小学三年级奥数应用题:行程问题

合集下载

奥数行程问题(含答案)

奥数行程问题(含答案)

行程问题讨论有关物体运动的速度、时间、路程三者关系的应用题叫做行程应用题。

行程问题的主要数量关系是:路程=速度×时间如果用字母s表示路程,t表示时间,v表示速度,那么,上面的数量关系可用字母公式样表示为:s=vt。

行程问题内容丰富多彩、千变万化。

主要有一个物体的运动和两个或几物体的运动两大类。

两个或几个物体的运动又可以分为相遇问题、追及问题两类。

这一讲我们学习一个物体运动的问题的一些简单的相遇问题。

例题与方法例1.小明上学时坐车,回家时步行,在路上一共用了90分。

如果他往返都坐车,全部行程需30分。

如果他往返都步行,需多少分?(90-30÷2)×2=150例2.甲、乙两城相距280千米,一辆汽车原定用8小时从甲城开到乙城。

汽车行驶了一半路程,在中途停留30分。

如果汽车要按原定时间到达乙城,那么,在行驶后半段路程时,应比原来的时速加快多少?280÷2÷﹙8÷2-0.5﹚-280÷8=5例3.一列火车于下午1时30分从甲站开出,每小时行60千米。

1小时后,另一列火车以同样的速度从乙站开出,当天下午6时两车相遇。

甲、乙两站相距多少千米?6-1.5=4.5﹙60+60﹚×﹙4.5-1﹚+60=480例4.苏步青教授是我国著名的数学家。

一次出国访问,他在电车上碰到了一位外国数学家,这位外国数学家出了一道题目让苏步青做,题目是:甲、乙两人同时从两地出发,相向而行,距离是100千米。

甲每小时行6千米,乙每小时行4千米。

甲带着一只狗,狗每小时行10千米。

这只狗同甲一道出发,碰到乙的时候,它就掉头朝甲这边走,碰到甲时又往乙那边走,直到两人相遇。

这只狗一共走了多少千米?苏步青略加思索,就把正确答案告诉了这位外国数学家。

小朋友们,你能解答这道题吗?100÷(6+4)×10=100例5.甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两辆汽车在距中点32千米处相遇。

小学三年级数学行程问题应用题

小学三年级数学行程问题应用题

【导语】⾏程问题是⼩学奥数中的⼀⼤基本问题。

⾏程问题有相遇问题、追及问题等近⼗种,是问题类型较多的题型之⼀。

⾏程问题包含多⼈⾏程、⼆次相遇、多次相遇、⽕车过桥、流⽔⾏船、环形跑道、钟⾯⾏程、⾛⾛停停、接送问题等。

以下是⽆忧考整理的《⼩学三年级数学⾏程问题应⽤题》相关资料,希望帮助到您。

【篇⼀】⼩学三年级数学⾏程问题应⽤题 1、甲⼄两列⽕车同时从相距700千⽶的'两地相向⽽⾏,甲列车每⼩时⾏85千⽶,⼄列车每⼩时⾏90千⽶,⼏⼩时两列⽕车相遇? 2、甲⼄两车从两地同时出发相向⽽⾏,甲车每⼩时⾏40千⽶,⼄车每⼩时⾏60千⽶,经过3⼩时相遇。

两地相距多少千⽶? 3、甲⼄两艘轮船从相距654千⽶的两地相对开出,8⼩时两船还相距22千⽶。

已知⼄船每⼩时⾏42千⽶,甲船每⼩时⾏多少千⽶? 4、甲⼄两艘轮船同时从相距126千⽶的两个码头相对开出,3⼩时相遇,甲船每⼩时航⾏22千⽶,⼄船每⼩时航⾏多少千⽶? 5、甲、⼄两车同时从相距480千⽶的两地相对⽽⾏,甲车每⼩时⾏45千⽶,途中因汽车故障甲车停了1⼩时,5⼩时后两车相遇。

⼄车每⼩时⾏多少千⽶? 6、甲、⼄两地相距280千⽶,⼀辆汽车和⼀辆拖拉机同时分别从两地相对开出,经过4⼩时两车相遇。

已知汽车的速度是拖拉机速度的4倍,相遇时,汽车⽐拖拉机多⾏多少千⽶? 7、甲、⼄两车同时从相距960千⽶的A、B两地相向开出,8⼩时后相遇。

已知甲车每⼩时⽐⼄车快4千⽶,求甲车的速度是多少?相遇时⼄车⾏驶了多少千⽶? 8、某零件加⼯⼚要加⼯零件1200个。

第⼀车间每天能加⼯190个,⽐⼆车间每天少加⼯20个。

现在两个车间共同加⼯这批零件,要加⼯多少天?完成时每个车间各加⼯了多少个? 9、⾃⾏车商店要装配2380辆⾃⾏车,甲组每天装配120辆,⼄组每天装配140辆。

两个组共同装配7天后,由⼄组单独装配。

⼄组还要多少天才能完成任务? 10、甲⼄两列⽕车同时从A、B两地相对开出,甲车每⼩时⾏90千⽶,⼄车每⼩时⾏84千⽶,相遇时甲车⽐⼄车多⾏了78千⽶,A、B两地相距多少千⽶?【篇⼆】⼩学三年级数学⾏程问题应⽤题 1、⽺跑5步的时间马跑3步,马跑4步的距离⽺跑7步,现在⽺已跑出30⽶,马开始追它。

小学三年级奥数应用题:行程问题

小学三年级奥数应用题:行程问题

小学三年级奥数应用题:行程问题【篇一】1、“八一”节那天,某少先队以每小时4千米的速度从学校往相距17千米的解放军营房去慰问,出发0。

5小时后,解放军闻讯前往迎接,每小时比少先队员快2千米,再过几小时,他们在途中相遇?2、甲、乙两站相距440千米,一辆大车和一辆小车从两站相对开出,大车每小时行35千米,小车每小时行45千米。

一只燕子以每小时50千米的速度和大车同时出发,向小车飞去,遇到小车后又折回向大车飞去,遇到大车又往回飞向小车,这样一直飞下去,燕子飞了多少千米,两车才能相遇?3、两地的距离是1120千米,有两列火车同时相向开出。

第一列火车每小时行60千米,第二列火车每小时行48千米。

在第二列火车出发时,从里面飞出一只鸽子,以每小时80千米的速度向第一列火车飞去,在鸽子碰到第一列火车时,第二列火车距目的地多远?4、两辆汽车上午8点整分别从相距210千米的甲、乙两地相向而行。

第一辆在途中修车停了45分钟,第二辆因加油停了半小时,结果在当天上午11点整相遇。

如果第一辆汽车以每小时行40千米,那么第二辆汽车每小时行多少千米?5、小刚和小勇两人骑自行车同时从两地相对出发,小刚跑完全程的5/8时与小勇相遇。

小勇继续以每小时10千米的速度前进,用2。

5小时跑完余下的路程,求小刚的速度?6、甲、乙两人在相距90千米的直路上来回跑步,甲的速度是每秒钟跑3米,乙的速度是每秒钟跑2米。

如果他们同时分别在直路两端出发,当他们跑了10分钟,那么在这段时间内共相遇了多少次?7、男、女两名运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B)。

两人同时从A点出发,在A、B之间不停地往返奔跑。

如果男运动员上坡速度是每秒3米,下坡速度每秒5米;女运动员上坡速度每秒2米,下坡速度每秒3米,那么两人第二次迎面相遇的地点离A点多少米?8、一列火车从甲地开往乙地,开出2。

5小时,行了150千米。

照这样的速度,再行驶3小时到达乙地。

完整)三年级奥数行程问题

完整)三年级奥数行程问题

完整)三年级奥数行程问题教师讲义:日期:_________ 星期:_________ 时段:_________ 学生签字:_________课题:熟练掌握解题技巧研究目标:掌握解题技巧,提高解题能力研究重点:解题方法和技巧研究方法:启发式教学行程问题:无研究内容与过程:例题1:两车同时从相距860千米的两地出发,汽车每小时行45千米,摩托车每小时行70千米。

6小时后两车相距多少千米?例题2:一列火车长120米,以每秒20米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少秒?例题3:甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米,一个人骑摩托车以每小时行80千米的速度在两个车队间不断地往返联络,两车队相遇时,摩托车行驶了多少千米?改写后的教师讲义:日期:_________ 星期:_________ 时段:_________ 学生签字:_________课题:熟练掌握解题技巧研究目标:本课程旨在帮助学生掌握解题技巧,提高解题能力。

研究重点:本课程的重点是解题方法和技巧。

研究方法:本课程采用启发式教学方法,帮助学生更好地理解和掌握解题技巧。

行程问题:本课程无行程问题。

研究内容与过程:例题1:两车同时从相距860千米的两地出发,汽车每小时行45千米,摩托车每小时行70千米。

6小时后两车相距多少千米?例题2:一列火车长120米,以每秒20米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少秒?例题3:甲、乙两个车队同时从相隔330千米的两地相向而行,甲队每小时行60千米,乙队每小时行50千米,一个人骑摩托车以每小时行80千米的速度在两个车队间不断地往返联络,两车队相遇时,摩托车行驶了多少千米?1、甲乙相向而行,第一次相遇在C处,求A、C之间的距离。

甲每分钟行50米,乙每分钟行70米。

根据速度公式,两人相向而行的速度之和为120米/分钟。

(完整版)小学奥数行程问题经典整理

(完整版)小学奥数行程问题经典整理

第一讲行程问题(一)教学目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。

用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

(完整)三年级奥数-行程问题(一)

(完整)三年级奥数-行程问题(一)

专题:行程问题(一)专题简析我们把研究路程、速度、时间这三者之间关系的问题称为行程问题。

行程问题主要包括相遇问题、相背问题和追及问题。

这一周我们来学习一些常用的、基本的行程问题。

解答行程问题时,要理清路程、速度和时间之间的关系,紧扣基本数关系“路程=速度×时间”来思考,对具体问题要作仔细分析,弄清出发地点、时间和运动结果。

例题精讲【例题1】甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

两人几小时后相遇?【思路导引】这是一道相遇问题。

所谓相遇问题就是指两个运动物体以不同的地点作为出发地作相向运动的问题。

根据题意,出发时甲乙两人相距20千米,以后两人的距离每小时缩短6+4=10千米,这也是两人的速度和。

所以,求两人几小时相遇,就是求20千米里面有几个10千米。

因此,两人20÷(6+4)=2小时后相遇。

练习1:(1)甲乙两艘轮船分别从A、B两港同时出发相向而行,甲船每小时行驶18千米,乙船每小时行驶15千米,经过6小时两船在途中相遇。

两地间的水路长多少千米?(2)一辆汽车和一辆摩托车同时分别从相距900千米的甲、乙两地出发,汽车每小时行40千米,摩托车每小时行50千米。

8小时后两车相距多少千米?(3)甲乙两车分别从相距480千米的A、B两城同时出发,相向而行,已知甲车从A城到B城需6小时,乙车从B城到A城需12小时。

两车出发后多少小时相遇?【例题2】王欣和陆亮两人同时从相距2000米的两地相向而行,王欣每分钟行110米,陆亮每分钟行90米。

如果一只狗与王欣同时同向而行,每分钟行500米,遇到陆亮后,立即回头向王欣跑去;遇到王欣后再回头向陆亮跑去。

这样不断来回,直到王欣和陆亮相遇为止,狗共行了多少米?【思路导引】要求狗共行了多少米,一般要知道狗的速度和狗所行的时间。

根据题意可知,狗的速度是每分钟行500米,关键是要求出狗所行的时间,根据题意可知:狗与主人是同时行走的,狗不断来回所行的时间就是王欣和陆亮同时出发到两人相遇的时间,即2000÷(110+90)=10分钟。

小学生奥数行程问题知识点及应用题

小学生奥数行程问题知识点及应用题

小学生奥数行程问题知识点及应用题1.小学生奥数行程问题知识点篇一常用公式:1、速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2、速度和×时间=路程和;3、速度差×时间=路程差。

2.小学生奥数行程问题知识点篇二行程问题中的公式:1、顺水速度=静水速度+水流速度;2、逆水速度=静水速度-水流速度。

3、静水速度=(顺水速度+逆水速度)/24、水流速度=(顺水速度–逆水速度)/23.小学生奥数行程问题应用题篇三1、姐妹两人骑车从相距10千米的甲地去乙地,妹妹比姐姐早出发10分钟,结果两人同时到达,姐妹两人骑车速度比是5:4,求姐姐甲地去乙地用了多少时间?2、小张爬山,下山按原路返回,往返共用了1.5小时。

上山时间是下山时间的1.5倍,上山速度比下山速度每分钟慢50米。

小张上下山共行了多少米?3、一辆汽车往返于甲、乙两地。

去时的速度是返回速度的3/4,去时比返回时多用了1小时,已知返回速度是每小时60千米,求甲、乙两地相距多少千米?4、一个自行车选手在相距950千米的甲、乙两地之间训练。

从甲地出发,去时每90千米休息一次;到达乙地并休息一天后再沿原路返回,每100千米休息一次;他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有多少千米?5、一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行。

这两只蚂蚁每秒分别爬5.5厘米和3.5厘米。

它们每爬行1秒,3秒、5秒……(连续的奇数),就调头爬行。

那么,它们相遇时,已爬行的时间是多少秒?4.小学生奥数行程问题应用题篇四1、一列快客和一列普客从甲乙两个城同时相对开出,快客每小时行90千米,普客每小时行48千米,经过2.5小时后,两列客车在途中相遇。

求甲乙两城市间的道路长多少千米?解:要知道甲、乙两城之间的道路长多少千米,就必须知道两车的速度和所行的时间。

因为两车是相对而行,所以速度应是两车速度和,时间是两车的相遇时间,这样就可以求出甲、乙两地的距离了。

【奥数】三年级行程问题

【奥数】三年级行程问题

例1李红早晨7点从家出发去学校,她走了2 分钟后发现忘记带语文书了,她立即回家拿了书立即往学校赶,这样她到学校时是7点2o分。

如果她每分钟走80米,李红家离学校有多远?
例2一辆货车从甲城往乙城运货·每小时行42千米,预计6小时到达。

但行到一半时,由于机器出了故障,用1小时进行修理。

如果仍要求在预计时间到达乙地,余下的路程必须每小时行多少千米?
1.1辆卡车上午10时从南京出发开往镇江.原计划每小时行驶60千米,下午1时到达·但实际晚点2小时。

这辆汽车实际每小时行驶多少千米?
2明明家离学校有200米、他走了4分钟,如果用同样的速度,从学校到少年宫明明走了12分钟。

学校到少年宫有多少米?
3.小李骑摩托车以每分钟650米的速度从甲村到乙村去办事·他骑出5分钟后,因忘记带东西立即返回去拿·然后又立即出发去乙村,这样他一共用了25分钟才到达乙村。

两个村相距有多少米?
4一列火车早上5时从甲地开往乙地,下午1时可以到达。

开汽车从甲地到乙地要多用2小时·如果汽车每小时行52千米,甲、乙两地相距多少千米?
5张青平时都用每分钟66米的速度从家出发去上学,这样他1o分钟就能到学校。

有一天,他走到一半时,遇到一个熟人讲了2分钟话,如果他仍要按时到校·余下的路程每分钟要走多少米?
6一辆汽车从A城开往B城·每分钟行525米,预计40分钟到达。

但行到一半路程时,机器坏了,用5分钟修完,如果仍要求在预定时间到达乙地,行驶余下的路程每分钟必须比原来多行多少米?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学三年级奥数应用题:行程问题
1、“八一”节那天,某少先队以每小时4千米的速度从学校往相距17千米的解放军营房去慰问,出发0。

5小时后,解放军闻讯前往迎接,每小时比少先队员快2千米,再过几小时,他们在途中相遇?
2、甲、乙两站相距440千米,一辆大车和一辆小车从两站相对开出,大车每小时行35千米,小车每小时行45千米。

一只燕子以每小时50千米的速度和大车同时出发,向小车飞去,遇到小车后又折回向大车飞去,遇到大车又往回飞向小车,这样一直飞下去,燕子飞了多少千米,两车才能相遇?
3、两地的距离是1120千米,有两列火车同时相向开出。

第一列火车每小时行60千米,第二列火车每小时行48千米。

在第二列火车出发时,从里面飞出一只鸽子,以每小时80千米的速度向第一列火车飞去,在鸽子碰到第一列火车时,第二列火车距目的地多远?
4、两辆汽车上午8点整分别从相距210千米的甲、乙两地相向而行。

第一辆在途中修车停了45分钟,第二辆因加油停了半小时,结果在当天上午11点整相遇。

如果第一辆汽车以每小时行40千米,那么第二辆汽车每小时行多少千米?
5、小刚和小勇两人骑自行车同时从两地相对出发,小刚跑完全程的5/8时与小勇相遇。

小勇继续以每小时10千米的速度前进,用2。

5小时跑完余下的路程,求小刚的速度?
6、甲、乙两人在相距90千米的直路上来回跑步,甲的速度是每秒钟跑3米,乙的速度是每秒钟跑2米。

如果他们同时分别在直路两端出发,当他们跑了10分钟,那么在这段时间内共相遇了多少次?
7、男、女两名运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B)。

两人同时从A点出发,在A、B之间不停地往返奔跑。

如果男运动员上坡速度是每秒3米,下坡速度每秒5米;女运动员上坡
速度每秒2米,下坡速度每秒3米,那么两人第二次迎面相遇的地点
离A点多少米?
8、一列火车从甲地开往乙地,开出2。

5小时,行了150千米。

照这样的速度,再行驶3小时到达乙地。

甲、乙两地相距多少千米?
9、一辆奥迪轿车和一辆桑塔纳轿车分别从A、B两地出发,相向
而行,奥迪车每分行1400米。

如果两车同时出发,则恰好在途中的加
油站相遇;如果桑塔纳轿车先出发了1分钟,则两车在距加油站600米
处相遇;如果奥迪轿车先出发1分钟,则两车在距加油站多少米的地方
相遇?
10、甲、乙两车分别从A、B两地同时出发相向而行,6小时后在
C地相遇;如果甲速不变,乙车每小时多行5千米,则相遇点距C地
12千米;如果乙速不变,甲车每小时多行5千米,则相遇点距C地16
千米,甲车原来每小时行多少千米?
【篇二】
1、甲乙两辆汽车同时从东西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇,求东西两
地的距离是多少千米?
2、甲乙两辆汽车同时从东站开往西站。

甲车每小时比乙车多行12千米,甲车行驶四个半小时到达西站后,没有停留,立即从原路返回,在距离西站31。

5千米的地方和乙车相遇,甲车每小时行多少千米?
3、两人骑自行车沿着900米长的环形跑道行驶,他们从同一地点
反向而行,那么经过18分钟后就相遇一次,若他们同向而行,那经过180分钟后快车追上慢车一次,求两人骑自行车的速度?
4、兄妹两人同时离家去上学。

哥哥每分钟走90米,妹妹每分钟
走60米,哥哥到校门时,发现忘带课本,立即沿原路回家去取,行至
离校180米处和妹妹相遇。

问他们家离学校多远?
5、马路上有一辆车身为15米的公共汽车,由东向西行驶,车速
为每小时18千米,马路一旁的人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。

某一时刻,汽车追上了甲,6秒钟之后汽车离开了甲;半分钟之后,汽车遇到了迎面跑来的乙;又过了2秒钟,汽车离开了乙。

问再过多少秒后,甲、乙两人相遇?
6、甲、乙两地相距360千米,客车和货车同时从甲地出发驶向乙地。

货车速度每小时60千米,客车每小时40千米,货车到达乙地后
停留0。

5小时,又以原速返回甲地,问从甲地出发后几小时两车相遇?
7、车与慢车同时从甲、乙两地相对开出,经过12小时相遇。


遇后快车又行了8小时到达乙地。

慢车还要行多少小时到达甲地?
8、两地相距380千米。

有两辆汽车从两地同时相向开出。

原计划
甲汽车每小时行36千米,乙汽车每小时行40千米,但开车时甲汽车
改变了速度,以每小时40千米的速度开出,问在相遇时,乙汽车比原
计划少行了多少千米?
9、东、西两镇相距240千米,一辆客车在上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12时,两车恰好在
两镇间的中点相遇。

如果两车都从上午8时由两镇相向开行,速度不变,到上午10时,两车还相距多少千米?
10、客车和货车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度继续前进,客车到
乙站后立即返回,货车到甲站后也立即返回,两车再次相遇时,客车
比货车多行216千米。

求甲乙两站间的路程是多少千米?。

相关文档
最新文档