细胞的融合名词解释

合集下载

细胞生物学名词解释汇总

细胞生物学名词解释汇总

1.cell theory细胞学说是1838~1839年由德国植物学家施莱登和德国动物学家施旺共同提出的,并由德国医生和病理学家魏尔肖进行修正的有关细胞生物规律的学说,其主要内容包括:细胞是有机体,一切动植物都是由细胞发而来,并由细胞和细胞产物所构成;每个细胞作为一个相对独立的单位,既有自己的生命,又对与其他细胞共同组成的整体的生命有所助益;新的细胞可通过老的细胞繁殖产生。

2.immunofluorescence technic免疫荧光技术,是指用免疫荧光方法检查抗体、抗原或免疫复合物的试验,是免疫学和荧光技术相结合的技术。

免疫荧光可用于确定细胞表面或内部抗原或抗体的位置以及识别组织或渗出物中的致病性微生物,故广泛应用于免疫学、细胞生物学和临床医学中。

该技术可分为直接免疫荧光技术和间接免疫荧光技术。

3.原位杂交是一种应用核酸标记探针与组织细胞中的待测物质杂交,再用与标记物相关的检测系统,检测出特异性核苷酸序列在染色体上或在细胞中位置的方法。

其基本原理是在适宜的条件下,应用带有标记的DNA或RNA片段作为核酸探针,与组织切片或细胞内待测核酸(RNA或DNA)片段进行杂交,然后可用放射自显影等方法予以显示,在光镜或电镜下观察目的mRNA或DNA的存在并定位;用原位杂交技术,可在原位研究细胞合成某种多肽或蛋白质的基因表达。

4.细胞融合是指两个或多个细胞融合成一个双核或多核细胞的过程,常需对细胞进行预处理或者借助某些化学物质和灭活病毒介导完成。

如动物细胞融合一般要用灭活的病毒(如仙台病毒)或化学物质(如PEG)介导;植物细胞融合时,要先用酶去掉细胞壁。

细胞融合技术是单克隆抗体制备等的基础。

5.基因打靶是指通过同源重组将外源基因定点整合入靶细胞基因组上某一确定的位点,达到定点修饰改造染色体上某一基因的一项技术。

基因打靶技术是一种定向改变生物活体遗传信息的实验手段,通过对生物活体遗传信息的定向修饰包括基因灭活、点突变引入、缺失突变、外源基因定位引入、染色体组大片段删除等,并使修饰后的遗传信息在生物活体内遗传,表达突变的性状,从而可以研究基因功能等生命科学的重大问题,以及提供相关的疾病治疗、新药筛选评价模型等。

细胞生物学必考大题名词解释

细胞生物学必考大题名词解释

fluid mosaic model流动镶嵌模型该模型认为细胞膜由流动的脂双层和嵌在其中的蛋白质组成,具有液晶态特性。

磷脂分子以疏水性尾部相对,极性头部朝向水相组成膜骨架;脂双层构成膜的连续主体,既具有晶体分子排列的有序性,又具有液体的流动性;球形蛋白质分子以各种形式与脂质双分子层结合。

糖类附在膜外表面。

强调细胞膜的流动性和不对称性。

fluidity细胞膜的流动性是指膜脂和膜蛋白处于不断运动的状态。

这是生物膜的基本特征之一。

cell junction 细胞连接多细胞生物的已经丧失了某些独立性,为了促进细胞间的相互联系,相邻细胞膜接触区域特化形成一定的连接结构,称为细胞连接,其作用是加强细胞间的机械联系,维持组织结构的完整性,协调细胞间的功能活动。

分为闭锁连接、锚定连接、通讯连接。

molecular chaperone分子伴侣是一类能够协助其它多肽进行正常折叠、组装、转运、降解的蛋白,并在DNA的复制、转录、细胞骨架功能、细胞内的信号转导等广泛的领域都发挥着重要的生理作用。

cytoskeleton细胞骨架指真核细胞之中的蛋白质纤维网架体系,对于细胞的形状、细胞的运动、细胞内物质运输、染色体的分离和细胞分裂等起重要作用。

主要成分为微管、微丝和中间纤维。

MTOC微管组织中心细胞质中微管组装的起点和核心,包括中心体、基体和着丝点。

对微管的形成、微管极性的确定及细胞分裂中纺锤体的形成起重要作用。

nucleosome核小体是染色质的基本结构单位,由长约200bp的DNA和5种组蛋白组成,组蛋白H2A,H2B,H3,H4各2分子组成一个八聚体核心,DNA在其外表缠绕1.75圈,其余60bp左右的DNA连接相邻的核小体。

若干核小体重复排列便形成串珠状纤维。

chromatin染色质是间期细胞遗传物质的存在形式,由DNA、组蛋白、非组蛋白及少量RNA等构成的细丝状复合结构,形状不规则,弥散分布于细胞核内。

Euchromatin常染色质是DNA复制与基因转录活跃的部位,为间期核内碱性染料时着色较浅,螺旋化程度较低,处于伸展状态。

细胞名词解释(新)

细胞名词解释(新)

细胞生物学是研究细胞基本生命活动规律的科学。

它在不同层次(显微、亚显微与分子水平)上以研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等为主要内容。

细胞:有膜包围的能独立进行繁殖的最小的原生质团,是生命活动的最基本单位。

细胞器:细胞质中在光学和电子显微镜下能显示的具有一定形态特点并执行特定功能的结构。

原生质体:去掉细胞壁的植物细胞或其他去壁细胞。

朊病毒(prion)——仅由感染性的蛋白质亚基构成。

分辨率:仪器(或人眼)所能分开两个质点间的最小距离。

负染色技术(Negative staining)用重金属盐(如磷钨酸)对铺展在载网上的样品染色;吸去染料,干燥后,样品凹陷处铺了一层重金属盐,而凸的出地方没有染料沉积,从而出现负染效果,分辨率可达1.5nm左右。

冰冻蚀刻技术(Freeze etching)亦称冰冻断裂。

标本置于干冰或液氮中冰冻。

然后断开,升温后冰升华,暴露断面结构。

向断面喷涂一层蒸汽碳和铂。

然后将组织溶掉,把碳和铂的膜剥下来,此膜即为复膜(replica)。

细胞系:来源于动物或植物细胞,能够在体外培养过程中无限增殖的细胞群体。

细胞株(cell strain):从原代培养细胞群中筛选出的有特定性质或标志的细胞群。

克隆(clone):亦称无性系。

对细胞来说,克隆是指由同一个祖先细胞通过有丝分裂产生的遗传性状一致的细胞群。

接触抑制(contact inhibition):在体外培养的正常细胞,贴壁生长后当分裂到相互接触时便不再分裂,这种现象称为接触抑制。

细胞融合(cell fusion):通过培养和介导,两个或多个细胞合并成一个双核或多核细胞的过程。

也称为细胞杂交。

细胞工程:利用细胞生物学的原理和方法,结合工程学的技术手段,按照预先设计有计划的改变或创造细胞遗传性的技术。

单克隆抗体技术正常淋巴细胞(如小鼠脾细胞)具有分泌抗体的能力,但不能长期培养,瘤细胞(如骨髓瘤)可以在体外长期培养,但不分泌抗体。

细胞工程期末复习-名词解释

细胞工程期末复习-名词解释

细胞工程复习题一、名词解释[1]细胞工程:是指主要以细胞为对象,应用生命科学理论,借助工程学原理与技术,有目的地利用或改造生物遗传性状,以获得特定的细胞、组织产品或新型物种的一门综合性科学技术。

[2]细胞融合:是指使用人工方法使两个或两个以上的细胞合并形成一个细胞的技术。

[3]细胞重组:从活细胞中将细胞器及其组分分离出来,再在体外一定条件下将不同来源的细胞器及其组分重新组合,使之重新装配成为具有生物活性的细胞或细胞器的一种实验技术[4]细胞培养:泛指所有体外培养,其含义是指从动物活体体内取出组织,于模拟体内生理环境等特定的体内条件下,进行孵育培养,使之生存并生长[5]细胞全能性:指分化细胞保留全部的核基因组,具有生物个体生长、发育所需要的全部遗传信息,具有发育成完整个体的潜能。

[6]细胞分化:是指细胞在形态、结构和功能上发生差异的过程,包括时间上和空间上的分化。

[7]细胞核移植:是一种利用显微操作技术将一种动物的细胞核移入同种或异种动物的去核成熟卵细胞内的技术。

主要包括胚胎细胞核移植和体细胞核移植。

[8]细胞悬浮培养:是将细胞接种于液体培养基中并保持良好的分散状态的培养方式[9]细胞系:由原代培养经传代培养纯化,获得的以一种细胞为主的、能在体外长期生存的不均一的细胞群体。

第一次传代培养后的细胞即称之为细胞系[10]细胞株:是指从一个经过生物学鉴定的细胞系用单细胞分离培养或通过筛选的方法,由单细胞增殖形成的细胞群,称细胞株[11]细胞凋亡:也叫程序性细胞死亡是机体维持环境稳定、有基因控制的细胞自主的有序性死亡[12]细胞团培养:细胞培养时,本身代谢就慢或者脆弱,细胞密度太低或者太高都会导致细胞的凋亡,死亡的细胞裂解物包裹未凋亡的细胞形成絮状物,这些絮状物在显微镜下看就是细胞聚集。

[13]体细胞核移植:体细胞核移植又称体细胞克隆,原理即细胞核的全能性,是动物细胞工程技术的常用技术手段[14]冠瘿组织:是由根癌农杆菌感染引起的植物肿瘤组织,它能在无外加植物激素的培养基上生长。

名词解释

名词解释
原生质体:在人为条件下,用溶菌酶处理或在含青霉素的培养基中培养而抑制新生细胞壁合成而形成的仅由一层细胞膜包裹的,圆球形、对渗透压变化敏感的细胞,一般由革兰氏阳性细菌形成。芽孢:细菌在生长发育后期在细胞内形成的一种厚壁的抗逆性的休眠体。
鞭毛:生长在某些细菌表面的长丝状、波曲的蛋白质附属物,称为鞭毛,其数目为一至数十条,具有运动功能。
消毒:杀死病原微生物的措施。以防止传染病。
灭菌:杀死物体上所有微生物的措施。包括病原、非病原微生物。
商业灭菌:杀菌,从商品的需要出发对食品进行的灭菌。经处理后,按照一定的检验方法检不出活的微生物或者仅能检出极少数的非病原微生物,而且,它们在一定的保存期内不致引起食品变质腐败。
热(力致)死时间TDT:指在特定的条件和特定的温度下,杀死一定数量微生物所需要的时间。
D值:在一定温度下加热,活菌数减少一个对数周期(即90%的活菌被杀死)时,所需要的时间。
Z值:在加热致死曲线中,时间降低一个对数周期(即缩短90%的加热时间)所需要升高的温度。
F值:在一定的基质中,其温度为121.1℃,加热杀死一定数量微生物所需要的时间。
二次生长:微生物在同时含有速效碳源(或氮源)和迟效碳源(或氮源)的培养基中生长时,微生物会首先利用速效碳源(或氮源)生长直到该速效碳源(或氮源)耗尽。然后经过短暂的停滞后,再利用迟效碳源(或氮源)重新开始生长。这种两相生长或应答称为二次生长。
感受态:能从周围环境中吸取DNA的一种生理状态。
准性生殖:指不经过减数分裂就能导致基因重组的生殖过程。在该过程中染色体的交换和染色体的减少不象有性生殖那样有规律,而且也是不协调的。
烈性噬菌体:感染宿主细胞后能在细胞内正常复制并最终杀死细胞,形成裂解循环。

细胞真题名词解释

细胞真题名词解释

2017一、名词解释1.胞质溶胶Lipid raft 自噬溶酶体亚线粒体小泡染色体骨架联会复合体原初反应Cotransport 信号斑多能干细胞与单能干细胞2016一、名词解释胚胎诱导端粒酶Tight junction 核纤层蛋白Cyclin 抑癌基因信号识别颗粒氧化磷酸化核纤层Cell communication2015一、名词解释1.细胞学说2.核孔复合体3.多线染色体4.化学渗透学说:解释氧化磷酸化过程中电子传递与磷酸化之间偶联机制的一种学说。

其主要要点为电子传递链不对称分布,起着质子泵的作用,在电子传递莱奶过程中所释放的能量转化成跨膜的PH梯度和电位梯度,由于内膜具有完整性,因此在将质子从内室泵至外室时,质子只能从ATP合成酶返回基质,该酶便用其能量合成ATP。

5.端粒6.信号转导7.限制点:是细胞周期监控点之一。

8.肿瘤抑制基因I(抑癌基因)9.细胞周期10微管组织中心2014一、名词解释1.肌质网2.异噬溶酶体中心体分子伴侣重组小节成帽反应极细胞核定位信号细胞外被肌球蛋白2013一、名词解释胚胎干细胞胚胎诱导细胞拆合联会复合体生殖质程序性细胞死亡嵌合体多线染色体收缩环随体2012一、名词解释1.细胞学说2细胞识别3.细胞拆合4.原生质:原生质是细胞内生命物质的总称。

它的主要成分是糖类、蛋白质、核酸、脂质等。

原生质分化产生细胞膜、细胞质和细胞核,构建成具有特定结构体系的原生质体,即细胞。

一个动物细胞就是一个原生质体。

植物细胞由原生质体和细胞壁组成。

5.重组小节6.细胞外被7.核小体8.多核糖体:在蛋白质合成过程中,同一条mRNA分子能够同多个核糖体结合,同时合成若干条蛋白质多肽链,结合在同一条mRNA上的核糖体就称为多聚核糖体(polysome 或polyribosomes).在电镜下观察呈现各种各样的结构。

蛋白质合成时多聚核糖体的形成对生命活动的意义在于:节省了遗传信息量,减轻了核的负担.原9.癌基因点突变:这是原癌基因激活的途径之一,有的癌细胞基因激活是由于原癌基因本身一定部位的核苷酸序列发生了变化,合成了异常的蛋白质产物,从而使细胞出现转化表型,所谓的点突变就是基因中只有一对碱基发生了突变。

细胞工程学名词解释总结

细胞工程学名词解释总结

细胞工程学名词解释总结高技术:指那些能带来高经济效益、具有高增值作用,并能向经济和社会各领域广泛渗透的新技术。

生物技术:指通过技术手段,利用生物体或生物过程来生产有经济价值产品或创造新物种的综合技术。

狭义指基因重组、细胞融合、固定化酶与细胞、生物反应器等技术领域。

广义包括资源、能量、粮食、饲料生产以及为净化环境所进行的物质分解及发酵技术等。

生化工程:是由生物科学与化学工程相结合的交叉学科,研究生物技术的实验室成果转化为生产力过程的工程技术问题。

细胞工程:是指以细胞为研究对象,应用生命科学理论,借助工程学原理与技术,有目的地利用或改造生物遗传性状,以获得特定细胞、组织产品或新型物种的综合技术。

干热灭菌:指在干燥环境(如火焰或干热空气)进行灭菌的技术。

主要适用于玻璃器皿的消毒灭菌。

湿热灭菌:湿热灭菌即高压蒸气灭菌,指用饱和水蒸气、沸水或流通蒸汽进行灭菌的方法。

(是最常用和最有效的一种方法。

布类、胶塞、金属器械、玻璃器皿及某些培养用液都可用此法消毒灭菌)。

细胞计数:用血球计数板计数细胞悬液中的细胞数目,然后根据需要进行必要的调整。

mtt法:又称mtt比色法,是一种检测细胞存活和生长的方法。

在一定细胞数范围内,mtt结晶形成的量与细胞数成正比。

活细胞表现出线粒体脱氢酶活性,可将染料mtt还原为难溶的紫色结晶物沉积在细胞内,经酸性异丙醇溶解后呈现的色度可反映出生活细胞的代谢水平,而死细胞则无此酶活性。

活体染色:在体外条件下用某种染色剂对活的组织或细胞进行染色,而对活细胞的生理活动不产生任何明显的影响。

成集落试验:在集落刺激因子存在下培养细胞,可刺激培养细胞分化产生大小不同的细胞集落,这样的集落形成细胞称体外培养集落形成细胞,它是检验培养细胞能否增殖的过硬指标之一。

污染:一切与培养无关的杂质(微生物、化学物、细胞等)进入培养系统,影响培养物的正常生理机能。

动物细胞工程:以动物细胞为基本单位在体外条件下进行培养、繁殖和人为操作,使细胞产生某些人们所需要的生物学特性,从而改良品质,加速繁殖动物个体或获得有用品系的技术。

细胞生物学名词解释

细胞生物学名词解释
膜转运蛋白(membrane transport protein):细胞膜上负责转运不能通过简单扩散穿膜的物质(如离子、葡萄糖、氨基酸、核苷酸、各种代谢产物)的蛋白质,包括通道蛋白和载体蛋白。
载体蛋白(carrier protein):与特定溶质分子结合,通过构象改变进行物质转运,既介导被动运输又介导主动运输。
核孔(nuclear pore):核内外两层核膜融合形成的圆环状结构。由多个蛋白质颗粒以特定方式排列而成的蛋白分子复合物,也称核孔复合体(NPC),四种组分为胞质环、核质环、辐、中央栓。其介导的核-质间物质交换为双向选择性亲水通道,可通过主动、被动运输两种方式进行。
亲核蛋白(karyophilic protein):在细胞质内合成后,需要或能够进入细胞核内发挥功能的一类蛋白质。
带型(band):染色体经过一定处理、用特定染料染色后,使染色体沿其长轴显示深浅各异、宽窄不等的带纹。
核仁(nucleolus):真核细胞间期细胞核中最明显的结构,光镜下为均匀、海绵状的球体。
核仁周期(nucleolar cycle):在进行有丝分裂的细胞中,核仁出现一系列结构与功能的周期性变化。
微丝结合蛋白(MAP):是一类对纤维状肌动蛋白的结构、行为起调节作用,与微丝的装配及功能有关的蛋白质。包括单体隔离蛋白、交联蛋白、末端阻断蛋白、纤维切割蛋白、肌动蛋白纤维解聚蛋白和膜结合蛋白。
中间纤维(intermediate filament,IF):是三种骨架纤维中最稳定细胞骨架成分,直径10nm左右,介于微管和微丝之间,故称之为中等纤维。
异化扩散(facilitated diffusion):在特异性载体蛋白介导下,各种极性分子和无机离子顺电化学梯度的跨膜转运,不消耗细胞代谢能,属于被动运输。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

细胞的融合名词解释
细胞融合是一种常见的生物现象,指的是两个或更多细胞的融合过程。

在这个
过程中,多个细胞融合成一个细胞,使其合并为一个具有新功能的细胞。

细胞融合可以发生在同一种生物的细胞之间,也可以发生在不同种生物的细胞之间。

细胞融合在生物界中具有广泛的应用和影响。

在单细胞生物中,细胞融合是它
们繁殖和增长的主要方式之一。

例如,酵母菌通过细胞融合形成菌丝,从而实现进一步的繁殖。

细胞融合还在多细胞生物的组织发生和发展中起着重要作用。

例如,胚胎的发育过程中,细胞融合促使不同器官和组织的细胞相互连接和合作,形成一个完整的生命体。

此外,细胞融合还在细胞修复和再生过程中发挥重要作用。

例如,在伤口愈合的过程中,细胞融合可以使损伤的细胞重新连接起来,实现组织的修复。

细胞融合的机制和影响涉及到许多生物学领域的研究。

细胞融合主要通过两种
不同的途径发生:自然融合和人工融合。

自然融合指的是在自然条件下发生的细胞融合过程,例如酵母菌菌丝的形成和胚胎发育。

人工融合则是通过实验室技术实现的细胞融合,例如细胞融合实验和细胞核移植技术。

细胞的融合对生物体的发育和功能具有重要影响。

通过细胞融合,不同的细胞
可以共享其各自的特征和功能。

例如,合成细胞可以拥有多个细胞的合并功能,从而更有效地完成特定任务。

此外,细胞融合还可以使细胞合成更强大的代谢系统和更丰富的遗传信息。

这意味着合成细胞可以更好地适应外界环境,并更有效地进行生存和繁殖。

在医学领域,细胞融合的应用也具有重要意义。

细胞融合技术可以用来合成人
工基因工程细胞,实现特定基因的表达和功能增强。

例如,通过将正常细胞与癌细胞融合,可以研究癌细胞的生长机制和治疗方法。

此外,细胞融合还被用于细胞治疗和再生医学研究中。

通过将正常细胞与患者的损伤细胞融合,可以实现细胞修复和组织再生,为疾病治疗和损伤恢复提供新的途径。

细胞融合作为一种重要的生物现象,给生物学和医学研究带来了重大的进展和应用。

通过深入研究细胞融合的机制和影响,我们可以更好地理解生命的本质和生物体的发育过程,为解决生物学和医学中的重大问题提供新的思路和方法。

细胞融合的研究无疑将进一步推动科学的发展和人类福祉的进步。

相关文档
最新文档