随机过程 第二章 泊松过程
泊松(possion)过程

显然有:
p( i
m j
)
(n)
≥
0
(i, j ∈ S)
∑ p(m) ij
(n)
=
1
j∈S
m = 1时,即为一步转移矩阵。
(i ∈ S)
规定:
p( i
0) j
(n)
= δi j
=
1 0
i= j i≠ j
(二)切普曼-柯尔莫哥洛夫(C-K)方程
定理:对于 m 步转移概率有如下的 C-K 方程:
∑ p (m+r ij
= ∑ P{X (n + m + r) = j X (n + m) = k}P{X (n + m) = k X (n) = i} k∈S
∑ =
p(m) ik(n)Leabharlann p(r) kj(n
+
m)
k∈S
对于齐次马氏链的情形:我们可以写成矩阵的形式即有:
P = P P (m+r)
(m) (r)
中科院研究生院 2008~2009 第一学期 随机过程讲稿 孙应飞
考虑顾客到达一服务台排队等待服务的情况。
若服务台前至少有一顾客等待,则在单位时间周期内,服务员完成一个顾客
的服务后,该顾客立刻离去;若服务台前没有顾客,则服务员空闲。
在一个服务周期内,顾客可以到达,设第 n 个周期到达的顾客数ξn 是一个取 值为非负整数的随机变量,且{ξn , n ≥ 1} 相互独立同分布。在每个周期开始时 系统的状态定义为服务台前等待服务的顾客数。若现在状态为 i ,则下周期的状 态 j 应该为:
中科院研究生院 2008~2009 第一学期 随机过程讲稿 孙应飞
第二章 Markov 过程
随机过程(3.2)

例3.同一概率空间下的独立泊松过程的叠 加也是泊松过程
分析:要证明随机过程是泊松过程,只能用定义 证明,零初值性和独立增量性比较容易,只需要 证明平稳增量性即可.
P( N (t ) N (s) n) P( L(t ) L( s) k , M (t ) M (s) n k )
P(下一辆是红色汽车)=P(TR TX ) R e
0 R t R
dt R X e X t X dt X
tR
R R R X R G B
令TY 是从t0算起的非蓝色汽车的到达时刻,则同理可得
B P(下一辆是蓝色汽车)=P(TB TY ) R G B
令上式两边h→0,得迭代常微分方程
qk (t )+ qk (t )= qk -1 (t ),其中q1 (0)=0,q0 (t )=e- t
解上边的常微分方程得
(t )k -t qk (t )= e ,其中k =1,2, k!
例子1
对于参数为λ>0的泊松过程N={N(t):t≥0},求在 {N(t)=1}的条件下,泊松过程N的第一个达到时间间 隔T1服从的概率分布
§2. 泊松过程的0-1律
本节主要研究在充分小的时间区间内发生跳的次 数等于或大于2的概率趋于0 定理4.2.2 对于参数为λ>0的泊松过程N(t),它 满足如下的性质:对任意的时间指标t>0和充分 小的h>0, (1) P( N (t h) N (t ) 0) 1 h (h) (2) P( N (t h) N (t ) 1) h (h) 其中 (h) 表示h的高中的性质(1)(2),那么 这个计算过程一定是个泊松过程 证明:我们只需要证明
二章Poisson过程-精品文档

k t exp t Poison分布,即:p N s t N t k ,k 0 , 1 ,
• 例2.1顾客依Poisson过程到达某商店,速率为4人/小时。 已知商店上午9:oo开门。试求到9:30时仅到一位顾客,
而到11:30时总计已到达5位顾客的概率。
互独立同分布的随机变量,且与 相互独立, N t, t 0
称随机过程 为复合泊松过程。 X t, t 0
i位旅客的 NtΒιβλιοθήκη 位客人,就是 。 Et Wi i1
Nt
W t .而所要求的平均总等待时间
• 为求出它可以先求条件期望:
N t n E t W N t n t W N t n i i E 1 1 i i n nt E W t n i N 1 i
m 12 sds 195
12 0
195 195 p N 12 N 0 100 e ! K 0 K
100 K
• 2.3.2 复合Poisson过程 • 定义2.3设 是一个泊松过程, 是一列相 Y1,Y2 , N t, t 0
• 注意到给定 N 的联合密度是与 ( 0, t ] t n , W , i 1 , 2 , , n i 上均匀分布中随机样本 ,的次序统计量 U i 1 , 2 , ,n i,
U i 1 , 2 , ,n的联合密度是一样的。所以: i,
n n n nt E W t n E U E U iN i i i 1 i 1 i 1 2
的Poisson过程到达车站。若火
泊松过程

泊松过程一种累计随机事件发生次数的最基本的独立增量过程。
例如随着时间增长累计某电话交换台收到的呼唤次数,就构成一个泊松过程。
泊松过程是由法国著名数学家泊松(Poisson, Simeon-Denis)(1781—1840)证明的。
1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来Α.Я.辛钦于50年代在服务系统的研究中又进一步发展了它。
Poisson过程(Poisson process,大陆译泊松过程、普阿松过程等,台译卜瓦松过程、布瓦松过程、布阿松过程、波以松过程、卜氏过程等),是以法国数学家泊松(1781 - 1840)的名字命名的。
泊松过程是随机过程的一种,是以事件的发生时间来定义的。
我们说一个随机过程N(t) 是一个时间齐次的一维泊松过程,如果它满足以下条件:在两个互斥(不重叠)的区间内所发生的事件的数目是互相独立的随机变量。
在区间内发生的事件的数目的概率分布为:其中λ是一个正数,是固定的参数,通常称为抵达率(arrival rate)或强度(intensity)。
所以,如果给定在时间区间之中事件发生的数目,则随机变数呈现泊松分布,其参数为。
更一般地来说,一个泊松过程是在每个有界的时间区间或在某个空间(例如:一个欧几里得平面或三维的欧几里得空间)中的每一个有界的区域,赋予一个随机的事件数,使得•在一个时间区间或空间区域内的事件数,和另一个互斥(不重叠)的时间区间或空间区域内的事件数,这两个随机变数是独立的。
•在每一个时间区间或空间区域内的事件数是一个随机变数,遵循泊松分布。
(技术上而言,更精确地来说,每一个具有有限测度的集合,都被赋予一个泊松分布的随机变数。
)泊松过程是莱维过程(Lévy process)中最有名的过程之一。
时间齐次的泊松过程也是时间齐次的连续时间Markov过程的例子。
一个时间齐次、一维的泊松过程是一个纯出生过程,是一个出生-死亡过程的最简单例子。
第二章-泊松过程-随机过程

布的指数随机变量。Sn Xi ,n 1,第 n 个事件在时刻 Sn 发生,N(t) i1
表示到时刻 t 为止已发生的“事件”的总数,即 N (t) sup{n : Sn t}, 则
计数过程{N(t),t≥0}是参数为的泊松过程。
三、来到时刻的条件分布(conditional distribution of the arrival
X1=x1
X2=x2
x1
x1+ x2
Xn-1=xn-1 x1+ x2+…+ xn-1
Xn>t x1+ x2+…+ xn-1+t
所以,从上可得,Xn 也是一个具有均值 1/的指数随机变量,且 Xn
独立于 X1, …, Xn-1。
注记 这个命题不应使我们惊奇。平稳独立增量的假定等价于说在概率 意义上过程在任何时刻都重新开始,即从任何时刻起过程独立于先前已 发生的一切(由独立增量),且有与原过程完全一样的分布(由平稳增量)。 换言之,过程无记忆,因此指数间隔是预料之中的。
n
f ( yi1 ) f ( yin ) f ( yi ) , 所 以 Y(1),Y(2),, Y(n) 的 联 合 密 度 为 i1 n
f ( y1, y2 , , yn ) n! f ( yi ), y1 y2 yn i1
若 Yi,i=1,2,,n,都是(0,t)上均匀分布,则由上面的讨论可知,顺序统
Pn (t ) Pn (t ) Pn1(t ) 于是
Pn (t ) et ( Pn1(t )etdt Cn )
P1(t ) et ( P0 (t )etdt C1 )=et ( etetdt C1 )=et (t C1 ),
泊松过程

第二讲 泊松过程1.随机过程和有限维分布族现实世界中的随机过程例子:液体中,花粉的不规则运动:布朗运动;股市的股票价格; 到某个时刻的电话呼叫次数;到某个时刻服务器到达的数据流数量,等。
特征:都涉及无限多个随机变量,且依赖于时间。
定义(随机过程) 设有指标集T ,对T t ∈都有随机变量)(t X 与之对应,则称随机变量族}),({T t t X ∈为随机过程。
注 一个随机过程是就是一个二元函数E T t X →⨯Ωω:),(。
固定ω,即考虑某个事件相应的随机变量的值,得到函数R T t X →:),(ω称为样本函数或轨道或一个实现。
映射的值域空间E 称为状态空间。
例 随机游动(离散时间,离散状态)质点在直线上每隔单位时间位置就发生变化,分别以概率p 或概率p -1向正或负向移动一个单位。
如果以n S 记时刻n 质点所处的位置,那么就得到随机过程{,0}n S n ≥。
这里指标集},1,0{ =T ,状态空间},1,0,1,{ -=E 。
如果记n X 为时刻n ,质点的移动,那么{,1}n X n ≥也是随机过程。
两个过程的区别:{}n S 不独立;{}n X 独立; 两个过程的关系:01nn kk S S X==+∑习题 计算n ES 和n DS (设00S =)。
提示 利用∑==nk kn XS 1,其中k X 是时刻k 的移动方式。
习题 设从原点出发,则()/2()/2()/2,2()0,21n k n k n k n n C q p n k iP S k n k i +-+⎧+===⎨+=-⎩。
例 服务器到达的数据流(连续时间,离散状态)在],0[t 内,到达服务器的数据包个数记为)(t N ,那么}0),({≥t t N 也是个随机过程,其指标集}{+∈=R t T ,状态空间},1,0{ =E 。
例 布朗运动(连续时间,连续状态)直线上质点的位移是连续的。
在时刻t 的位置为t X 。
泊松过程

pk (t +h) −pk (t) o(h) , = −λpk (t) +λpk−1(t) + h h pk'(t) = −λpk (t) + λpk−1(t) h ,(k = 0,1,2,L ) 令 →0得 , pk (0) = P{N(0) = k} = 0
k=1时 k=1时, p1'(t) = −λp1(t) + λe−λt p1(0) = 0 解得: (t)= 所以k=1时结论成立。 k=1时结论成立 解得:p1(t)=λte-λt,所以k=1时结论成立。
(λt)k−1 −λt e 。 假设k-1时结论成立, pk−1(t) = 假设k 时结论成立, (k −1)! pk'(t) = −λpk (t) + λpk−1(t) (λt)k −λt 解 , 得 pk (t) = e 。 pk (0) = 0 k!
结论成立。 结论成立。 由归纳法知,对一切k=0,1,2, k=0,1,2,…,结论成立。 由归纳法知,对一切k=0,1,2, ,结论成立。 (λt)k −λt 得证
j=0
k
k
{N(t) = j}P N(h = k − j} { ) = ∑P
) ) ) p ) = ∑pj(t)pk−j(h = pk(t)p0(h +pk−1(t)p1(h + ∑ j(t)pk−j(h
j=0 j=0
j=0 k
k−2
(t)[1(t)[λh+o(h)]+o(h), =pk(t)[1-λh+o(h)]+pk-1(t)[λh+o(h)]+o(h),
定义3 如果取非负整数值得计数过程{N(t),t 0}满足下列 {N(t),t≥ 定义3 如果取非负整数值得计数过程{N(t),t≥0}满足下列 条件: 条件: N(0)= a) N(0)=0; 具有独立增量; b) 具有独立增量; P{N(h)=1}= h+0(h); c) P{N(h)=1}=λh+0(h); P{N(h)≥2}= d) P{N(h)≥2}=0(h) 则称{N(t),t 0}为参数(或平均率、强度) {N(t),t≥ 齐次) 则称{N(t),t≥0}为参数(或平均率、强度)为λ的(齐次)泊 松过程。 松过程。 考虑某一电话交换台在某段时间接到的呼唤.令 例1 考虑某一电话交换台在某段时间接到的呼唤 令X(t)表 表 示电话交换台在(0,t]内收到的呼唤次数 则{X(t),t≥0}满足定义 内收到的呼唤次数,则 满足定义3 示电话交换台在 内收到的呼唤次数 ≥ 满足定义 的条件, 是一个泊松过程. 的条件 故{X(t), t≥0}是一个泊松过程 ≥ 是一个泊松过程 考虑到某车站售票窗口购买车票的旅客,若记 若记X(t)为在时间 例2 考虑到某车站售票窗口购买车票的旅客 若记 为在时间 [0,t]内到达售票窗口的旅客数 则{X(t),t≥0}为一泊松过程 内到达售票窗口的旅客数,则 内到达售票窗口的旅客数 ≥ 为一泊松过程
2-1泊松过程

det P 1 t dt
t P t t C e 1
NORTH UNIVERSITY OF CHINA
目 录
上一页
下一页
返 回
结 束
《应用随机过程》电子课件 张 峰
第二章 Poisson 过程
二、Poisson过程的两个等价定义的证明 t P 0 0 P t te 由初始条件 1 1
b P N t h N t 2 P N h 2 o h
P N (t h)- N (t )=1 he
h
(3)
证:由(1)显然可得Poisson过程是平稳过程
k! h 1 h o h h o h
mN t EN (t )= t
DN t DN (t )= t
均方值函数
2 N
t EN (t )=DN t EN t t t
2 2
2
NORTH UNIVERSITY OF CHINA
目 录
上一页
下一页
返 回
第二章 Poisson 过程
t 再由 P0 0 0 P N t 0 e
。Leabharlann hNORTH UNIVERSITY OF CHINA
目 录
上一页
下一页
返 回
结 束
《应用随机过程》电子课件 张 峰
第二章 Poisson 过程
二、Poisson过程的两个等价定义的证明
2 定义2 定义1 即:由(2),(3) (1) 证:当 k 1 时,Pk t h P N (t h) k
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( t ) k n k n k Cn 1 (1 ) k k!
-结巴概率:产生另一个需求 (1 )-下一个需求发生的概率(经过一个指数时间的逗留)
泊松过程的分解
例题
设到达某商场的顾客组成强度为λ的泊松过程,每个顾客购买商品的概率 为p,且与其他顾客是否购买商品无关,若{X( t ),t≥0}为购买商品的顾客 数,证明{X( t ),t≥0}是强度为λ p的泊松过程。
2
例题
设某路公共汽车从早上5时到晚上9时有车发出,乘客流量如下:5时 按平均乘客为200人/时计算;5时至8时乘客平均到达率按线性增加, 8时到达率为1400人/时;8时至18时保持平均到达率不变;18时到 21时从到达率1400人/时按线性下降,到21时为200人/时。假定乘客 数在不相重叠时间间隔内是相互独立的。求12时至14时有2000人来 站乘车的概率,并求这两个小时内来站乘车人数的数学期望。
Hale Waihona Puke Wn的条件概率密度为: 0 t1 tn t ,
其他
说明在{ X (t )=n}的条件下,n次事件到达时间的分布是n个独立同分布样 本的顺序统计量,其母体X 的分布函数为: m( x ) F ( x) m(t ) 1, x t, xt
18
例题 设{X(t),t≥0}是具有跳跃强度 (t ) 1 (1 cost ) 的非齐次泊 松过程(ω ≠0),求E[X(t)]和D[X(t)]。
Sn Wi U i , U i ~U [0, t ]
i 1 i 1 n n
3、如果我们有一组n个独立均匀分布U[0,t]随机变量的观测值,将其按大 小排列,则可以将其视为给定X(t)=n的齐次泊松过程的n个到达点,是一 种产生齐次泊松过程的方法
例题 设{X1 (t),t ≥0}和{X2 (t),t ≥0}是两个相互独立的泊松过程,它们在单位时间 W 内平均出现的事件数分别为λ1和λ2,记 为过程 X1(t)的第k次事件到达时 W 间, 为过程 X2(t)的第1次事件到达时间,求 P(W W )
例题
设在[0,t]内事件A已经发生n次,求第k(k<n)次事件A发生的时间Wk的条 件概率密度函数。
13
到达时间的条件分布的说明
1、设{X(t),t≥0}是泊松过程,在给定[0,t]内事件A发生n次的条件下,这n 次到达时间W1,W2, …,Wn ,每一个都是U[0,t]的一个样本,且相互独 立。 2、若不考虑其大小顺序,其分布就如n个独立的均匀随机变量U[0,t],如
t (t ) n 1 , e fWn (t ) (n 1) 0,
t0 t0
例:已知仪器在[0,t]内发生振动的次数X(t)是具有参数λ的泊松 过程,若仪器振动k(k>=1)次就会出现故障,求仪器在时刻t0正 常工作的概率。
11
到达时间的条件分布
假设在[0,t]内时间A已经发生一次,我们要确定这一事件到达时间W1的 分布。 泊松过程 平稳独立增量过程
由于X(0)=0,所以
m X (t ) E[ X (t )] t
2 X (t ) D[ X (t )] t
RX (s, t ) E[ X (s) X (t )] s(t 1)
一般情况下,泊松过程的协方差函数可表示为
BX (s, t ) min( s, t )
第二章 泊松过程
泊松过程定义 泊松过程的数字特征 时间间隔分布、等待时间分布及到达时间的 条件分布 复合泊松过程 非齐次泊松过程 滤过泊松过程
1
计数过程: 称随机过程{N(t),t≥0}为计数过程,若N(t)表示到时刻t为止已发生的“事 件A”的总数,且N(t)满足下列条件:
23
泊松过程的分解可推广到n个类型,用Pi(s)表示type-i在时刻s达到的概率, 定义: 1 t
pi
n
t
0
Pi ( s )ds
i 1, 2
n
p
i 1
i
1
则{Ni ( t ) ,t≥0}为参数λ pi的泊松分布,且{Ni ( t )}相互独立
例:某沙滩汽车的到达服从指数为λ的泊松过程,汽车在沙滩的逗留时间 分布为G(s),假定各汽车逗留时间之间,以及逗留时间与到达时间之间相 互独立,用N1 ( t ) 表示时刻t离开沙滩的汽车数量, N2 ( t ) 表示时刻t仍然 在沙滩上的汽车数量,则N1 ( t ) 和 N2 ( t ) 是一个type-1和type-2的分解。
1. N(t) ≥0;
2. N(t)取正整数值; 3. 若s<t,则N(s) ≤N(t);
4. 当s<t时,N(t)-N(s)等于区间(s,t]中发生的“事件A”的次数。
计数过程N(t)是独立增量过程 如果计数过程在不相重叠的时间间隔内,事件A发生的次数是相互独立的。 计数过程N(t)是平稳增量过程 若计数过程N(t)在(t,t+s]内(S>0),事件A发生的次数N(t+s)-N(t)仅与时 间差s有关,而与t无关。
8
定理: 设{X(t),t≥0}为具有参数λ的泊松过程,{Tn,n≥1}是对应的时间间隔序列, 则随机变量Tn是独立同分布的均值为1/λ的指数分布。 对于任意n=1,2, …事件A相继到达的时间间隔Tn的分布为
1 e t , t 0 FTn (t ) P{Tn t} t0 0,
20
定理 设
N (t )
X (t )
Y
k 1
k
,
t 0 是复合泊松过程,则
1. {X(t), t≥0}是独立增量过程; 2. X(t)的特征函数 g X (t ) (u) exp{t[ g Y (u) 1]} ,其中g Y (u ) 是随机 变量Y1的特征函数,λ 是时间的到达率;
19
复合泊松过程
定义: 设{N(t),t≥0}是强度为λ 的泊松过程,{Yk,k=1,2,…}是一列独立同分布 随机变量,且与{N(t),t≥0}独立,令
N (t )
X (t )
Y ,
k k 1
t0
则称{X(t),t≥0}为复合泊松过程。 N(t) Yk X(t) 在时间段(0,t]内来到商店的顾客数 第k个顾客在商店所花的钱数 该商店在(0,t]时间段内的营业额
2 ], D [ X ( t )] tE [ Y 3. 若E(Y12)<∞,则 E[ X (t )] tE[Y 1 1 ]
21
例题:结巴(stuttering)泊松过程 对于一个复合泊松过程,如果Yn服从几何分布:
P(Y y ) (1 ) y,y 1, 2, 可以求得: P{ X (t ) n} e
泊松过程的分解:
强度为λ的泊松过程,事件A在时刻s到达,则此到达可分解成概率为P(s)的 type-1到达和概率为1- P(s) 的type-2到达,用{Ni ( t ) ,t≥0},i=1,2,表示 type-i在时间(0,t]的达到次数,则有
pt ( pt ) n qt ( qt ) m P N1 (t ) n, N 2 (t ) m e e n ! m ! 1 t 其中,p P( s)ds,q 1 p t 0
泊松过程同时也是平稳增量过程
E[ X (t )] 表示单位时间内事件A发生的平均个数,故称为过程的速率 t 或强度
3
泊松过程定义2: 称计数过程{X(t),t≥0}为具有参数λ>0的泊松过程,若它满足下列条件: 1. X(0)=0; 2. X(t)是独立、平稳增量过程; 3. X(t)满足下列两式:
例子:设交换机每分钟接到电话的次数X(t)是强度为λ的泊松过 程。求 (1) 两分钟内接到3次呼叫的概率。 (2) 第二分钟内接到第3次呼叫的概率。
5
泊松过程的数字特征
设{X(t),t≥0}是泊松过程,对任意的t,s∈[0, ∞),且s<t,有
E[ X (t ) X (s)] D[ X (t ) X (s)] (t s)
(1) k (2) 1 (1) k (2) 1
例题
有线电视公司从客户签约时刻起开始收费,每单位时间收费1元,设签约 客户为参数为λ的泊松过程,求公司在(0,t]时间段内的平均总收入。
15
非齐次泊松过程
允许时刻t的来到强度是t的函数 定义: 称计数过程{X(t),t≥0}为具有跳跃强度函数λ (t)的非齐次泊松过程,若 它满足下列条件: 1. X(0)=0; 2. X(t)是独立增量过程; 3. P{ X (t h) X (t ) 1} (t )h o(h)
可以认为[0,t]内长度相等的区间包含这个事件的概率应该相等,或者 说,这个事件的到达时间应在[0,t]上服从均匀分布。对于s<t有
P{W1 s | X (t ) 1 }?
分布函数
0, s FW1| X (t ) 1 (s) , t 1,
1 , fW1 | X ( t ) 1 ( s ) t 0,
s0 0st st
0st 其它
12
分布密度
定理: 设{X(t),t≥0}是泊松过程,已知在[0,t]内事件A发生n次,则这n次到达时间 W1<W2, …<Wn与相应于n个[0,t]上均匀分布的独立随机变量的顺序统计 量有相同的分布。
例题
设在[0,t]内事件A已经发生n次,且0<s<t,对于0<k<n,求 P{X(s)=k|X(t)=n}
或
n0
[m X (t )]n P{ X (t ) n} exp{ m X (t )}, n!
17
到达时间的条件分布
设{ X (t ), t 0}为非其次泊松过程,均值函数为m(t ) (t ) dt,则在{ X (t )=n}