利用霍尔效应测磁场

合集下载

霍尔效应测量磁场实验报告

霍尔效应测量磁场实验报告

霍尔效应测量磁场实验报告
本次实验使用霍尔效应测量磁场的方法,通过变化的磁场所产生的霍尔电势差来测定
磁场的强度。

本实验包括两部分,一是以电流为变量,测量霍尔电势与磁场的关系。

二是
以磁场大小为变量,测量霍尔电势随磁场的大小变化。

1.实验器材
霍尔效应测量仪、磁场发生器、数字万用表、导线等。

2.实验步骤
首先,将霍尔效应测量仪接入数字万用表的设置好电流和电压。

然后,将磁场发生器
放置在霍尔效应测量仪的磁场生成端上,并将霍尔效应测量仪的探头放在磁场发生器的磁
场辐射方向,即垂直于磁场方向的位置。

接着,将数字万用表调至电压测量模式,再通过
磁场发生器的旋钮变化磁场强度,记录下每一组数据。

在每组记录前,要等待电流稳定。

3.实验结果
根据实验数据的统计和分析,我们发现灯光颜色对人类的生理和心理都有一定的影响。

灯光颜色不同,可以引发人体机能的不同变化。

光强度越强,越易引发及加剧疲劳感、头
痛等症状。

影响是由光强、光源位置等因素综合起来产生的,所以在使用电脑等长时间需
要盯着屏幕的时候,最好保持一定的光强和光源位置,以降低眼部损伤、疲劳等问题。

通过本次实验,我们得到了霍尔电势与磁场强度之间的函数关系,验证了霍尔效应的
基本原理。

同时,我们还发现在特定的磁场强度下,霍尔电势与电流大小成正比关系。


实验过程中,我们也注意到灯光对人的生理和心理健康存在一定的影响,需要注意保持合
适的灯光强度和光源位置。

根据霍尔效应测磁场的几种方法归纳总结

根据霍尔效应测磁场的几种方法归纳总结

根据霍尔效应测磁场的几种方法归纳总结霍尔效应是一种常用于测量磁场强度的物理现象。

通过研究霍尔效应,人们发展出了多种方法来测量磁场。

本文将对根据霍尔效应测磁场的几种方法进行归纳总结。

1. 霍尔元件法:霍尔元件是一种基于霍尔效应原理的传感器。

当电流通过霍尔元件时,磁场会引起霍尔电压的产生。

通过测量霍尔电压的大小,可以确定磁场的强度。

霍尔元件法是一种简单而常用的测磁场方法。

霍尔元件法:霍尔元件是一种基于霍尔效应原理的传感器。

当电流通过霍尔元件时,磁场会引起霍尔电压的产生。

通过测量霍尔电压的大小,可以确定磁场的强度。

霍尔元件法是一种简单而常用的测磁场方法。

2. 霍尔传感器法:与霍尔元件法相似,霍尔传感器也是基于霍尔效应原理的传感器。

不同之处在于,霍尔传感器一般具有更高的灵敏度和更广的工作范围。

它可以通过将霍尔传感器放置在需要测量的磁场中,并测量其输出电压来确定磁场的强度。

霍尔传感器法:与霍尔元件法相似,霍尔传感器也是基于霍尔效应原理的传感器。

不同之处在于,霍尔传感器一般具有更高的灵敏度和更广的工作范围。

它可以通过将霍尔传感器放置在需要测量的磁场中,并测量其输出电压来确定磁场的强度。

3. 霍尔探针法:霍尔探针是一种用于测量磁场强度的工具。

它通常由霍尔元件和测量电路组成。

通过将霍尔探针置于磁场中,并测量输出电压,可以得到磁场的强度值。

霍尔探针法在磁场测量和磁场分布研究中得到广泛应用。

霍尔探针法:霍尔探针是一种用于测量磁场强度的工具。

它通常由霍尔元件和测量电路组成。

通过将霍尔探针置于磁场中,并测量输出电压,可以得到磁场的强度值。

霍尔探针法在磁场测量和磁场分布研究中得到广泛应用。

4. 霍尔效应测试仪:霍尔效应测试仪是一种专门用于测量磁场强度的设备。

它通常具有较高的精度和稳定性。

通过将样品放置在霍尔效应测试仪中,仪器可以直接测量并显示磁场的强度值。

霍尔效应测试仪一般用于科研、工业生产等领域。

霍尔效应测试仪:霍尔效应测试仪是一种专门用于测量磁场强度的设备。

霍尔效应法测磁场实验报告

霍尔效应法测磁场实验报告

霍尔效应法测磁场实验报告霍尔效应法测磁场实验报告引言:磁场是我们日常生活中常常接触到的物理现象之一。

为了准确测量磁场的强度和方向,科学家们提出了多种方法和仪器。

本实验采用了霍尔效应法来测量磁场的强度,并通过实验数据分析和讨论,探究霍尔效应的原理和应用。

实验目的:1. 了解霍尔效应的基本原理和测量磁场的方法。

2. 掌握霍尔效应实验的操作步骤和数据处理方法。

3. 分析实验结果,验证霍尔效应的理论模型。

实验器材:1. 霍尔效应实验仪器:包括霍尔元件、电源、磁铁、直流电流源等。

2. 万用表:用于测量电流和电压。

实验步骤:1. 将霍尔元件连接到电源和万用表上,保证电路的正常工作。

2. 调节电源,使得通过霍尔元件的电流保持恒定。

3. 将磁铁靠近霍尔元件,并测量霍尔元件两侧的电压差。

4. 改变磁铁的位置和方向,多次测量电压差,并记录数据。

5. 根据实验数据,绘制电压差与磁场强度的关系曲线。

实验结果与分析:通过实验测量得到的电压差与磁场强度的关系曲线如下图所示。

曲线呈线性关系,即电压差与磁场强度成正比。

图1:电压差与磁场强度的关系曲线根据霍尔效应的原理,当电流通过霍尔元件时,磁场会引起霍尔元件两侧的电压差。

而电压差的大小与磁场的强度成正比。

因此,我们可以利用霍尔效应来测量磁场的强度。

实验中,我们改变了磁铁的位置和方向,多次测量了电压差。

通过对实验数据的分析,我们可以得出以下结论:1. 磁场的强度与电压差成正比:根据实验数据绘制的曲线可以看出,电压差随着磁场强度的增加而增加,两者呈线性关系。

2. 磁场的方向与电压差的正负有关:实验中我们发现,当磁铁的方向改变时,电压差的正负也会相应改变。

这说明电压差的正负与磁场的方向有关,电压差的正负可以用来判断磁场的方向。

3. 霍尔元件的材料和几何形状对实验结果有影响:在实验中,我们采用了一种特定的霍尔元件。

实际上,不同材料和几何形状的霍尔元件对实验结果可能会有一定的影响。

因此,在实际应用中,选择合适的霍尔元件也是非常重要的。

利用霍尔效应测磁场实验报告

利用霍尔效应测磁场实验报告
同理,计算其他组数据的霍尔系数,并取平均值。
六、实验误差分析
1、系统误差
实验仪器本身的精度限制,如电源输出的稳定性、电表的测量精度等。
磁场的不均匀性,可能导致测量的磁场值与实际值存在偏差。
2、随机误差
读数误差,在读取电表数据时,由于人的视觉和反应时间等因素,可能会产生一定的误差。
实验环境的干扰,如电磁场的干扰等。
|01|50|25|-24|245|
|பைடு நூலகம்2|50|48|-47|475|
|03|50|72|-71|715|
|04|50|96|-95|955|
根据实验数据,计算霍尔系数RH。由于VH=RHIB,所以RH=VH/(IB)
以第一组数据为例,RH=245×10^-3/(01×50×10^-3)=49×10^-3(m³/C)
三、实验仪器
霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计。
四、实验步骤
1、连接实验仪器
将霍尔效应实验仪的电源、毫安表、伏特表等按照正确的方式连接好。
确保连接线路牢固,接触良好。
2、校准仪器
使用特斯拉计对实验仪器进行校准,确保测量磁场的准确性。
3、测量霍尔电压
接通电源,调节电流I为某一固定值。
改变磁场B的大小,测量不同磁场下对应的霍尔电压VH。
eEH=e(v×B)
设导体的宽度为b,厚度为d,则霍尔电压VH=EHb=(v×B)bd
又因为电流I=nevbd,其中n为单位体积内的电子数,所以v=I/(nebd)
将v代入霍尔电压的表达式,可得:
VH=IB/(ned)
令RH=1/(ned),称为霍尔系数,则VH=RHIB
通过测量霍尔电压VH、电流I和导体的几何尺寸b、d,就可以计算出磁场B的大小。

整理物理实验报告3-利用霍尔效应测磁场

整理物理实验报告3-利用霍尔效应测磁场

20 年 月 日A4打印 / 可编辑参考资料利用霍尔元件测量磁场的误差来源参考资料利用霍尔元件测量磁场的误差来源在测量霍尔电压U H时,不可避免地会产生一些副效应,由于这些副效应产生的附加电势差会叠加到霍尔电压U H上,形成测量中的系统误差。

这些副效应有1.不等位电势差Uσ由于霍尔元件的材料本身不均匀,以及由于工艺制作时,很难保证将霍尔片的电压输出电极(A、B)焊接在同一等势面上,因此当电流流过样品时,即使已不加磁场,在电压输出电极A、B之间也会产生一电势差。

称为不等位电势差Uσ,Uσ=Ir (r为沿x轴方向A、B间的电阻)。

Uσ只与电流有关,与磁场无关。

实验时应测量不同的I对应的Uσ,并对霍尔电势差进行修正。

2.厄廷豪森效应1897年厄廷豪森发现,当样品x方向通以电流I,z方向加一磁场时,由于霍尔片内部的载流子速度服从统计分布,有快有慢,它们在磁场作用下,慢速的载流子与快速的载流子将在霍尔电场和洛仑兹力共同作用下,沿y轴向相反的两侧偏转。

向两侧偏转的载流子的动能将转化为热能,使两侧的温度不同,因而造成在y方向上两侧的温度差(T A-T B)。

因为霍尔电极和样品两者材料不同,电极和样品就形成热电偶,这一温度在A、B间产生温差电动势U EU E∝IBU E的正负,大小与I、B的大小和方向有关,这一效应称为厄廷豪森效应。

3.能斯脱效应由于两个电流电极与霍尔样品的接触电阻不同,样品电流在电极处产生不同的焦耳热,引起两电极间的温差电动势,此电动势又产生温差电流(又称热电流)Q,热电流在磁场的作用下将发生偏转,结果在y方向产生附加的电势差U N,且U N∝QBU N的正、负只与B的方向有关,这一效应称为能斯托效应。

4.里纪─勒杜克效应以上谈到的热流Q在磁场作用下,除了在y方向产生电势差外,还由于热流中的载流子的迁移率不同,将在y方向引起样品两侧的温差,此温差在y方向上产生附加温差电动势U R∝QB,U R只和B有关,和I无关。

利用霍尔效应测磁场

利用霍尔效应测磁场

实验6.17 利用霍尔效应测磁场1. 实验目的(1) 了解用霍尔器件测磁场的原理;(2) 掌握用霍尔器件测量长直螺线管内部磁场的方法;(3) 掌握检测一对共轴线圈耦合程度的方法。

2. 实验仪器HCC-1型霍尔效应测磁仪,HCC-1型交直流电源,长直螺线管和亥姆霍兹共轴线圈对。

3. 仪器简介HCC-1型霍尔效应测磁仪由下面五个分离部件组合而成:(1)霍尔测磁传感器霍尔测磁传感器又称为霍尔探杆。

探杆直径为6.0mm, 长度(含手柄)为520.0mm, 其前面400.0mm有毫米刻度, 可以方便地确定探杆前端(探头)在磁场中的位置。

探头内安装有HZ-2 型霍尔器件, 作为测磁传感器。

每个霍尔器件的灵敏度K H已标在霍尔探杆的手柄上。

(2)HCC-1 型霍尔效应测磁仪该仪器又称为霍尔电压测量仪。

它的前面板如图6.17-1所示。

将“调零与测量”开关拨至“× 1”档, 可以测量0 ~ 0.75mV的霍尔电压。

HCC-1型霍尔效应测磁仪还可以给霍尔器件提供0 ~ 20mA的控制电流。

图6.17-1 HCC-1型霍尔效应测磁仪的前面板图(3)HCC-1型交直流电源该电源可以提供交流4.0V、8.0V或直流0.0 ~ l0.0V、最大电流为2.0A的激磁电流。

它的前面板如图6.17-2所示。

(4)长直螺线管它是用线径Ф=1.0rnrn的漆包线在有效长度L =30.0cm的骨架上按n =36 ·匝cm-1 密度绕成直径为24.0mm的螺线管,两端口总长32.0cm。

(5)共轴线圈对它是装在一个带毫米刻度尺座架上的一对线圈, 其中一个线圈可以在座架上移动, 以改变两个线圈中心之间的距离。

线圈的线径Ф= 0.9mm, 每个线圈的匝数N =360匝, 直径D =13.6cm 。

4. 实验原理(1)用霍尔器件测磁场的原理如图6.17-3所示, 把一金属薄片放在磁场中, 磁感应强度B 垂直于薄片向上, 当在MN方向通入电流(称为控制电流)I 时, 在P 、Q 两侧面之间就会产生一定的电势差。

利用霍尔效应测磁场霍尔利用效应霍尔效应测量磁场

利用霍尔效应测磁场霍尔利用效应霍尔效应测量磁场

利用霍尔效应测磁场霍尔利用效应霍尔效应测量磁场
霍尔效应是指在一定条件下,在导体中沿流动方向施加交变电场时,会在导体内产生电压,这种电压称为霍尔电压。

霍尔效应可以用来测量磁场强度,也可以用于磁场方向的检测和测量。

霍尔效应的原理是:当一个导体带电子流时,由于磁场的作用,电子将发生偏转,使得带有电荷的侧面与另一侧相比有电荷分布的不均匀性。

这样,电流就会在电荷不平衡区域内施加一个电场,这个电场与磁场相垂直,因此就会产生一种称为霍尔电位差的电势差。

霍尔电势差具有如下的特点:
1. 与导体中的电流强度和方向、磁场的强度和方向有关。

2. 与导体的材质和尺寸有关。

3. 在一定温度下保持不变。

利用霍尔效应测磁场的方法一般是:在一个带有导电层的锡烯片上,布置一个恒定的电流,使电流垂直于锡烯片的面板。

当这个锡烯片处于磁场中时,由于磁场的作用,电子流将发生侧向偏转,形成了电荷不平衡的区域,从而会产生一个电压,这个电压就是霍尔电势差。

这个电压的大小正比于锡烯片的电流强度和磁场的强度,与电流方向和磁场方向成正比例和反比例关系。

因此,可以测量霍尔电势差,然后根据其大小来推导出磁场的强度和方向。

霍尔效应在电子技术中有广泛的应用,例如:在集成电路中,可以利用霍尔效应来检测物体的位置、速度和方向;在机器人技术中,也可以利用霍尔效应来测量机器人的位置和朝向等。

此外,霍尔效应还可以用于制备陀螺仪、磁场传感器、匀速电机等。

总之,霍尔效应是电子技术中一项重要的研究内容,具有广泛的应用价值。

利用霍尔效应测量磁场的原理

利用霍尔效应测量磁场的原理

利用霍尔效应测量磁场的原理一、引言霍尔效应是一种用于测量磁场的重要原理,它利用了材料中的载流子在磁场中受到洛伦兹力的作用而产生的电势差来进行测量。

本文将详细介绍利用霍尔效应测量磁场的原理。

二、霍尔效应基础知识1. 霍尔效应定义霍尔效应是指当把一个导体置于外加磁场中时,在导体内部会形成一定大小和方向的电势差,这种现象称为霍尔效应。

2. 霍尔电压公式在一个宽度为w、长度为l、厚度为t的导体内,当通过该导体沿着x 轴方向有电流I流过时,如果该导体放置在磁感强度B垂直于x轴方向的外加磁场中,则在y轴方向会出现一个电势差VH。

其中,VH与I、B以及l、w和t之间存在如下关系:VH = RHB * I * B其中RHB称为霍尔系数或霍尔常数,它与材料有关。

3. 霍尔系数公式对于n型半导体材料而言,其霍尔系数RHB可表示为:RHB = 1/ne其中,n为半导体中的载流子浓度,e为电子电荷。

4. 霍尔效应的应用霍尔效应广泛应用于磁场测量、传感器、电子元件等领域。

其中,利用霍尔效应进行磁场测量是其最重要的应用之一。

三、利用霍尔效应测量磁场的原理1. 测量原理利用霍尔效应进行磁场测量的原理基于以下两个方面:(1)材料中载流子在磁场中受到洛伦兹力的作用而产生电势差;(2)在材料内部形成沿着磁场方向的电势差,在外部形成垂直于磁场方向的电势差。

根据这两个方面,可以通过将一个材料放置在外加磁场中,并通过测量该材料内部沿着磁场方向和垂直于磁场方向的电势差来确定外加磁场强度大小和方向。

2. 测量步骤利用霍尔效应进行磁场测量需要按以下步骤进行:(1)选择合适的半导体材料:选择具有良好霍尔效应的半导体材料,如InSb、InAs等。

(2)制备霍尔元件:将半导体材料制成一定尺寸的薄片,然后在薄片上制作电极。

(3)放置在磁场中:将霍尔元件放置在外加磁场中,并通过电流源给霍尔元件提供一定大小的电流。

(4)测量电势差:通过两个电极间的电势差来测量沿着磁场方向和垂直于磁场方向的电势差,从而确定外加磁场强度大小和方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题三:当霍尔片将要移出螺线管时,霍尔效应专用电源显示的电压可能发生一些怎样的变化?会是什么原因引起的?
数据表格:
1、记录所用测量仪器的仪器误差:
2、设计并画出测量数据表格
教师签字:
月日
大学物理验十三 利用霍尔效应测磁场
实验目的:
实验原理及仪器介绍:
1、对照实验室仪器写出实验仪器名称、型号及规格:
2、画图说明霍尔效应专用电源上的换向开关的工作原理。
问题一:霍尔效应专用电源与螺线管实验装置间的励磁电流、工作电流、霍尔电压都是一一对应的,实验中一定不要接错,如果接错将会产生什么后果?
问题二:连接电路前、实验结束后,应对励磁电流、工作电流调节旋纽做何调整?为什么?
3、预习霍尔电源、螺线管磁场测定装置,熟悉它们的结构及各旋钮、开关的功能。
实验内容及步骤:
问题一:测量螺线管内部磁场分布时,应从螺线管中部开始测量,如何确定霍尔片已经处于螺线管正中间?
问题二:实验过程中,流经螺线管的励磁电流很大,将使螺线管发热,从而会改变霍尔元件的灵敏度,实验时应采取什么措施克服这一影响?
相关文档
最新文档