2019-2020学年七年级数学上册 4.2 直线、射线、线段 第2课时 比较线段的长短学案 (新版)新人教版.doc
2019-2020学年人教版七年级数学上册4-2 直线、射线、线段(直线、射线、线段的表示)(练习)(含答案)

第四章几何图形的初步4.2直线、射线、线段(直线、射线、线段的表示)精选练习答案一. 选择题(共10小题)1.(2018·广信区第七中学初一期末)下列表述中正确的是()A.直线A、B相交于点MB.过A、B、C三点画直线lC.直线、cd相交于点MD.直线a、b相交于点m【答案】A【详解】A选项,直线A、B相交于点M符合直线和点的表示,符合题意,B选项,过A、B、C三点画直线l,由于三点不确定在同一条直线上在,因此表述不正确,不符合题意,C选项,直线、相交于点M ,直线表示不正确,因此不符合题意,D选项,直线a、b相交于点m,因为点用大写字母表示,因此表述不正确,故选A.2.(2018·西藏达孜县中学初一期末)下列说法正确的是( )A.过一点P只能作一条直线B.直线AB和直线BA表示同一条直线C.射线AB和射线BA表示同一条射线D.射线a比直线b短【答案】B【详解】A、过一点P可以作无数条直线;故错误.B、直线可以用两个大写字母来表示,且直线没有方向,所以AB和BA是表示同一条直线;故正确.C、射线AB和射线BA,顶点不同,方向相反,故射线AB和射线BA表示不同的射线;故错误.D、射线和直线不能进行长短的比较;故错误.故选:B.3.(2018·河北省保定市第十七中学初一期末)下列语句:①两条射线组成的图形叫做角②反向延长线段AB 得到射线BA,③延长射线AB 到点C,使BC=AC;④若AB=BC,则点B是AC 中点⑤连接两点的线段叫做两点间的距离,⑥两点之间直线最短. 正确的个数是( )A.1 B.2 C.3 D.4【答案】A【详解】①两条端点重合的射线组成的图形叫做角,故①错误;②反向延长线段AB,得到射线BA,故②正确;③延长线段AB到点C,使BC=AB,故③错误;④若AB=BC,则点B不一定是AC的中点,故④错误;⑤连接两点间的线段的长叫做两点间的距离,故⑤说法错误;⑥两点之间线段最短,故⑥错误.故正确的有②故选A.4.(2018·广东省东城春晖学校初一期末)下列说法中,正确的是()A.画一条长3cm的射线B.直线、线段、射线中直线最长C.延长线段BA到C,使AC=BAD.延长射线OC到C【答案】C【详解】解:A、画一条长3cm的射线,射线没有长度,故此选项错误;B、直线、线段、射线中直线最长,错误,射线、直线都没有长度,故此选项错误;C、延长线段BA到C,使AC=BA,正确;D、延长射线OC到点C,错误.故选:C.5.直线AB,线段CD,射线EF的位置如图所示,下图中不可能相交的是()A. B. C. D.【答案】A【分析】由定义知,直线是向两方无限延伸的,射线是向一个方向无限延伸的,所以直线、射线只要不经过线段,就不会和线段相交;射线方向只要朝着直线所在位置,或者直线朝着射线所在位置,两者就一定相交;如果直线在射线延伸的反方向,则两者不相交.【详解】A选项中,直线AB与线段CD无交点,符合题意;B选项中,直线AB与射线EF有交点,不合题意;C选项中,线段CD与射线EF有交点,不合题意;D选项中,直线AB与射线EF有交点,不合题意;故选:A.6.(2018·广东大光勘九年一贯制学校初一期末)直线a上有5个不同的点A、B、C、D、E,则该直线上共有()条线段.A.8B.9C.12D.10【答案】D【详解】解:根据题意画图:由图可知有AB、AC、AD、AE、BC、BD、BE、CD、CE、DE,共10条.故选:D.7.(2019·宿州市第十一中学初一期末)下列语句正确的是()A.线段AB是点A与点B的距离B.过n边形的每一个顶点有条对角线C.各边相等的多边形是正多边形D.两点之间的所有连线中,直线最短【答案】B【详解】解:A、应是线段AB的长度是点A与点B之间的距离,故错误;B、过n边形的每一个顶点有(n-3)条对角线,故正确;C、各角相等,各边相等的多边形是正多边形,故错误;D、连接两点的所有连线中,线段最短,故错误.故选:B.8.(2018·广东省东城春晖学校初一期末)下列说法中,错误的是()A.经过一点可以作无数条直线B.经过两点只能作一条直线C.射线AB和射线BA是同一条射段D.两点之间,线段最短【答案】C【详解】解:A、经过一点可以作无数条直线,正确,不合题意;B、经过两点只能作一条直线,正确,不合题意;C、射线AB和射线BA不是同一条射段,故此选项错误,符合题意;D、两点之间,线段最短,正确,不合题意;故选:C.9.(2018·河南郑东新区九年制实验学校初一期中)预习了“线段、射线、直线”一节的内容后,乐乐所在的小组,对如图展开了激烈的讨论,下列说法不正确的是( )A.直线AB与直线BA是同一条直线B.射线OA与射线AB是同一条射线C.射线OA与射线OB是同一条射线D.线段AB与线段BA是同一条线段【答案】B【详解】解:A、因为直线向两方无限延伸;所以直线AB与直线BA是同一条直线,说法A正确,故本选项不符合题意;B、射线OA与射线AB端点不同,不是同一条射线,说法B错误,故本选项符合题意;C、射线OA与射线OB的端点和方向都相同;是同一条射线,故说法C正确,故本选项不符合题意;D、线段AB与线段BA是同一条线段,故说法D正确,故本选项不符合题意;故选:B.10.(2018·惠州市实验中学初一期末)下列说法中正确的是()A.三条直线两两相交有三个交点B.直线A与直线B相交于点MC.画一条5厘米长的线段D.在线段、射线、直线中直线最长【答案】C【详解】A.三条直线两两相交有三个或一个交点,故A选项错误;B.直线a与直线b相交于点M,直线可以用一个小写字母表示,不能用一个大写字母表示,故B选项错误;C.画一条5厘米长的线段,线段的长度可度量,故C选项正确;D.在线段、射线、直线中,直线和射线的长度无法度量,而线段的长度可度量,故D选项错误;故选:C.二. 填空题(共5小题)11.如图,棋盘上有黑、白两色棋子若干,若直线l经过3枚颜色相同的棋子,则这样的直线共有_____条.【答案】3【详解】如图,有3条.12.(2018·安达市吉星岗镇吉星岗中学初一期末)如图,A,B,C,D,E,P,Q,R,S,T是构成五角星的五条线段的交点,则图中共有线段________条.【答案】30【解析】线段AC,BE,CE,BD,AD上各有另两个点,每条上有6条线段;所以共有6×5=30条线段.故答案为:30.13.(2018·南宁市期末)如果A站与B站之间还有C、D两个车站,那么往返于A站与B站之间的客车应安排_________种车票.【答案】12【详解】如图所示:其中每两个站之间有AC、AD、AB、CD、CB、DB,故应该安排6×2=12(种).14.(2018·邢台市第七中学初一期中)如图,能用字母表示的直线有_____________条;能用字母表示的线段有_________条;在直线EF上的射线有_______条。
4.2 直线、射线、线段(第2课时) 教案

4.2 直线、射线、线段(第二课时)课型新授单位主备人教学目标:1.知识与技能:(1)会用尺规画一条线段等于已知线段,会比较两条线段的长短.(2)会画线段的和与差2.过程与方法:(1)能在现实情境中,进行抽象的数学思考,提高抽象概括能力.(2)经历画图的数学活动过程,提高学生的动手操作与实践能力.3.情感、价值观:积极参与实验数学活动中,体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.重点、难点:教学重点:比较两条线段的长短,画一条线段等于已知线段,会画线段的和与差教学难点:根据语言描述画出图形,理解画图语言,建立图形与语言之间的联系.教学准备:PPT课件和微课等。
教学过程一、创设情景、引入新课你们平时是如何比较两个同学的身高的?你能从比身高的方法中得到启示来比较两条线段的长短吗?讨论后派一位代表上来说说你们的想法。
二、自主学习、合作探究探究(一)、如何比较两条线段的大小?学生活动设计:学生思考比较方法,可能有两种方法,一是分别用刻度尺量出线段的长度,比较长度即可(度量法),二是把其中的一条线段移到另一条线段上进行比较(叠合法).(课件:比较两条线段的大小)生讨论1、如上图,直接看出,总结第一种方法:目测法2、用刻度尺量,再比较数量大小------度量法,即用一把尺量出两条线段的长度,再进行比较。
3、利用圆规,把其中一条线段移到另一条线段上作比较------叠合法先把两条线段的一端重合,另一端落在同侧,根据另一端落下的位置,来比较总结比较线段长短的方法:1目测法 2 度量法 3 叠合法小试牛刀:观察下列三组图形,分别比较线段a、b的长短,再用刻度尺量一下,看看你的观察结果是否正确(1))(2)两条线段的关系有: AB=CD AB>CD AB<CD归纳总结:度量法数线段比较的方法叠合法形跟踪练习:教材128页1题探究(二):你能用直尺(没有刻度)和圆规画一条线段等于已知线段吗?已知线段a,作线段AB,使线段AB=a.学生活动设计:由于直尺没有刻度,因此直尺的作用是画线,不能进行度量,而圆规当半径不变时,可以把一条线段任意移动,因此圆规的作用是度量,于是有下列画法:(1)画射线AC(2)以点A为圆心,a的长为半径画弧,交射线AC于点B,线段AB就是符合条件的线段.aA B C所以 AB=a像这样仅用圆规和没有刻度的直尺作图的方法叫尺规作图.教师活动设计:在学生总结画法时,注意语言的简洁与规范,及时纠正学生的不规范的说法和表述.注意:不要求写画法,但一定要标清字母,写出有结论.也可以先量出线段a的长度,再画一条等于这个长度的线段例1 如图,已知线段a,借助圆规和直尺作一条线段使它等于2a.a A B C作业设计1、如图,已知A、B、C三点在同一条直线上,则(1)AB+BC=(2)AC-BC=(3)AC-AB=2、已知线段AB=5cm,(1)在线段AB上画线段BC=3 cm,并求线段AC的长(2)在直线AB上画线段BC=3 cm,并求线段AC的长3、如下图,四条线段AB、BC、CD、DA,且,用圆规比较图中的线段大小,确定出A、B、C、D四点的准确位置,再用刻度尺量出这四条线段的长度.最佳解决方案个课下学生独立完成教学设计反思:本节课通过比较两个人的高矮这一生活中的实例让学生进行思考,从而引出课题,极大地激发了学生的学习兴趣;并通过动手操作,亲身体验用叠合法比较线段的长短.教师要尝试让学生自主学习,优化课堂教学中的反馈与评价.通过评价,激发学生的求知欲,坚定学生学习的自信心。
沪科版七年级数学上册优秀教学案例:4.2线段、射线、直线(2课时)

3.学生能够运用线段、射线和直线的概念,进行几何图形的描述和分析,提高他们的空间想象能力和逻辑思维能力。
(三)情感态度与价值观
在本度与价值观的目标:
1.学生能够对数学产生浓厚的兴趣,能够积极地参与课堂的讨论和实践活动。
这样的教学设计,旨在让学生在掌握知识的同时,也能提高他们的空间想象能力和逻辑思维能力,使他们能够更好地理解和运用数学知识。
二、教学目标
(一)知识与技能
在本章节的的教学中,我期望学生能够达到以下几点知识和技能的目标:
1.学生能够准确地描述线段、射线和直线的定义,理解它们的基本特征。
2.学生能够运用线段、射线和直线的概念解决一些基本的几何问题,如求线段的长度、判断线段的性质等。
(四)总结归纳
在总结归纳环节,我会邀请学生分享他们在小组讨论中的成果和收获,让学生通过自己的语言和表达,进一步巩固和加深对线段、射线和直线的理解。我会对学生的回答进行点评和总结,强调重点和难点,使学生能够对这一节内容有一个清晰和系统的认识。
(五)作业小结
在作业小结环节,我会布置一些相关的练习题,让学生在课后进行巩固和复习。同时,我会提醒学生在完成作业时要注意审题、仔细计算和检查,培养他们的细心和责任感。在下一节课开始时,我会对学生的作业进行讲评和反馈,指出其中的错误和不足,帮助学生提高和进步。
3.学生能够理解并掌握射线和直线的无限延伸性质,能够运用这一性质解决一些基本的几何问题。
4.学生能够理解并掌握线段、射线和直线的表示方法,能够熟练地使用它们进行几何图形的描述和分析。
(二)过程与方法
在本章节的教学中,我期望学生能够达到以下几点过程与方法的目标:
人教版七上4.2直线、射线、线段(第二课时比较线段的长短)(共23张PPT)

课外作业 第113页 第2、3题
人教版七上
情境引入 小红站在 石头上和小明比身高.你们能马上判 断出他们的高矮吗? 有什么方法来判断他们的高矮?
不能
他们站在同位 置上,再比较。
用刻度尺来测 量他们身高。
探究新知
比较两条线段的长短方法 1 度量法
AB=2.2厘米 A CD=1.9厘米 C
B D
AB<CD
归纳总结
度量法:用刻度尺测量他们的长度,进行比 较;用度量法比较线段大小,其实就是比较 两个数的大小。(从“数”的角度去比较线 段的长短)
如图QQ要从A地到B地,哪条路最近?
①
②
A
③
B
④
最近的是②
总结归纳
线段公理: 两点之间的所有连线中,线段最短。 简称:两点之间,线段最短。 两点之间的距离:两点之间的线段的长度.
练习 1.如图所示,从A村出发到B村,最近的路线
是( B )
A.A—C—D—B B.A—C—F—B C.A—C—E—F—B D.A—C—M—B
线段的中点:
把一条线段分成两条相等线段的点,叫做这 条线段的中点. 如右图所示,点C是线段AB的中点,
A
C
B
符号语言:
AB=BC=
1 2
AB
如图所示,图中共有三条不同的线段,它们
分别为线段AB、AC、BC,它们之间有什么
关系?
A
CB
线段AC、BC的和等于线段AB 符号语言:AC+BC=AB 线段AB、AC的差等于线段BC 符号语言:AB-AC=BC 线段AB、BC的差等于线段AC 符号语言:AB-AC=BC
∵ AB=10,BC=3,
A 图(1) C B
最新人教版七年级上册数学第四章几何图形初步 直线、射线、线段 第2课时 线段长短的比较与运算

易错点:因考虑问题不全面而漏解 12.已知点A,B,C为直线l上的三点,线段AB=9 cm,BC=1 cm,那么A, C两点间的距离是( D ) A.8 cm B.9 cm C.10 cm D.8 cm或10 cm
13.(北京中考)在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A 向右平移1个单位长度,得到点C,若CO=BO,则a的值为( A)
知识点2:线段的和、差、倍、分 3.如图,下列关系式中与图形不符合的是( B )
A.AD-CD=AC B.AC+CD=BD C.AC-BC=AB D.AB+BD=AD 4.如图,AB=CD,则AC与BD的大小关系是(C )
A.AC>BD B.AC<BD C.AC=BD D.不能确定
5.如果点 B 在线段 AC 上,那么下列表达式中:①AB=12 AC,②AB=BC, ③AC=2AB,④AB+BC=AC,能表示 B 是线段 AC 的中点的有( C ) A.1 个 B.2 个 C.3 个 D.4 个
解:如图
,沿线段AB爬行,根据:两点之间,线段最短
19.(1)如图①,已知点C在线段AB上,线段AC=6 cm,BC=4 cm,M,N分 别是AC,BC的中点,求线段MN的长;
(2)如图①,已知点C在线段AB上,线段AB=10 cm,M,N分别是AC,BC的 中点,求线段MN的长;
(3)如图①,已知点C在线段AB上,线段AB=a cm,M,N分别是AC,BC的中 点,求线段MN的长;
(4)如图②,已知点C在线段AB的延长线上,线段AB=a cm,M,N分别是AC, BC的中点,求线段MN的长.
解:(1)因为 M 是 AC 的中点,N 是 BC 的中点,所以 MC=12 AC=3 cm,CN =12 BC=2 cm.所以 MN=MC+CN=3+2=5(cm) (2)因为 M 是 AC 的中点,N 是 BC 的中点,所以 MC=12 AC,CN=12 BC. 所以 MN=MC+CN=12 AC+12 BC=12 (AC+BC)=12 AB=12 ×10=5(cm) (3)因为 M 是 AC 的中点,N 是 BC 的中点,所以 MC=12 AC,CN=12 BC. 所以 MN=MC+CN=12 AC+12 BC=12 (AC+BC)=12 AB=12 ×a=12 a(cm) (4)因为 M 是 AC 的中点,N 是 BC 的中点,所以 MC=12 AC,CN=12 BC. 所以 MN=MC-CN=12 AC-12 BC=12 (AC-BC)=12 AB=12 ×a=12 a(cm)
人教版数学七年级上册直线、射线、线段第2课时线段长度的比较与运算课件

活动4 例题与练习
例1 为比较两条线段AB与CD的大小,小明将点A与
点C重合,使两条线段在一条直线上,点B在CD的延
长线上,则( B )
A.AB<CD
B.AB>CD
C.AB=CD
D.以上都有可能
线段长短的比较
度量法 叠合法
活动4 例题与练习
例2 如图,点C是线段AB上的点,点D是线段BC 的中点.
图. 2.比较两条线段的长短,我们可以用刻度尺分别测量出
它们长的度
来比较,即度量法;或用圆规把其中的一条线
段移到另一条线上段
作比较,即叠合法. 3.把一条线段
分成
的两段的点相,等叫做线段的中点. 4.两点之间,
最短. 5.连接两线点段间的线段的
,叫做这两点的距离.
长度
活动3 知识归纳
1. 线段的中点只有一个,且一定在线段上,类似 地,线段的三等分点有两个、线段的四等分点有 三个,且这些点都在线段上. 2. 若点 C 是线段AB的中点,则 AC= BC;但若 AC=BC,则点 C 不一定是线段 AB 的中点. 例如:如图,CA=CB,但点 C 不是线段 AB 的中点.
线段的三等分点
线段的四等分点
活动2 探究新知
M 是线段 AB 的中点 aa
AMB 几何语言:∵ M 是线段 AB 的中点
∴ AM = MB = 1 AB
2
( 或 AB = 2 AM = 2 MB ) 反之也成立:∵ AM = MB = 1 AB
2
( 或 AB = 2 AM = 2 AB ) ∴ M 是线段 AB 的中点
活动2 探究新知
比较线段长短的两种方法 1、度量法——从“数值”的角度比较 2、叠合法—— 从“形”的角度比较
七年级上册数学人教版直线射线线段第二课时课件

c
a
b
AB
C
D
已知线段a、b,你能画线段c,使线段c=a-b?
a
b
AB
C
D
1、如图,点B、C在线段AD上.
则AB + BC =_A_C__; AD – CD =_A_C__;
BC= _A_C_ - _A_B_= _B__D_ - _C_D__.
2、若AB=BC=CD,你能找出哪些等量关系
如图,已知线段AB,延长线段AB到C,使BC=AB.
A
B
C
在所画图中,我们把点B叫做线段AC的中点
如果点B为线段AC的中点,
那么AC= 2
AB= 2 BC;AB= BC =
1 2
AC
如图,要从甲地到乙地去,有3条路线, 请你选择一条相对近一些的路.
①
②
乙地
③
甲地
从甲地到乙地能否修一条最近的路? 如果能,你认为这条路应该怎样修?
l
表示为: 射线 l
生活中线段的长短的比较
怎样比较两个同学的高矮?
叠合法
度量法
第一种:
叠合法
先把两根绳子的一端重合,另一端落在同侧,
根据另一端落下的位置来比较.
试比较绳子AB与绳子CD、绳子EF、绳子MN的大小?
A
BC
E
FM
D N
①C ②E ③M
D
F N
AB=CD AB>EF AB<MN
第二种方法: 度量法 用一把尺子量出两根绳子的长度,再进行比较.
5、某班的同学在操场上站成笔直的一排, 确定两个同学的位置,这一排的位置就确 定下来了,这是因为 __经__过__两__点__有__且__只__有__一__条__直_线_________.
直线、射线、线段(第2课时)线段长短的比较与计算- (人教版)

B. AB = 2 AC 1
D. CB = AB 2
A
C
B
当堂巩固 3. 判断正误:
(1)若P是线段AB的中点,则AP=BP. (2)若AP=BP,则P是线段AB的中点.
4. 给你一根绳,不量取,你能找到它的中点吗? 对折即可.
当堂巩固 5. 已知,如图AC=CD=DE=EF=FB
A C D EF B
能力提升
2. 已知,如图,B,C两点把线段AD分成2:5:3三部分, M为AD的中点,BM=6,求CM和AD的长.
AB
MC
D
解:设AB=2x,BC=5x,CD=3x,
所以AD=AB+BC+CD=10x.
因为M是AD的中点,
所以AM=MD=5x,所以BM=AM-AB=3x. 因为BM=6,即3x=6,所以x=2. 故CM=MD-CD=2x=4, AD=10x=20 .
合作探究
A
MB
如图,点 M 把线段 AB 分成相等的两条线段 AM 与 BM,点 M 叫做线段 AB 的中点. 类似地, 还有线段的三等分点、四等分点等.
线段的三等分点
线段的四等分点
新知讲解
M 是线段 AB 的中点
a
a
A
M
B
几何语言:∵ M 是线段 AB 的中点
∴ AM = MB = 1 AB 2
无图时求线段的长,应注意分类讨论,一般分以下两种情况: ①点在某一线段上;②点在该线段的延长线.
变式训练
已知A,B,C三点共线,线段AB=25cm,BC=16cm,点E,F
分别是线段AB,BC的中点,则线段EF的长为( D )
A.21cm或4cm
B.20.5cm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年七年级数学上册 4.2 直线、射线、线段第2课时比较线
段的长短学案 (新版)新人教版
课前预习
要点感知1限定用____________和________作图,叫做尺规作图.
要点感知2比较两条线段的长短,我们可用________分别测量出线段的长度来比较大小,或把其中的一条线段移到____________做比较.
要点感知3类似于数,线段也可以________.
预习练习3-1如图,已知点C、D是线段AB上两点,则AB-AC=________,CD+DB=________.
要点感知4线段上的一点将线段分成相等的两条线段,这一点叫做线段的________.
预习练习4-1已知点C是线段AB的中点,AB=2,则BC=________.
当堂训练
知识点1 用尺规作线段
1.作图:已知线段a、b,画一条线段使它等于2a+b.(要求:不写作法,保留作图痕迹)
知识点2 线段长短的比较
2.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条最长的绳子,请你为他们选择一种合适的方法( )
A.把两条大绳的一端对齐,然后同一方向上拉直两条大绳,另一端在外面的即为长绳
B.把两条绳子接在一起
C .把两条绳子重合,观察另一端情况
D .没有办法挑选
3.如图,若AB =CD ,则AC 与BD 的大小关系是( )
A .AC>BD
B .AC<BD
C .AC =B
D D .不能确定
4.(佛山中考)如图,线段的长度大约是________厘米(精确到0.1厘米).
知识点3 线段的中点及和、差、倍、分 5.如图,下列关系式中与图形不符合的是( )
A .AD -CD =AC
B .A
C +C
D =BD C .AC -BC =AB D .AB +BD =AD
6.在直线m 上顺次取A ,B ,C 三点,使得AB =4 cm ,BC =3 cm ,如果O 是线段AC 的中点,则线段OB 的长度为( )
A .0.5 cm
B .1 cm
C .1.5 cm
D .2 cm
7.如图,C 为AB 的中点,D 是BC 的中点,则下列说法错误的是( )
A .CD =AC -BD
B .CD =1
2AB -BD
C .C
D =2
3BC D .AD =BC +CD
8.如图,线段AC =12,BC =4,求AB 的长.
9.如图,点C是线段AB上的点,点D是线段BC的中点.
(1)若AB=10,AC=6,求CD的长;
(2)若AC=30,DB=10,求AB的长.
课后作业
10.(梧州期末)如图,C是线段AB上的一点,M是线段AC的中点,若AB=8 cm,MC=3 cm,则BC 的长是( )
A.2 cm B.3 cm
C.4 cm D.6 cm
11.线段AB=2 cm,延长AB到C,使BC=AB,再延长BA到D,使BD=2AB,则线段DC的长为( ) A.4 cm B.5 cm
C.6 cm D.2 cm
12.点A、B、C在同一条数轴上,其中点A、B表示的数分别为-3、1,若BC=2,则AC等于( ) A.3 B.2
C.3或5 D.2或6
13.如图,点C,D,E都在线段AB上,已知AD=BC,E是线段AB的中点,则CE________DE.(填“>”“<”或“=”)
14.已知线段AB=15 cm,反向延长线段AB到C,使AC=7 cm,若M、N分别是线段AB、AC的中点,则MN=________cm.
15.如图,已知线段a、b、c,用圆规和直尺画线段,使它等于2a+b-c.
16.如图,M是线段AB的中点,点C在线段AB上,且AC=4 cm,N是AC的中点,MN=3 cm,求线段CM和AB的长.
挑战自我
17.线段AB 上有两点P 、Q ,点P 将AB 分成两部分,AP ∶PB =2∶3;点Q 将AB 也分成两部分,AQ ∶QB =4∶1,且PQ =3 cm.求AP 、QB 的长.
参考答案
课前预习
要点感知1 无刻度的直尺 圆规 要点感知2 刻度尺 另一条线段上 要点感知3 加减 预习练习3-1 CB CB 要点感知4 中点 预习练习4-11 当堂训练
1.略
2.A
3.C
4.2.3(或2.4)
5.B
6.A
7.C
8.因为AB =AC -BC ,AC =12,BC =4,所以AB =12-4=8.
9.(1)因为点D 是线段BC 的中点,所以CD =1
2BC.因为AB =10,AC =6,所以BC =AB -AC =10-6=4.
所以CD =1
2BC =2. (2)因为点D 是线段BC 的中点,所以BC =2BD.因为BD =10,所以BC =2×10=
20.因为AB =AC +BC ,AC =30,所以AB =30+20=50. 课后作业
10.A 11.C 12.D 13.= 14.11
15.(1)作射线AF ;(2)在射线AF 上顺次截取AB =BC =a ,CD =b ;(3)在线段AD 上截取DE =c.所以线段AE 即为所求.
16.因为N 是AC 中点,AC =4 cm ,所以AN =NC =12AC =1
2×4=2(cm).因为MN =3 cm ,所以AM =AN
+MN =2+3=5(cm).因为M 是AB 的中点,所以AB =2AM =2×5=10(cm). 挑战自我 17.画出图形.
设AP =2x cm ,PB =3x cm ,则AB =5x c m.因为AQ∶QB=4∶1,所以AQ =4x cm ,QB =x cm.所以PQ =PB -QB =2x cm.因为PQ =3 cm ,所以2x =3.所以x =1.5.所以AP =3 cm ,Q B =1.5 cm.。