spi与iic关于上次说的要改程序的问题,//读ADXL345 寄存器//addr:寄存器地址//返回值:读到的值u8 ADXL345_RD_Reg(u8 addr){u8 temp=0; IIC_Start(); IIC_Send_Byte(ADXL_WRITE); //发送写器件指令temp=IIC_Wait_Ack(); IIC_Send_Byte(addr); //发送寄存器地址temp=IIC_Wait_Ack(); IIC_Start(); //重新启动IIC_Send_Byte(ADXL_READ); //发送读器件指令temp=IIC_Wait_Ack(); temp=IIC_Read_Byte(0); //读取一个字节,不继续再读,发送NAK IIC_Stop(); //产生一个停止条件return temp; //返回读到的值} 这段写寄存器代码,不理解temp 为什么要被频繁的赋值,去掉后,宏观看来对结果没有影响。

第二个不理解的地方是为什么在发送寄存器地址之后要从新启动一次,因为在相似的写寄存器函数中,在相同的位置不存在重启代码。

注释掉该句之后显示ADXL345 error。

这两天主要看了三轴加速度计的程序,虽然例程里的能看懂,但是在四轴里的程序却不那么容易,我甚至不明白为什么他要自己写一个iic 的函数,我打算接下来把它的程序和例程里的程序对照来看,看能不能找到什么头绪。

下面是对以前学过内容的总结:对位的寻址操作为了实现对SARM、I/O 外设空间中某一位的操作,在寻址空间(4GB)另一地方取个别名区空间,从这地址开始,每一个字(32bit)就对应SRAM 或I/O 的一位。

即原来每个字节用一个地址,现在给字节中的每个位一个地址,实现了对位的寻址。

spi 与iic 之间各自的优劣1 硬件连接的优劣SPI 是[单主设备(single-master )]通信协议,这意味着总线中的只有一支中心设备能发起通信。

STM32F103学习笔记(五) 外部中断

STM32F103学习笔记(五) 外部中断

STM32F103学习笔记(五)外部中断首先是外部中断基本的概念:STM32 的每个IO 都可以作为外部中断的中断输入口,这点也是STM32 的强大之处。

STM32F103 的中断控制器支持19 个外部中断/事件请求。

每个中断设有状态位,每个中断/事件都有独立的触发和屏蔽设置。

STM32F103 的19 个外部中断为:线0~15:对应外部IO 口的输入中断。

线16:连接到PVD 输出。

线17:连接到RTC 闹钟事件。

线18:连接到USB 唤醒事件。

线16~18还没有学到只看了线0~15。

每个中断线对应着7个GPIO口,形成映射关系,以线0 为例:它对应了GPIOA.0、GPIOB.0、GPIOC.0、GPIOD.0、GPIOE.0、GPIOF.0、GPIOG.0。

而中断线每次只能连接到1 个IO 口上,这样就需要通过配置来决定对应的中断线配置到哪个GPIO 上了。

下面我们看看GPIO 跟中断线的映射关系图:根据映射关系,就开始配置按键对应GPIO口和中断的映射了:[csharp] view plain copy &lt;pre name="code" class="csharp"&gt;&lt;prename="code" class="html"&gt;void EXTIX_Init(void){ EXTI_InitTypeDef EXTI_InitStructure;NVIC_InitTypeDef NVIC_InitStructure; KEY_Init(); // 按键端口初始化RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO,EN ABLE); //使能复用功能时钟//GPIOE.2 中断线以及中断初始化配置下降沿触发GPIO_EXTILineConfig(GPIO_PortSourceGPIOE,GPIO_Pi nSource2);EXTI_InitStructure.EXTI_Line=EXTI_Line2; //KEY2 EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Falling;EXTI_InitStructure.EXTI_LineCmd = ENABLE;EXTI_Init(&amp;EXTI_InitStructure); //根据EXTI_InitStruct中指定的参数初始化外设EXTI寄存器//GPIOE.3 中断线以及中断初始化配置下降沿触发//KEY1GPIO_EXTILineConfig(GPIO_PortSourceGPIOE,GPIO_Pi nSource3);EXTI_InitStructure.EXTI_Line=EXTI_Line3;EXTI_Init(&amp;EXTI_InitStructure); //根据EXTI_InitStruct中指定的参数初始化外设EXTI寄存器//GPIOE.4 中断线以及中断初始化配置下降沿触发//KEY0GPIO_EXTILineConfig(GPIO_PortSourceGPIOE,GPIO_Pi nSource4);EXTI_InitStructure.EXTI_Line=EXTI_Line4;EXTI_Init(&amp;EXTI_InitStructure); //根据EXTI_InitStruct中指定的参数初始化外设EXTI寄存器//GPIOA.0 中断线以及中断初始化配置上升沿触发PA0 WK_UPGPIO_EXTILineConfig(GPIO_PortSourceGPIOA,GPIO_Pi nSource0);EXTI_InitStructure.EXTI_Line=EXTI_Line0;EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising; EXTI_Init(&amp;EXTI_InitStructure); //根据EXTI_InitStruct中指定的参数初始化外设EXTI寄存器NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn;//使能按键WK_UP所在的外部中断通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02; //抢占优先级2,NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x03; //子优先级3NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能外部中断通道NVIC_Init(&amp;NVIC_InitStructure);NVIC_InitStructure.NVIC_IRQChannel = EXTI2_IRQn;//使能按键KEY2所在的外部中断通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02; //抢占优先级2,NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x02; //子优先级2NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能外部中断通道NVIC_Init(&amp;NVIC_InitStructure);NVIC_InitStructure.NVIC_IRQChannel = EXTI3_IRQn;//使能按键KEY1所在的外部中断通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02; //抢占优先级2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x01; //子优先级1NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能外部中断通道NVIC_Init(&amp;NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器NVIC_InitStructure.NVIC_IRQChannel = EXTI4_IRQn;//使能按键KEY0所在的外部中断通道NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x02; //抢占优先级2NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x00; //子优先级0NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //使能外部中断通道NVIC_Init(&amp;NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器} //外部中断0服务程序voidEXTI0_IRQHandler(void) { delay_ms(10);//消抖if(KEY3==1) //WK_UP按键{ BEEP=!BEEP; } EXTI_ClearITPendingBit(EXTI_Line0); //清除LINE0上的中断标志位} //外部中断2服务程序voidEXTI2_IRQHandler(void) { delay_ms(10);//消抖if(KEY2==0) //按键KEY2{ LED0=!LED0; }EXTI_ClearITPendingBit(EXTI_Line2); //清除LINE2上的中断标志位} //外部中断3服务程序voidEXTI3_IRQHandler(void) { delay_ms(10);//消抖if(KEY1==0) //按键KEY1{ LED1=!LED1; }EXTI_ClearITPendingBit(EXTI_Line3); //清除LINE3上的中断标志位} void EXTI4_IRQHandler(void){ delay_ms(10);//消抖if(KEY0==0) //按键KEY0 { LED0=!LED0;LED1=!LED1; }EXTI_ClearITPendingBit(EXTI_Line4); //清除LINE4上的中断标志位} [html] view plain copy。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档