苏科版江苏省苏州市苏科版八年级数学上册期末真题试卷(一)解析版

合集下载

苏科版八年级上册数学《期末考试试题》含答案解析

苏科版八年级上册数学《期末考试试题》含答案解析
[答案]50
[解析]
[分析]
因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;
[详解]底角:(180°−80°)÷2=100°÷2=50°
它的底角为50度
故答案为50.
[点睛]此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答.
12.已知一次函数 与 的图像交点坐标为(−1,2),则方程组 的解为____.
[答案] .
[解析]
[分析]
直接根据一次函数和二元一次方程组的关系求解.
[详解]解:∵一次函数 与 的图象的交点的坐标为(−1,2),
∴方程组 的解是 .
[点睛]本题考查了一次函数和二元一次方程(组)的关系:要准确的将一次函数问题的条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义.
A. 甲和乙B. 甲和丙C. 乙和丙D. 只有乙
[答案]B
[解析]
[分析]
根据三角形全等的判定定理SSS、SAS、AAS、ASA、HL逐个进行分析即可.
[详解]解:甲三角形有两条边及夹角与△ABC对应相等,根据SAS可以判断甲三角形与△ABC全等;
乙三角形只有一条边及对角与△ABC对应相等,不满足全等判定条件,故乙三角形与△ABC不能判定全等;
丙三角形有两个角及夹边与△ABC对应相等,根据ASA可以判定丙三角形与△ABC全等;
所以与△ABC全等的有甲和丙,
故选:B.
[点睛]本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.
6.下列图形中,表示一次函数 与正比例函数 ( 、 为常数,且 )的图象的是()

苏科版数学八年级上册《期末考试试卷》及答案

苏科版数学八年级上册《期末考试试卷》及答案
围是;
(3)求四边形 的面积.
24.甲、乙两公司为“2019东台西溪·国际半程马拉松比赛”各制作6400个相同的纪念牌,已知甲公司的人数比乙公司人数少20%,乙公司比甲公司人均少做20个,甲、乙两公司各有多少人?
25.已知:如图, 的平分线与 的垂直平分线交于点 , ,垂足分别为 .
A. 且 B. 且 C. D.
[答案]A
[解析]
[分析]
分式方程去分母转化为整式方程,求出整式方程的解得到含有a的x的值.
[详解]
方程两边同时乘以(x-1)得:
x+a-2a=2(x-1),
解得:x=2-a,
∵方程的解不小于0,
∴2-a≥0,
解得:a≤2,
∵分式方程分母不为0,
∴2-a≠1,
解得:a≠1,
A. B.1C. D.2
[答案]B
[解析]
[分析]
根据折叠的性质得到∠F=∠B=∠A=90°,BE=EF,根据全等三角形的性质得到FH=AE,GF=AG,得到AH=BE=EF,设AE=x,则AH=BE=EF=4-x,根据勾股定理即可得到结论.
[详解]∵将△CBE沿CE翻折至△CFE,
∴∠F=∠B=∠A=90°,BE=EF,
16.如图,小明把一张三角形纸片折叠,使点 、点 都与点 重合,折痕分别为 ,此时测得 ,则 的度数为________°.
17.已知点 ,点 是直线 上的一个动点,当以 为顶点的三角形面积是3时,点 的坐标为_____________.
18.如图,已知等边 的边长是6,点 在 上,且 = 4.延长 到 ,使 ,连接 .点 分别是 的中点,连接 ,则 的长为__________.
A.(-2,3)B.(2,-3)C.(2,3)D.(-2,-3)

2022-2023学年苏科版八年级数学上册期末阶段复习综合训练题(附答案)

2022-2023学年苏科版八年级数学上册期末阶段复习综合训练题(附答案)

2022-2023学年苏科版八年级数学上册期末阶段复习综合训练题(附答案)一、选择题(每题3分,共24分)1.9的算术平方根是()A.3B.81C.±3D.±812.下列各数中,无理数是()A.B.C.πD.3.若点P(a,﹣b)在第三象限,则M(ab,﹣a)应在()A.第一象限B.第二象限C.第三象限D.第四象限4.平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b值为()A.33B.﹣33C.﹣7D.75.如图所示的数轴上,点C与点B关于点A对称,A、B两点对应的实数分别是1和,则点C对应的实数是()A.1﹣B.﹣2C.﹣D.2﹣6.若点A(﹣5,y1)和点B(﹣2,y2)都在y=﹣x+b的图象上,那么y1与y2的大小关系是()A.y1≤y2B.y1=y2C.y1<y2D.y1>y27.在平面直角坐标系xOy中,已知点A(﹣1,2),B(3,2),若一次函数y=﹣x+b的图象与线段AB有交点,则b的取值范围是()A.b≤﹣1或b≥3B.﹣1≤b≤3C.b≤1或b≥5D.1≤b≤58.“龟兔首次赛跑”之后,输了比赛的兔子总结惨痛教训后,决定和乌龟再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程)下列说法中正确的有()个①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.A.1B.2C.3D.4二、填空题(本大题共8小题,共32分)9.的平方根是.10.一次函数y=(m﹣2)x+m2﹣4的图象经过原点,则m=.11.已知点P(2m﹣5,m﹣1),则当m为时,点P在第一、三象限的角平分线上.12.已知x,y是实数,且+(y﹣3)2=0,则xy的立方根是.13.将直线y=kx+b向上平移3个单位长度与直线y=2x﹣1重合,则直线y=kx+b的解析为.14.已知线段MN=4,MN∥y轴,若点M坐标为(﹣1,2),则N点坐标为.15.请写出符合以下两个条件的一个函数解析式①过点(﹣2,1),②在第二象限内,y随x增大而增大.16.如图,已知直线AB与x轴交于点A(4,0)、与y轴交于点B(0,3),直线BD与x 轴交于点D,将直线AB沿直线BD翻折,点A恰好落在y轴上的C点,则直线BD对应的函数关系式为.三、解答题(本大题共10题,共64分)17.求下列各式中x的值.(1)(x﹣3)3=4;(2)9(x+2)2=16.18.计算:(1);(2)+(π﹣3)0﹣|1﹣|.19.已知y=y1+y2,y1与x2在正比例关系,y2与x成反比例函数关系,且x=1时,y=3,x =﹣1时,y=1.(1)求y与x的关系式.(2)求当x=﹣2时,y的值.20.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣2,5),B(﹣4,3),C(﹣1,1).(1)作出△ABC向右平移5个单位后所得到的△A1B1C1;(2)作出△ABC关于x轴对称的△A2B2C2,并写出点C2的坐标.21.如图,在靠墙(墙长为18m)的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m,求鸡场的长y(m)与宽x(m)的函数关系式,并求自变量的取值范围.22.已知a,b,c满足|a﹣|++(c﹣)2=0.(1)求a,b,c的值;并求出以a,b,c为三边的三角形周长;(2)试问以a,b,c为边能否构成直角三角形?请说明理由.23.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,连云港地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式.(2)已知连云港玉女峰高出地面约600米,求这时山顶的温度大约是多少度?(3)此刻,有一架飞机飞过连云港上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?24.已知A、B两地之间有一条公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲车的速度为千米/时,a的值为.(2)求乙车出发后,y与x之间的函数关系式.25.在近期“抗疫”期间,某药店销售A、B两种型号的口罩,已知销售80只A型和45只B型的利润为21元,销售40只A型和60只B型的利润为18元.(1)求每只A型口罩和B型口罩的销售利润;(2)该药店计划一次购进两种型号的口罩共2000只,其中B型口罩的进货量不少于A 型口罩的进货量且不超过它的3倍,设购进A型口罩x只,这2000只口罩的销售总利润为y元.①求y关于x的函数关系式,并求出自变量x的取值范围;②该药店购进A型、B型口罩各多少只,才能使销售总利润最大?26.甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过时间x(小时)之间的函数关系图象.(1)甲从B地返回A地的过程中,直接写出y与x之间的函数关系式及自变量x的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?(3)在(2)的条件下,甲与乙同时出发后,直接写出经过多长时间他们相距20千米?参考答案一、选择题(每题3分,共24分)1.解:∵32=9,∴9算术平方根为3.故选:A.2.解:A、是分数,是有理数,选项错误;B、=3,是整数,是有理数,选项错误;C、是无理数,选项正确;D、=2,是整数,是有理数,选项错误.故选:C.3.解:∵第三象限的点的横坐标小于0,纵坐标小于0,∴a<0,﹣b<0即b>0,∴ab<0,﹣a>0,∴点M(ab,﹣a)在第二象限.故选:B.4.解:∵点P(﹣20,a)与点Q(b,13)关于原点对称,∴a=﹣13,b=20,∴a+b=﹣13+20=7.故选:D.5.解:∵A、B两点对应的实数分别是1和,∴AB=﹣1,又∵点C与点B关于点A对称,∴AC=AB,设点C所表示的数为c,则AC=1﹣c,∴1﹣c=﹣1,∴c=2﹣,故选:D.6.解:∵点A(﹣5,y1)和点B(﹣2,y2)都在y=﹣x+b的图象上,∴,1+b=y2,∴>0,∴y1>y2,故选:D.7.解:∵A(﹣1,2),B(3,2),∴若过A点,则2=1+b,解得b=1,若过B点,则2=﹣3+b,解得b=5,∴1≤b≤5.故选:D.8.解:由图可得,“龟兔再次赛跑”的路程为1000米,故①正确,乌龟先出发,兔子在乌龟出发40分钟时出发,故②错误,乌龟在途中休息了:40﹣30=10(分钟),故③正确,设兔子在途中S米处追上乌龟,,解得,S=750,故④正确,故选:C.二、填空题(本大题共8小题,共32分)9.解:=12,±,故答案为:.10.解:∵此函数是一次函数,∴m﹣2≠0,解得m≠2.∵一次函数y=(m﹣2)x+m2﹣4的图象经过原点,∴x=0时,y=0,∴m2﹣4=0,解得m=﹣2或m=2(舍去).故答案为:﹣2.11.解:根据题意可知,点在一、三象限上的横纵坐标相等,故有2m﹣5=m﹣1;解得,m=4.故答案填:4.12.解:∵+(y﹣3)2=0,∴3x+4=0,y﹣3=0,解得x=﹣,y=3,∴xy=﹣4,∴xy的立方根是,故答案为:.13.解:将直线y=kx+b向上平移3个单位长度后得到直线y=kx+b+3=2x﹣1,即k=2,b=﹣4,∴直线y=kx+b的解析为y=2x﹣4,故答案为:y=2x﹣4.14.解:由题意设点N(﹣1,y),∵已知线段MN=4,M坐标为(﹣1,2),∴y﹣2=4,或y﹣2=﹣4,解得y=6或y=﹣2,即点N坐标(﹣1,﹣2),(﹣1,6).故答案为:(﹣1,﹣2),(﹣1,6).15.解:符合条件的函数可以是一次函数、反比例函数、二次函数,如y=﹣,y=x+3,y=﹣x2+5等.16.解:∵点A(4,0)、点B(0,3),∴OA=4,OB=3,∴AB===5,∴BC=AB=5,∴OC=5﹣3=2,设D(m,0),则OD=m,CD=AD=4﹣m,∵CD2=OD2+OC2,∴(4﹣m)2=22+m2,解得m=,∴D(,0),设直线BD的解析式为y=kx+3,代入D的坐标得,k+3=0,解得k=﹣2,∴直线BD的解析式为y=﹣2x+3,故答案为:y=﹣2x+3.三、解答题(本大题共10题,共64分)17.解:(1)∵(x﹣3)3=4,∴(x﹣3)3=8,∴x﹣3=2,∴x=5;(2)∵9(x+2)2=16,∴,∴x+2=,解得x=或x=﹣.18.解:(1)原式=4+1﹣2﹣2=1;(2)原式=﹣1+1﹣(﹣1)=﹣1+1﹣+1=﹣+1.19.解:(1)∵y1与x2在正比例关系,∴设y1=kx2,∵y2与x成反比例函数关系,∴设y2=,∵y=y1+y2,∴y=kx2+,把x=1,y=3,x=﹣1,y=1,代入y=kx2+,得,解得k=2,m=1,∴y=2x2+,∴y与x的关系式:y=2x2+;(2)把x=﹣2代入y=2x2+,得y=2×4﹣=,∴y的值是.20.解:(1)如图所示;(2)如图所示:点C2的坐标是(﹣1,﹣1).21.解:根据题意得:鸡场的长y(m)与宽x(m)有y+2x=35,即y=﹣2x+35;∵18≥y>0,∴﹣2x+35≤18,∴x≥8.5,又y>0,∴﹣2x+35>0,解得x<,则自变量的取值范围为8.5≤x<,∴鸡场的长y(m)与宽x(m)的函数关系式为y=﹣2x+35,自变量的取值范围为8.5≤x<.22.解:(1)∵|a﹣|++(c﹣)2=0.∴a﹣=0,b﹣5=0,c﹣=0,∴a=2,b=5,c=3,∴以a,b,c为三边的三角形周长=2=5+5;(2)不能构成直角三角形,∵a2+c2=8+18=26,b2=25,∴a2+c2≠b2,∴不能构成直角三角形.23.解:(1)由题意得,y与x之间的函数关系式y=20﹣6x(x≥0);(2)∵600米=0.6千米,∴当x=0.6时,y=20﹣6×0.6=16.4,答:这时山顶的温度大约是16.4℃;(3)当y=﹣34℃时,﹣34=20﹣6x,解得x=9.答:飞机离地面的高度为9千米.24.解:(1)由题意可知,甲车的速度为:80÷2=40(千米/时);a=40×6×2=480,故答案为:40;480;(2)设乙车出发后y与x之间的函数关系式为y=kx+b,由图可知,函数图象经过(2,80),(6,480),∴,解得,∴乙车出发后y与x之间的函数关系式为y=100x﹣120.25.解:(1)设每只A型口罩销售利润为a元,每只B型口罩销售利润为b元,根据题意得:,解得,答:每只A型口罩销售利润为0.15元,每只B型口罩销售利润为0.2元;(2)①根据题意得,y=0.15x+0.2(2000﹣x),即y=﹣0.05x+400;根据题意得,,解得500≤x≤1000,∴y=﹣0.05x+400(500≤x≤1000);②∵y=﹣0.05x+400,k=﹣0.05<0;∴y随x的增大而减小,∵x为正整数,∴当x=500时,y取最大值,则2000﹣x=1500,即药店购进A型口罩500只、B型口罩1500只,才能使销售总利润最大.26.解:(1)设甲从B地返回A地的过程中,y与x之间的函数关系式为y=kx+b,根据题意得:,解得,所以y=﹣60x+180(1.5≤x≤3);(2)∵当x=时,y=﹣60×1.8+180=72,∴骑电动车的速度为72÷1.8=40(千米/时),∴乙从A地到B地用时为90÷40=2.25(小时)=135分钟.答:乙从A地到B地用了135分钟.(3)根据题意得:90x﹣40x=20或60(x﹣1.5)+40x=90﹣20或60(x﹣1.5)+40x=90+20,解得x=或x=或x=2,答:经过时或时或2时,他们相距20千米.。

苏科版数学八年级上册《期末测试题》含答案

苏科版数学八年级上册《期末测试题》含答案

苏科版数学八年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是无理数的是()A.0 B.1.010010001C.πD.2.已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,已知△ABC的3条边和3个角,则能判断和△ABC全等的是()A.甲和乙B.乙和丙C.只有乙D.只有丙4.如图,正方形ABCD的边长为4,点C的坐标为(3,3),则点D的坐标为()A.(﹣1,3) B.(1,3) C.(3,1) D.(3,﹣1)5.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y;④y=(1)x.A.1个B.2个C.3个D.4个6.如图,两个三角形是全等三角形,x的值是()A.30 B.45 C.50 D.857.如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.8.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.D.9.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(﹣1,﹣2) B.(1,2) C.(1,﹣2) D.(﹣2,1)10.如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是()A.L l=L2B.L1>L2C.L2>L1D.无法确定第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2018的值为.12.将函数y=3x的图象向上平移2个单位,所得函数图象的解析式为.13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为.14.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是.(添一个即可)15.一个等腰三角形的顶角为80°,则它的一个底角为.16.如图,五边形ABCDE中有一等边三角形ACD.若AB=DE,BC=AE,∠E=115°,则∠BAE的度数是°.17.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为.18.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.三.解答题(共10小题,满分96分)19.求x的值:(1)(x+1)2=64(2)8x3+27=0.20.已知点P(﹣m,﹣2m+1)是第二象限的点,求m的取值范围.21.如图,在△ABC中,AB=AC,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.求证:BD=CE.22.如图,在Rt△ABC中,∠ACB=90°.(1)用直尺和圆规作∠A的平分线交BC于点P(保留作图的痕迹,不写作法);(2)当∠CAB为度时,点P到A,B两点的距离相等.23.如图,已知AB=AC,AD=AE.求证:BD=CE.24.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.25.如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C恰好落在边AD上的点G处,连接EG.(1)△GEF是等腰三角形吗?请说明理由;(2)若CD=4,GD=8,求HF的长度.26.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.x(kg) …30 40 50 …y(元) … 4 6 8 …(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是.27.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)28.如图,一次函数y x+3的图象分别与x轴、y轴交于A、B两点.动点P从A点开始沿折线AO ﹣OB﹣BA运动,点P在AO,OB,BA上运动的速度分别为1,,2(长度单位/秒);动点E从O点开始以(长度单位/秒)的速度沿线段OB运动.设P、E两点同时出发,运动时间为t(秒), 当点P沿折线AO﹣OB﹣BA运动一周时,动点E和P同时停止运动.过点E作EF∥OA,交AB于点F.(1)求线段AB的长;(2)求证∠ABO=30°;(3)当t为何值时,点P与点E重合?(4)当t=时,PE=PF.答案与解析第Ⅰ卷(选择题共30分)一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各数中,是无理数的是()A.0 B.1.010010001C.πD.[答案]C[解析]A.0是整数,属于有理数;B.1.010010001是有限小数,即分数,属于有理数;C.π是无理数;D.是分数,属于有理数;故选:C.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数以及像0.1010010001…,等有这样规律的数.2.已知a>0,b<0,那么点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限[答案]D[解析]∵a>0,b<0,∴点P(a,b)在第四象限.故选:D.[点睛]本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.3.如图,已知△ABC的3条边和3个角,则能判断和△ABC全等的是()A.甲和乙B.乙和丙C.只有乙D.只有丙[答案]B[解析]如图:在△ABC和△DEF中,,∴△ABC≌△EFD(SAS);在△ABC和△MNK中,,∴△ABC≌△MNK(AAS).∴甲、乙、丙三个三角形中和△ABC全等的图形是:乙或丙.故选:B.[点睛]此题考查了全等三角形的判定,解题的关键是注意掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4.如图,正方形ABCD的边长为4,点C的坐标为(3,3),则点D的坐标为()A.(﹣1,3) B.(1,3) C.(3,1) D.(3,﹣1)[答案]A[解析]如图,∵正方形ABCD的边长为4,点C的坐标为(3,3),∴点D的纵坐标为3,点D的横坐标为3﹣4=﹣1,∴点D的坐标为(﹣1,3).故选:A.[点睛]本题考查了正方形的性质,坐标与图形的性质,根据图形明确正方形的边长与点的坐标的关系是解题的关键.5.下列函数中,y随x的增大而减小的有()①y=﹣2x+1;②y=6﹣x;③y;④y=(1)x.A.1个B.2个C.3个D.4个[答案]D[解析]①y=﹣2x+1,k=﹣2<0;②y=6﹣x,k=﹣1<0;③y,k0;④y=(1)x,k=(1)<0.所以四函数都是y随x的增大而减小.故选:D.[点睛]本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.6.如图,两个三角形是全等三角形,x的值是()A.30 B.45 C.50 D.85[答案]A[解析]∠A=180°﹣105°﹣45°=30°,∵两个三角形是全等三角形,∴∠D=∠A=30°,即x=30,故选:A.[点睛]本题考查的是全等三角形的性质,三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.7.如图,动点P从点A出发,按顺时针方向绕半圆O匀速运动到点B,再以相同的速度沿直径BA回到点A停止,线段OP的长度d与运动时间t的函数图象大致是()A.B.C.D.[答案]B[解析]①当P点半圆O匀速运动时,OP长度始终等于半径不变,对应的函数图象是平行于横轴的一段线段,排除A答案;②当P点在OB段运动时,OP长度越来越小,当P点与O点重合时OP=0,排除C答案;③当P点在OA段运动时,OP长度越来越大,B答案符合.故选:B.[点睛]本题主要考查动点问题的函数图象,解决这类问题要考虑动点在不同的时间段所产生的函数意义,分情况讨论,动中找静是通用方法.8.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A.a+b B.a﹣b C.D.[答案]C[解析]设CD=x,则DE=a﹣x,∵HG=b,∴AH=CD=AG﹣HG=DE﹣HG=a﹣x﹣b=x,∴x,∴BC=DE=a,∴BD2=BC2+CD2=()2+()2,∴BD,故选:C.[点睛]本题考查了勾股定理,全等三角形的性质,正确的识别图形是解题的关键.9.在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(﹣1,﹣2) B.(1,2) C.(1,﹣2) D.(﹣2,1)[答案]C[解析]∵点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',∴A′(1,2),∵将点A'向下平移4个单位,得到点A″,∴点A″的坐标是:(1,﹣2).故选:C.[点睛]此题主要考查了关于y轴对称点的性质以及平移变换,正确掌握相关平移规律是解题关键.10.如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是()A.L l=L2B.L1>L2C.L2>L1D.无法确定[答案]A[解析]∵等边三角形各内角为60°,∴∠B=∠C=60°,∵∠BPD=∠CPE=30°,∴在Rt△BDP和Rt△CEP中,∴BP=2BD,CP=2CE,∴BD+CE BC,∴AD+AE=AB+AC BC BC,∴BD+CE+BC BC,L1BC+DE,L2BC+DE,即得L1=L2,故选:A.[点睛]本题考查了直角三角形中特殊角的正弦函数值,考查了等边三角形各边相等的性质,本题中求证L1BC+DE,L2BC+DE是解题的关键.第Ⅱ卷(非选择题共120分)注意事项:1.第Ⅱ卷分填空题和解答题.2.第Ⅱ卷所有题目的答案,考生须用0.5毫米黑色签字笔答在试卷规定的区域内.二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)11.已知点A(x,1)与点B(2,y)关于y轴对称,则(x+y)2018的值为.[答案]1[解析]∵点A(x,1)与点B(2,y)关于y轴对称,∴x=﹣2,y=1,故(x+y)2018=(﹣2+1)2018=1.故答案为:1.[点睛]此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的关系是解题关键.12.将函数y=3x的图象向上平移2个单位,所得函数图象的解析式为.[答案]y=3x+2[解析]由“上加下减”的原则可知,将函数y=3x的图象向上平移2个单位所得函数的解析式为y=3x+2.故答案为:y=3x+2.[点睛]本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.13.若直角三角形的两条直角边的长分别是3和4,则斜边上的中线长为.[答案]2.5[解析]∵∠ACB=90°,AC=3,BC=4,由勾股定理得:AB5,∵CD是△ABC中线,∴CD AB5=2.5,故答案为:2.5.[点睛]本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出CD AB是解此题的关键.14.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是.(添一个即可)[答案]AB=CD[解析]∵AB∥DC,∴∠ABD=∠CDB,又BD=BD,①若添加AB=CD,利用SAS可证两三角形全等;②若添加AD∥BC,利用ASA可证两三角形全等.(答案不唯一)故填AB=CD等(答案不唯一)[点睛]本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.15.一个等腰三角形的顶角为80°,则它的一个底角为.[解析]∵等腰三角形的顶角为80°,∴它的一个底角为(180°﹣80°)÷2=50°.故填50°[点睛]此题主要考查了等腰三角形的性质及三角形内角和定理.通过三角形内角和,列出方程求解是正确解答本题的关键.16.如图,五边形ABCDE中有一等边三角形ACD.若AB=DE,BC=AE,∠E=115°,则∠BAE的度数是°.[答案]125[解析]∵正三角形ACD,∴AC=AD,∠ACD=∠ADC=∠CAD=60°,在△ABC与△AED中,∴△ABC≌△AED(SSS),∴∠B=∠E=115°,∠ACB=∠EAD,∠BAC=∠ADE,∴∠ACB+∠BAC=∠BAC+∠DAE=180°﹣115°=65°,∴∠BAE=∠BAC+∠DAE+∠CAD=65°+60°=125°,故答案为:125[点睛]此题考查全等三角形的判定和性质,关键是根据全等三角形的判定和性质得出△ABC与△AED全等.17.如图,在平面直角坐标系中,点A、B的坐标分别为(1,4)、(n,4),若直线y=2x与线段AB有公共点,则n的取值范围为.[解析]∵直线y=2x与线段AB有公共点,∴2n≥4,∴n≥2故答案为:n≥2[点睛]本题考查了一次函数图象上点的坐标特征,用一次函数图象上点的坐标特征,找出关于n的一元一次不等式是解题的关键.18.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.[答案]20[解析]∵将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处,∴∠ADC=∠ADE=90°,DE=CD CE,∵BC=10,BE=2∴CE=8,∴CD=DE=4,BD=6,在Rt△ABD中,AB2=AD2+BD2,在Rt△ACD中,AC2=AD2+CD2,∴AB2﹣AC2=BD2﹣CD2=20,故答案为:20[点睛]本题考查了翻折变换,勾股定理,熟练运用折叠的性质是本题的关键.三.解答题(共10小题)19.求x的值:(1)(x+1)2=64(2)8x3+27=0.[解析](1)x+1=±8(2)8x3=﹣27x3x[点睛]本题考查立方根与平方根的定义,解题的关键是熟练运用平方根与立方根的定义,本题属于基础题型.20.已知点P(﹣m,﹣2m+1)是第二象限的点,求m的取值范围.[解析]∵点P(﹣m,﹣2m+1)在第二象限,∴,解不等式①得,m>0,解不等式②得,m,所以,不等式组的解集是0<m.故m的取值范围为:0<m.[点睛]本题主要考查解一元一次不等式组,解题的关键是掌握各象限内点的坐标的符号特点及解一元一次不等式组的能力.21.如图,在△ABC中,AB=AC,分别以AB,AC为边作两个等腰直角三角形ABD和ACE,使∠BAD=∠CAE=90°.求证:BD=CE.[解答]证明:∵△ABD和△ACE是等腰直角三角形,∴AB=AD,AC=AE,∵AB=AC,∴AD=AE,在△ADB和△ACE中,∵,∴△ADB≌△ACE,∴BD=CE.[点睛]本题考查了全等三角形的判定和性质,解题的关键是找出SAS所需要的三个条件.22.如图,在Rt△ABC中,∠ACB=90°.(1)用直尺和圆规作∠A的平分线交BC于点P(保留作图的痕迹,不写作法);(2)当∠CAB为60度时,点P到A,B两点的距离相等.[解析](1)如图所示,点P即为所求.(2)当∠CAB=60°时,P A=PB,∵∠C=90°,∠CAB=60°,∴∠B=30°,∵AP平分∠CAB,∴∠P AB=30°,∴∠P AB=∠B=30°,∴P A=PB.故答案为:60.[点睛]本题主要考查作图﹣复杂作图,解题的关键是掌握角平分线的尺规作图和性质及三角形的内角和定理.23.如图,已知AB=AC,AD=AE.求证:BD=CE.[解答]证明:作AF⊥BC于F,∵AB=AC(已知),∴BF=CF(三线合一),又∵AD=AE(已知),∴DF=EF(三线合一),∴BF﹣DF=CF﹣EF,即BD=CE(等式的性质).[点睛]本题考查了等腰三角形的性质;做题中用到了等量减等量差相等得到答案.24.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.[解答]证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.[点睛]本题考查全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.25.如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C恰好落在边AD上的点G处,连接EG.(1)△GEF是等腰三角形吗?请说明理由;(2)若CD=4,GD=8,求HF的长度.[解析](1)∵长方形纸片ABCD,∴AD∥BC,∴∠GFE=∠FEC,∵∠FEC=∠GEF,∴∠GFE=∠GEF,∴△GEF是等腰三角形.(2)∵∠C=∠H=90°,HF=DF,GD=8,设HF长为x,则GF长为(8﹣x),在Rt△FGH中,x2+42=(8﹣x)2,解得x=3,∴HF的长为3.[点睛]本题主要考查的是翻折的性质、勾股定理的应用,掌握翻折的性质是解题的关键.26.客运公司规定旅客可免费携带一定质量的行李,当行李质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数,且部分对应关系如表所示.x(kg) …30 40 50 …y(元) … 4 6 8 …(1)求y关于x的函数表达式;(2)求旅客最多可免费携带行李的质量;(3)当行李费2≤y≤7(元)时,可携带行李的质量x(kg)的取值范围是.[解析](1)∵y是x的一次函数,∴设y=kx+b(k≠0)将x=30,y=4;x=40,y=6分别代入y=kx+b,得,解得:∴函数表达式为y=0.2x﹣2,(2)将y=0代入y=0.2x﹣2,得0=0.2x﹣2,∴x=10,(3)把y=2代入解析式,可得:x=20,把y=7代入解析式,可得:x=45,所以可携带行李的质量x(kg)的取值范围是20≤x≤45,故答案为:20≤x≤45.[点睛]本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.27.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)[解析](1)设线段BC所在直线的函数表达式为y=kx+b(k≠0),∵B(,0),C(,)在直线BC上,,得,即线段BC所在直线的函数表达式为y=20x;(2)设甲的速度为m km/h,乙的速度为n km/h,,得,∴点A的纵坐标是:3010,即点A的坐标为(,10),点A的实际意义是当甲骑电动车行驶h时,距离M地为10km;(3)由(2)可知,甲的速度为30km/h,乙的速度为50千米/小时,则乙从M地到达N地用的时间为:小时,∵,∴乙在图象中的时,停止运动,甲到达N地用的时间为:小时,补全的函数图象如右图所示.[点睛]本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.28.如图,一次函数y x+3的图象分别与x轴、y轴交于A、B两点.动点P从A点开始沿折线AO ﹣OB﹣BA运动,点P在AO,OB,BA上运动的速度分别为1,,2(长度单位/秒);动点E从O点开始以(长度单位/秒)的速度沿线段OB运动.设P、E两点同时出发,运动时间为t(秒), 当点P沿折线AO﹣OB﹣BA运动一周时,动点E和P同时停止运动.过点E作EF∥OA,交AB于点F.(1)求线段AB的长;(2)求证∠ABO=30°;(3)当t为何值时,点P与点E重合?(4)当t=或时,PE=PF.[解析](1)令y=0,得A(3,0),令x=0,求得B(0,3),∴OA=3,OB=3,∵∠AOB=90°,∴AB6,(2)证明:取AB的中点C,连接OC,∵∠AOB=90°,C为AB的中点,∴OC=BC=CA=3,∵OA=3,∴OC=CA=OA,∴△OAC是等边三角形,∴∠OAB=60°,∵∠AOB=90°,∴∠ABO=30°;(3)由题意得t(t﹣3),解得:t所以当t时,点P与点E重合;(4)取EF的中点H,过点H作PP′∥y轴,此时,P(P′)E=P(P′)F,①当点P在线段OA时,EH=OP,∵∠OBA=30°,设:EF=m,则FB=2m,BE m,即EF BE,EH EF BE•(3t)OP=OA﹣AP=3﹣t,解得:t,②当点P(点P′)在线段AB时,作P′O′⊥OB于点O′,此时点P′运动的时间为t,其中在AO、OB运动时间均为3,则在AB上运动的时间为t﹣6,则BP′=2(t﹣6),同理O′P′B′P′=t﹣6,由①得:EH(3t)=O′P′=t﹣6,同理可得:t,故答案是:或.[点睛]本题考查的是一次函数综合运用,涉及到解直角三角形、勾股定理运用等知识点,难度不大.。

苏科版八年级数学上册期末测试题(附参考答案)

苏科版八年级数学上册期末测试题(附参考答案)

苏科版八年级数学上册期末测试题(附参考答案)满分150分考试时间120分钟一、选择题:本题共10个小题,每小题4分,共40分。

每小题只有一个选项符合题目要求。

1.如图,在△ABF和△DCE中,点E,F在BC上,BE=CF,∠B=∠C,添加下列条件仍无法证明△ABF≌△DCE的是( )A.∠AFB=∠DEC B.AB=DCC.∠A=∠D D.AF=DEAB的长为半径2.如图,在△ABC中,AC>BC,分别以点A,B为圆心,以大于12画弧,两弧交于点D,E,经过点D,E作直线分别交AB,AC于点M,N,连接BN,下列结论正确的是( )A.AN=NC B.AN=BNBC D.BN平分∠ABCC.MN=123.下列图案中,是轴对称图形的为( )4.如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴.若AB=6,OA=OB=5,则点A的坐标是( )A.(5,4) B.(3,4)C.(5,3) D.(4,3)5.下列说法错误的是( )A.1的平方根是1B.4的算术平方根是2C.√2是2的平方根D.-√3是√(−3)2的平方根6.甲、乙两位同学放学后走路回家,他们走过的路程s(km)与所用的时间t(min)之间的函数关系如图所示.根据图中信息,下列说法错误的是( )A.前10 min,甲比乙的速度慢B.经过20 min,甲、乙都走了1.6 kmC.甲的平均速度为0.08 km/minD.经过30 min,甲比乙走过的路程少7.在同一平面直角坐标系中,一次函数y1=ax+b(a≠0)与y2=mx+n(m≠0)的图象如图所示,则下列结论错误的是( )A.y1随x的增大而增大B.b<nC.当x<2时,y1>y2D.关于x,y的方程组{ax−y=−b,mx−y=−n的解为{x=2,y=38.△ABC的三边长a,b,c满足(a-b)2+√2a−b−3+|c-3√2|=0,则△ABC 是( )A.等腰三角形B.直角三角形C.锐角三角形D.等腰直角三角形9.如图,在平面直角坐标系中,每个网格小正方形的边长均为1个单位长度,以点P为位似中心作正方形P A1A2A3,正方形P A4A5A6,…,按此规律作下去,所作正方形的顶点均在格点上,其中正方形P A1A2A3的顶点坐标分别为P(-3,0),A1(-2,1),A2(-1,0),A3(-2,-1),则顶点A100的坐标为( )A.(31,34) B.(31,-34)C.(32,35) D.(32,0)10.如图,在等边三角形ABC中,D,E分别是BC,AC的中点,P是线段AD上的一个动点,当△PCE的周长最小时,点P的位置在( )A.A点处B.D点处C.AD的中点处D.△ABC三条高的交点处二、填空题:本题共8个小题,每小题4分,共32分。

苏科版数学八年级上册《期末检测题》含答案解析

苏科版数学八年级上册《期末检测题》含答案解析
[答案]1.682×1011
[解析]
科学记数法 表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,
1682=1.682×1011,
故答案为1.682×1011.
基本运用:
(2)请你利用第(1)题的解答思想方法,解答下面问题:
如图③,△ABC中,∠CAB=90°,AB=AC,E,F为BC上的点,且∠EAF=45°,判断BE,EF,FC之间的数量关系并证明;
能力提升:
(3)如图④,在Rt△ABC中,∠C=90°,AC=1,∠ABC=30°,点P为Rt△ABC的费马点,
( )观察图像,当 时,y的取值范围是______;
( )将直线 平移后经过点 ,求平移后的直线的函数表达式.
24.如图,已知一次函数 的图像与x轴交于点A ,交y轴于点B.
(1)求m的值与点B的坐标;
(2)若点C在y轴上,且使得△ABC 面积为12,请求出点C的坐标.
(3)若点P在x轴上,且△ABP为等腰三角形,请直接写出点P的坐标.
(1)请在如图所示的网格平面内,作出平面直角坐标系;
(2)请作出 关于 轴对称的 ;
(3)写出点 的坐标为_____;
(4)△ABC的面积为___.
21.如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E,
(1)求证:△ABD≌△ECB;
(2)若∠DBC=50°,求∠DCE的度数.
[点睛]本题主要考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.

苏科版八年级上册数学《期末测试卷》及答案解析

苏科版八年级上册数学《期末测试卷》及答案解析
12.已知直线l1:y= x+4与y轴交于点A,直线l2经过点A,l1与l2在A点相交所形成的夹角为45°(如图所示),则直线l2的函数表达式为_____.
二、选择题
13.下列图形中,是轴对称图形的为()
A. B. C. D.
14.在下列实数中: , ,π, , ,﹣2.010010001…其中无理数有()
[答案]B
[解析]
试题解析:由题意可得:AM平分
∵AB//CD,
平分
故选B.
17.如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC≌△DEF的是
A AB=DEB. ∠B=∠EC.EF=BCD.EF//BC
[答案]C
[解析]
[详解]试题分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.
19.在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(3,0)是x轴上的两点,则PA+PB的最小值为()
A.3B. C. D.4
[答案]B
[解析]
试题解析:
如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,
此时PA+PB最小,
由题意可得出:OA′=1,BO=3,PA′=PA,
A.1个B.2个C.3个D.4个
15.点P(m,﹣2m)是第二象限 点,则满足条件的所有实数m取值范围是()
A.m<0B.m>0C.0<m<2D.﹣2<m<0
16.如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于 EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M.若∠ACD=110°,则∠MAB的度数为()

《初二上学期期末试卷》(期末试卷)2(苏科版初二上)初中数学(1)

《初二上学期期末试卷》(期末试卷)2(苏科版初二上)初中数学(1)

《初二上学期期末试卷》(期末试卷)2(苏科版初二上)doc 初中数学八年级数学试题题号一二三四五总分1-1011-20 21-25 26 27 28 29 30 31 得分第一部分〔选择题,共 30 分〕本卷须知:答卷前将密封线内的项目填写清晰一、选择题:〔本大题共10小题,每题3分,共30分.在每题给出的4个选项中,只有1项是符合题目要求的,请正确答案的序号填写在下面的括号内〕.1.以下函数中,一次函数是A.x2y B.y=5x 2 C.y=1+5x D.y=x 2+x(x-1)2.假设x<-3,那么A .-2x>6B .2x>-6C .-2x<6D .2x<63.在坐标平面内有一点P(a ,b),且a 与b 的乘积为零,那么P 的位置一定在 A.原点 B.x 轴上 C.y 轴上 D.坐标轴上4.四边形ABCD 的对角线相交于O ,且OA=OB=OC=OD ,那么那个四边形 A.仅是轴对称图形 B.仅是中心对称图形C.即是轴对称图形又是中心对称图形 D.即不是轴对称图形,又不是中心对称图形 5.8的平方根是 A.22B.-22C.±22D.不存在6.在学校对学生进行的体温测量中,学生甲连续10天的体温与36℃的上下波动数据为0.2,0.3,0.1,0.1,0,0.2,0.1,0,0.1,0.1,那么在这10天中该学生的体温波动数据中不正确的选项......是.A.平均数为0.12 B.众数为0.1 C.中位数为0.1 D.平均数为0.027.五根小木棒,其长度分不为7、15、20、24、25,现想把它们摆成两个直角三角形,以下图中题号 1 2 3 4 5 6 7 8 9 10答案2024正确的选项是8a =,那么以下结论正确的选项是A.4.5 5.0a << B.5.0 5.5a <<C.5.5 6.0a << D.6.0 6.5a <<9.如图,点阵中以相邻4个点为顶点的小正方形的面积为1, 那么△ABC 的面积为 A .3 B .3.5 C .4 D .4.510.一列火车从盐城站动身,加速行驶一段时刻后开始匀速行驶,过了一段时刻,火车到达下一个车站.乘客上、下车后,火车又加速,一段时刻后再次开始匀速行驶.下面哪幅图能够近似地刻画出火车在这段时刻内的速度变化情形.第二部分〔非选择题,共 120 分〕本卷须知:第二部分试题答案用钢笔或圆珠笔直截了当写在试卷上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版江苏省苏州市苏科版八年级数学上册期末真题试卷(一)解析版一、选择题1.如图,在四边形ABCD 中,AB ∥DC ,AD=BC=5,DC=7,AB=13,点P 从点A 出发以3个单位/s 的速度沿AD→DC 向终点C 运动,同时点Q 从点B 出发,以1个单位/s 的速度沿BA 向终点A 运动.当四边形PQBC 为平行四边形时,运动时间为( )A .4sB .3sC .2sD .1s 2.若点P 在y 轴负半轴上,则点P 的坐标有可能是( )A .()1,0-B .()0,2-C .()3,0D .()0,4 3.下列实数中,无理数是( )A .227B .3πC .4-D .3274.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-, 5.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是( )A .∠B =∠CB .BE =CDC .AD =AE D .BD =CE 6.若等腰三角形的一个内角为92°,则它的顶角的度数为( )A .92°B .88°C .44°D .88°或44° 7.如图,将边长为1的正方形OABC 沿x 轴正方向连续翻转2020次,点A 依次落在点1A 、2A 、3A 、4A …2020A 的位置上,则点2020A 的坐标为( )A .2019,0()B .2019,1()C .2020,0()D .2020,1()8.若分式242xx-+的值为0,则x的值为()A.-2 B.0 C.2 D.±29.一次函数112y x=-+的图像不经过的象限是:()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,正方形OACB的边长是2,反比例函数kyx=图像经过点C,则k的值是()A.2B.2-C.4D.4-11.如图所示,三角形纸片被正方形纸板遮住了一部分,小明根据所学知识画出了一个与该三角形完全重合的三角形,那么这两个三角形完全重合的依据是()A.SSS B.SAS C.AAS D.ASA12.如图,在一张长方形纸片上画一条线段AB,将右侧部分纸片四边形ABCD沿线段AB 翻折至四边形ABC'D',若∠ABC=58°,则∠1=()A.60°B.64°C.42°D.52°13.如图,平面直角坐标系中,长方形OABC,点A,C分别在x轴,y轴的正半轴上,点B(6,3),现将△OAB沿OB翻折至△OA′B位置,OA′交BC于点P.则点P的坐标为()A .(94,3)B .(32,3)C .(125,3)D .(5,32) 14.下列各数:4,﹣3.14,227,2π,3无理数有( ) A .1个B .2个C .3个D .4个 15.已知点(,)P a b 在第四象限,且点P 到x 轴的距离为3,到y 轴的距离为6,则点P 的坐标是( )A .(3,6)-B .(6,3)-C .(3,6)-D .()3,3-或(6,6)-二、填空题16.9的平方根是_________.17.已知y 与x 成正比例,当x=8时,y=﹣12,则y 与x 的函数的解析式为_____.18.已知实数x 、y 满足|3|20x y ++-=,则代数式()2019x y +的值为______.19.若3a 的整数部分为2,则满足条件的奇数a 有_______个.20.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.21.如果点P 在第二象限内,点P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为______.22.一次函数32y x =-+的图象一定不经过第______象限.23.函数y =-3x +2的图像上存在一点P ,点P 到x 轴的距离等于3,则点P 的坐标为________.24.如图,在△ABC 中,AB = AC ,∠BAC = 120º,AD ⊥BC ,则∠BAD = _____°.25.如图,Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线,CD =4,AB =16,则△ABD 的面积等于_____.三、解答题26.如图,在四边形ABCD 中,90ABC ∠=︒,过点B 作BE CD ⊥,垂足为点E ,过点A 作AF BE ⊥,垂足为点F ,且BE AF =.(1)求证:ABF BCE ∆≅∆;(2)连接BD ,且BD 平分ABE ∠交AF 于点G .求证:BCD ∆是等腰三角形.27.如图,已知某开发区有一块四边形空地ABCD ,现计划在该空地上种植草皮,经测量∠ADC=90°,CD=6m ,AD=8m ,BC=24cm ,AB=26m ,若每平方米草皮需200元,则在该空地上种植草皮共需多少钱?28.如图,ABC ∆中,90BAC ∠=,8AC cm =,DE 是BC 边上的垂直平分线,ABD ∆的周长为14cm ,求BC 的长.29.甲、乙两个工程队同时挖掘两段长度相等的隧道,如图是甲、乙两队挖掘隧道长度y (米)与挖掘时间x (时)之间关系的部分图象.请解答下列问题:()1在前2小时的挖掘中,甲队的挖掘速度为 米/小时,乙队的挖掘速度为 米/小时. ()2①当26x <<时,求出y 乙与x 之间的函数关系式;②开挖几小时后,两工程队挖掘隧道长度相差5米?30.(1)求式中x 的值:2(1)16x -=;(2)计算:2020312527--+-31.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC 关于x 轴对称的图形△A 1B 1C 1;②将△A 1B 1C 1向右平移7个单位得到△A 2B 2C 2.(2)△A 2B 2C 2中顶点B 2坐标为 .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设运动时间为t 秒,则CP=12-3t ,BQ=t ,根据题意得到12-3t=t ,解得:t=3,故选B .【点睛】本题考查一元一次方程及平行四边形的判定,难度不大.2.B解析:B【解析】根据y轴上的点的坐标特点,横坐标为0,然后根据题意求解.【详解】解:∵y轴上的点的横坐标为0,又因为点P在y轴负半轴上,∴(0,-2)符合题意故选:B【点睛】本题考查坐标轴上的点的坐标特点,利用数形结合思想解题是本题的解题关键. 3.B解析:B【解析】【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】A.227是有理数,不符合题意;B.3π是无理数,符合题意;C.=-2,是有理数,不符合题意;是有理数,不符合题意.故选:B.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.4.B解析:B【解析】【分析】根据关于x轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数的性质解答即可.【详解】∵P(2,-3)关于x轴对称,∴对称点与点P横坐标相同,纵坐标互为相反数,∴对称点的坐标为(-2,-3).故答案为(-2,-3).【点睛】本题考查的是坐标与图形的变换,关于y轴对称的点的坐标与原坐标纵坐标相等,横坐标互为相反数;关于x轴对称的点的坐标与原坐标横坐标相等,纵坐标互为相反数;掌握轴对称的性质是解题的关键,解析:B【解析】【分析】根据全等三角形的性质和判定即可求解.【详解】解:选项A ,∠B =∠C 利用 ASA 即可说明 △ABE ≌△ACD ,说法正确,故此选项错误; 选项B ,BE =CD 不能说明 △ABE ≌△ACD ,说法错误,故此选项正确;选项C,AD =AE 利用 SAS 即可说明 △ABE ≌△ACD ,说法正确,故此选项错误;选项D ,BD =CE 利用 SAS 即可说明 △ABE ≌△ACD ,说法正确,故此选项错误;故选B.【点睛】本题考查全等三角形的性质和判定,熟悉掌握判定方法是解题关键.6.A解析:A【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】解:(1)若等腰三角形一个底角为92°,因为92°+92°=184°>180°,所以这种情况不可能出现,舍去;(2)等腰三角形的顶角为92°.因此这个等腰三角形的顶角的度数为92°.故选A.【点睛】本题考查了等腰三角形的性质.如果已知等腰三角形的一个内角要求它的顶角,需要分该内角是顶角和这个内角是底角两种情况讨论.本题能根据92°角是钝角判断出92°只能是顶角是解题关键.7.A解析:A【解析】【分析】根据题意分别求出1A 、2A 、3A 、4A …横坐标,再总结出规律即可得出.【详解】解:根据规律1A (0,1)、2A (2,1)、3A (3,0)、4A (3,0),5A (4,1)、6A (6,1)、7A (7,0)、8A (7,0) …每4个一个循环,可以判断2020A 在505次循环后与4A 一致,即与2019A 相等,坐标应该是(2019,0)故选 A【点睛】此题主要考查了通过图形观察规律的能力,并根据规律进行简单计算的能力.8.C解析:C【解析】由题意可知:24020x x =⎧-⎨+≠⎩, 解得:x=2,故选C.9.C解析:C【解析】试题分析:根据一次函数y=kx+b (k≠0,k 、b 为常数)的图像与性质可知:当k >0,b >0时,图像过一二三象限;当k >0,b <0时,图像过一三四象限;当k <0,b >0时,图像过一二四象限;当k <0,b <0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限.答案为C考点:一次函数的图像 10.C解析:C【解析】【分析】根据正方形的性质,即可求出点C 的坐标,然后代入反比例函数解析式里即可.【详解】解:∵正方形OACB 的边长是2,∴点C 的坐标为(2,2)将点C 的坐标代入k y x=中,得 22k = 解得:4k =故选C .【点睛】此题考查的是求反比例函数的比例系数,掌握用待定系数法求反比例函数的比例系数是解决此题的关键.11.D解析:D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边还存在,∴根据可以根据三角形两角及夹边作出图形,所以,依据是ASA.故选:D.【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.12.B解析:B【解析】【分析】由平行线的性质可得∠BAD=122°,由折叠的性质可得∠BAD=∠BAD'=122°,即可求解.【详解】∵AD∥BC,∴∠ABC+∠BAD=180°,且∠ABC=58°,∴∠BAD=122°,∵将右侧部分纸片四边形ABCD沿线段AB翻折至四边形ABC'D',∴∠BAD=∠BAD'=122°,∴∠1=122°-58°=64°,故选:B.【点睛】此题主要考查平行的性质和折叠的性质,解题关键是借助等量关系进行转换.13.A解析:A【解析】【分析】由折叠的性质和矩形的性质证出OP=BP,设OP=BP=x,则PC=6﹣x,再用勾股定理建立方程9+(6﹣x)2=x2,求出x即可.【详解】∵将△OAB沿OB翻折至△OA′B位置,OA′交BC于点P,∴∠A'OB=∠AOB,∵四边形OABC是矩形,∴BC∥OA,∴∠OBC=∠AOB,∴∠OBC=∠A'OB,∴OP=BP,∵点B的坐标为(6,3),∴AB=OC=3,OA=BC=6,设OP=BP=x,则PC=6﹣x,在Rt△OCP中,根据勾股定理得,OC2+PC2=OP2,∴32+(6﹣x)2=x2,解得:x=154,∴PC=6﹣154=94,∴P(94,3),故选:A.【点睛】此题主要考查折叠和矩形的性质以及利用勾股定理构建方程,熟练掌握,即可解题. 14.B解析:B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】无理数有2π2个.故选:B.【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.15.B解析:B【解析】【分析】根据第四象限的点的横坐标是正数,纵坐标是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度确定出点的横坐标与纵坐标,即可得解.【详解】∵点在第四象限且到x轴距离为3,到y轴距离为6,∴点的横坐标是6,纵坐标是-3,∴点的坐标为(6,-3).故选B.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.二、填空题16.±3【解析】分析:根据平方根的定义解答即可.详解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是解析:±3【解析】分析:根据平方根的定义解答即可.详解:∵(±3)2=9,∴9的平方根是±3.故答案为±3.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.17.y=-x【解析】【分析】根据题意可得y=kx,再把x=8时,y=-12代入函数,可求k,进而可得y与x 的关系式.【详解】设y=kx,∵当x=8时,y=-12,∴-12=8k,解得k=解析:y=-3 2 x【解析】【分析】根据题意可得y=kx ,再把x=8时,y=-12代入函数,可求k ,进而可得y 与x 的关系式.【详解】设y=kx ,∵当x=8时,y=-12,∴-12=8k ,解得k=-32, ∴所求函数解析式是y=-32x ; 故答案为:y=-32x . 【点睛】 本题考查了待定系数法求函数解析式,解题的关键是理解成正比例的关系的含义.18.-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出的值即可.【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴=(-3+2)2019=(-1)2019=解析:-1【解析】【分析】先根据非负数的性质求出x 、y 的值,再求出()2019x y +的值即可. 【详解】解:由题意可得,3+x=0,y-2=0,解得x=-3,y=2.∴()2019x y +=(-3+2)2019=(-1)2019=-1. 故答案为:-1.【点睛】本题考查的是非负数的性质,熟知算术平方根具有非负性是解答此题的关键. 19.9【解析】【分析】的整数部分为,则可求出a 的取值范围,即可得到答案.【详解】解:的整数部分为,则a的取值范围 8<a<27所以得到奇数有:9、11、13、15、17、19、21、23、2解析:9【解析】【分析】的整数部分为2,则可求出a的取值范围,即可得到答案.【详解】2,则a的取值范围 8<a<27所以得到奇数a有:9、11、13、15、17、19、21、23、25 共9个故答案为:9【点睛】此题主要考查了估算无理数的大小,估算是我们具备的数学能力,“夹逼法”是估算的一般方法.20.a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.21.【解析】试题分析:由点P在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x轴的距离是4,到y轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4).考点:象限内点的坐标解析:()3,4-【解析】试题分析:由点P 在第二象限内,可知横坐标为负,纵坐标为正,又因为点P 到x 轴的距离是4,到y 轴的距离是3,可知横坐标为-3,纵坐标为4,所以点P 的坐标为(-3,4). 考点:象限内点的坐标特征.22.三【解析】【分析】根据一次函数的解析式中的k 、b 的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y 轴的正半轴,解析:三【解析】【分析】根据一次函数的解析式中的k 、b 的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y 轴的正半轴,k=-3<0,∴y 随x 的增大而减小,∴函数的图象经过第一、二、四象限,∴不经过第三象限.故答案为:三.【点睛】本题考查了一次函数的性质. 解题时可根据解析式中的k 、b 的值的正负作出草图,从而很容易判断函数经过(或不经过)那一象限.23.或【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,解析:1,33⎛⎫⎪⎝⎭或533⎛⎫⎪⎝⎭,【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,∴点P的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣13;当y=﹣3时,﹣3x+2=﹣3,解得x=53;∴点P的坐标为(﹣13,3)或(53,﹣3).故答案为(﹣13,3)或(53,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,利用数形结合思想解题是本题的关键,注意分类讨论.24.60°【解析】【分析】根据等腰三角形三线合一的性质得:AD平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD平分∠BAC,∴∠BAD=∠BA解析:60°【解析】【分析】根据等腰三角形三线合一的性质得:AD平分∠BAC,由此根据角平分线的定义得出结论.【详解】如图,∵AB=AC,AD⊥BC,∴AD平分∠BAC,∴∠BAD=12∠BAC,∵∠BAC=120°,∴∠BAD=12×120°=60°,故答案为:60°.【点睛】本题考查的知识点是等腰三角形的性质,解题关键是熟记等腰三角形三线合一的性质. 25.【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,解析:【解析】【分析】作DH⊥AB于H,如图,根据角平分线的性质得到DH=DC=4,然后利用三角形面积公式计算.【详解】作DH⊥AB于H,如图,∵AD是∠BAC的平分线,∴DH=DC=4,∴△ABD的面积=12×16×4=32.故答案为:32.【点睛】本题考查了角平分线的性质及三角形面积公式,熟练掌握“角的平分线上的点到角的两边的距离相等”是解题的关键.三、解答题26.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据ASA证明ΔABF≌ΔBCE即可;(2)根据直角三角形两锐角互余、角平分线的性质以及余角的性质可得∠DBC=∠BDE,根据等角对等边即可得到BC=CD,从而得到结论.【详解】(1)∵BE⊥CD,AF⊥BE,∴∠BEC=∠AFB=90°,∴∠ABE+∠BAF=90°.∵∠ABC=90°,∴∠ABE+∠EBC=90°,∴∠BAF=∠EBC.在ΔABF和ΔBCE中,∵∠AFB=∠BEC,AF=BE,∠BAF=∠EBC,∴ΔABF≌ΔBCE.(2)∵∠ABC=90°,∴∠ABD+∠DBC=90°.∵∠BED=90°,∴∠DBE+∠BDE=90°.∵BD分∠ABE,∴∠ABD=∠DBE,∴∠DBC=∠BDE,∴BC=CD,即ΔBCD是等腰三角形.【点睛】本题考查了等腰三角形的判定与全等三角形的判定与性质.解题的关键是证明ΔABF≌ΔBCE.27.19200【解析】【分析】连接AC,在Rt△ACD中,根据勾股定理求出AC2,由于AC2+BC2=AB2根据勾股定理的逆定理求出∠ACB=90°,由S四边形ABCD=S△ACB-S△ACD可得最终结果.【详解】解:连接AC,在Rt△ACD中,AC2=CD2+AD2=62+82=102,在△ABC中,AB2=262,BC2=242,而102+242=262,即AC2+BC2=AB2,∴∠ACB=90°,S四边形ABCD=S△ACB-S△ACD=12•AC•BC-12AD•CD,=12×10×24-12×8×6=96.所以需费用96×200=19200(元).【点睛】本题主要考查勾股定理及其逆定理的灵活应用.28.10BC=【解析】【分析】由垂直平分线的性质得到BD=CD,则得到AB+AC=14,然后求出AB,由勾股定理即可求出BC的长度.【详解】解:∵DE是BC边上的垂直平分线,∴BD=CD,∵ABD∆的周长为14cm,∴AB+AD+DB=14,∴AB+AD+DC=AB+AC=14,∵8AC=,∴1486AB=-=,在Rt△ABC中,由勾股定理,得226810BC+=.【点睛】本题考查了垂直平分线的性质定理,勾股定理,解题的关键是掌握由垂直平分线的性质定理,求出AB 的长度.29.(1)10;15; (2) ①520z y x =+;②挖掘1小时或3小时或5小时后两工程队相距5米.【解析】【分析】(1)分别根据速度=路程除以时间列式计算即可得解;(2)①设,y kx b =+乙 然后利用待定系数法求一次函数解析式解答即可;②求出甲队的函数解析式,然后根据-=5-=5y y y y 甲乙乙甲, 列出方程求解即可.【详解】()1甲队:60610÷=米/小时,乙队: 30215÷=米/小时:故答案为:10,15;()2①当26x <<时,设z y kx b =+,则230650k b k b +=⎧⎨+=⎩, 解得520k b =⎧⎨=⎩, ∴当26x <<时,520z y x =+;②易求得:当02x ≤≤时,15z y x =, 当26x ≤≤时,520z y x =+;当06x ≤≤时=10y x 甲,由()10520x x =+解得4x =,1° 当02x ≤≤, 15105x x -=,解得:1x =,2°当24x <≤,()520105x x +-=解得:3x =,3°当46x <≤,()105205x x -+=,解得: 5x =答:挖掘1小时或3小时或5小时后,两工程队相距5米.【点睛】本题考查了一次函数的应用, 主要利用了待定系数法求一-次函数解析式,准确识图获取必要的信息是解题的关键,也是解题的难点.30.(1)x =5或﹣3;(2)﹣9.【解析】【分析】(1)直接利用平方根的定义化简得出答案;(2)直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1)(x ﹣1)2=16,x ﹣1=±4,解得:x =5或﹣3;(2)2020312527--+-=﹣1﹣5﹣3=﹣9.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.31.(1)①详见解析;②详见解析;(2)(1,﹣1).【解析】【分析】(1)①分别作出点A 、B 、C 关于x 轴的对称点,再首尾顺次连接即可;②分别作出△A 1B 1C 1的3个顶点向右平移7个单位所得对应点,再首尾顺次连接即可得;(2)由所作图形可得.【详解】(1)①如图所示,△A 1B 1C 1即为所求;②如图所示,△A 2B 2C 2即为所求;(2)由图知,△A 2B 2C 2中顶点B 2坐标为(1,﹣1),故答案为:(1,﹣1).【点睛】本题主要考查作图-平移变换和轴对称变换,解题的关键是掌握平移变换和轴对称变换的定义和性质,并据此得出变换后的对应点.。

相关文档
最新文档