《数字信号处理》课程心得

合集下载

《数字信号处理》书籍读后感

《数字信号处理》书籍读后感

《数字信号处理》书籍读后感I recently finished reading the book "Digital Signal Processing," and I must say it was quite an insightful experience. 《数字信号处理》这本书真的给我留下了深刻的印象。

The author did an excellent job of explaining complex concepts in a way that was easy to understand. 作者非常好地解释了复杂的概念,让人容易理解。

I particularly appreciated the real-world examples and applications provided throughout the book. 书中提供的现实世界的例子和应用让我受益匪浅。

It helped me see how digital signal processing is used in various industries and how it impacts our daily lives. 这让我明白了数字信号处理如何在各行各业中应用,以及它对我们日常生活的影响。

The practical knowledge gained from this book will undoubtedly be valuable in my future career in the field of engineering. 这本书中所学到的实用知识无疑会在我未来在工程领域的职业生涯中发挥重要作用。

One aspect of the book that stood out to me was the clear explanation of the mathematical principles behind digital signal processing. 书中一个让我印象深刻的方面是对数字信号处理背后的数学原理进行清晰的解释。

数字信号处理心得体会

数字信号处理心得体会

数字信号处理心得体会数字信号处理是一门涉及数字信号采集、移位、变换、滤波、压缩等技术的学科。

在学习这门课程的过程中,我积累了许多心得体会。

以下是我对数字信号处理的一些心得体会。

首先,数字信号处理对数学基础要求很高。

数字信号处理主要依赖于数学理论,如离散时间信号的离散傅里叶变换、离散余弦变换等。

在学习数字信号处理之前,我花了很多时间加强了对数学知识的学习。

在学习数字信号处理的过程中,我发现数学知识对于理解和应用数字信号处理技术至关重要。

其次,数字信号处理是一门注重实践的学科。

在学习数字信号处理的过程中,我不仅学习了基本的理论知识,还进行了大量的实验和实践。

通过实践,我深入理解了数字信号处理的原理和应用。

在实验中,我使用MATLAB等软件工具对数字信号进行了采集、变换和滤波等操作。

通过实践,我不仅加深了对数字信号处理的理解,还提高了我的动手能力和解决问题的能力。

再次,数字信号处理是一门应用广泛的学科。

数字信号处理在许多领域都有重要的应用,如通信、图像处理、音频处理等。

学习数字信号处理不仅可以提高我在这些领域的应用能力,也可以为我今后的学习和工作打下坚实的基础。

通过学习数字信号处理,我了解了许多数字信号处理的具体应用,并且通过实践锻炼了我的技术能力。

最后,数字信号处理需要不断学习和更新。

数字信号处理是一个不断发展的学科,新的理论、方法和技术不断涌现。

学习数字信号处理不仅要掌握基础知识,还要了解新的研究进展和技术应用。

在学习数字信号处理的过程中,我发现自己需要不断学习和更新知识,保持与时俱进。

总之,学习数字信号处理是一项具有挑战性和意义重大的任务。

通过学习这门课程,我不仅提高了自己的数学基础和实践能力,还了解了数字信号处理的广泛应用和不断发展的前沿。

我相信,数字信号处理将在未来发挥重要的作用,我会继续学习和研究这个领域,为数字信号处理的发展做出贡献。

数字信号处理课程设计心得体会

数字信号处理课程设计心得体会

竭诚为您提供优质文档/双击可除数字信号处理课程设计心得体会篇一:数字信号处理课程设计青岛科技大学数字信号分析及数字滤波器设计题目________________________________________________________________________张淑军指导教师__________________________刘云生学生姓名__________________________1108020310学生学号__________________________信息与科学技术学_______________________________ 院信息工程113院(部)____________________________专业________________班__20XX____年_1__月14___日1.目的与要求1.进一步巩固数字信号处理中的基本原理与方法,提高分析、解决实际问题的能力。

2.熟练掌握一门计算机语言,进行数字信号处理应用的开发设计,训练基本技能,如查阅设计资料和手册、程序的设计、调试等。

《数字信号分析及数字滤波器设计》1.用以下方式产生三个不同频段的信号:(1)自己录制一段正常的语音文件;(2)录制一段环境噪声文件;(3)利用mATLAb产生一个不同于以上频段的信号。

2.对上述三个信号,进行频谱分析,画出三路信号的时域波形和频谱图,对进行对比分析。

3.根据三路信号的频谱特点得到性能指标,由性能指标设计三个滤波器,并画出各滤波器的频域响应。

4.将三路信号叠加为一路信号。

5.用自己设计的滤波器对合成的信号进行滤波,分析得到信号的频谱,并画出滤波后信号的时域波形和频谱。

2.主要技术和原理2.1语音采集、记录、读取以及播放的matlab实现利用matlab的音频信号处理工具箱,可以实现声音的录制和播放。

录音函数wavrecord语法为:y=wavrecord(n,fs,channel,dataType);其中n为采样点数,fs为采样频率,ch(:数字信号处理课程设计心得体会)annel(通常取1或者2)为录音通道数,dataType(例如double,single,int16,uint8)是采样点的数据类型。

数字信号处理课程总结

数字信号处理课程总结

数字信号处理课程总结一、概括数字信号处理这门课程,真是让我大开眼界,原来信号也能玩出这么多花样!这门课程主要介绍了数字信号处理的基础概念、基本原理和实际应用。

学完之后我简直觉得信号的海洋是如此的广阔和深邃。

一开始课程从信号的表示和处理方式入手,让我对信号有了全新的认识。

接着介绍了数字信号处理的核心原理和方法,比如采样、量化、滤波等等。

这些内容听起来很高级,但实际上都是处理我们生活中遇到的各种各样信号的基础。

通过学习我发现数字信号处理并不是高高在上的高难课程,而是与我们的日常生活紧密相连。

而且课程还深入浅出地介绍了数字信号处理在通信、音频、图像等领域的应用。

这让我意识到,原来我们每天都在和数字信号处理打交道,只是我们不知道罢了。

可以说这门课程让我对数字信号处理有了更深的理解和更多的兴趣。

学习数字信号处理这门课程,让我对信号有了全新的认识,也让我明白了数字信号处理的重要性。

我觉得这门课程不仅仅是理论知识的学习,更是打开了一扇探索信号世界的窗户。

现在我已经迫不及待想要继续深入学习了!二、数字信号处理基础知识在这一阶段的学习过程中,你们可能已经领略到数字信号处理的奇妙世界,那么先来简单聊聊那些处理的基础常识。

说起数字信号处理,是不是听起来像进入了什么高大上的黑科技世界?但实际上数字信号处理跟我们的日常生活紧密相连,例如音频播放、视频播放这些大家每天干的事都与数字信号处理密切相关。

当你聆听音乐的每一个节拍时,数字信号处理就像魔法一样确保了这些音频的完美传递和重现。

好啦接下来我们说说那些具体的常识。

首先了解什么是信号,信号可以简单理解为一种传递信息的媒介,比如声音、图像等都可以是信号。

而数字信号处理则是把这些信号转换成数字形式进行处理,想象一下这就像是把现实世界的声音、图像等转化成电脑能懂的语言。

接下来是处理的过程,这涉及到信号的采集、转换、分析和处理等环节。

在这个过程中,数字信号处理帮助我们实现信号的放大、滤波等功能,让我们的音质更加纯净、图像更加清晰。

[数字信号处理]课程心得

[数字信号处理]课程心得

[数字信号处理]课程心得《数字信号处理》课程心得之 DSP 技术在计算机领域的应用姓名:XX 班级:电气XXXX 班短暂的一学期很快就过去了,在这个学期里,通过对《数字信号处理》课程的学习,我了解到了DSP 的基本概念和基本内容。

我平时对计算机硬件方面的知识比较感兴趣,通过对本课程的学习,我发现DSP 技术在微型计算机硬件,外设,及智能手机上应用很广泛。

下面通过几个实例并结合所学知识谈谈理解和感受。

一:DSP 技术简介数字信号处理(Digital Signal Processing,简称DSP) 是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。

数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。

在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。

德州仪器、Freescale等半导体厂商在这一领域拥有很强的实力。

二:DSP 数字处理器简介DSP (digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。

其工作原理是接收模拟信号,转换为0或1的数字信号。

再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。

它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。

它的强大数据处理能力和高运行速度,是最值得称道的两大特色。

DSP 微处理器(芯片)一般具有如下主要特点:(1)在一个指令周期内可完成一次乘法和一次加法;(2)程序和数据空间分开,可以同时访问指令和数据;(3)片内具有快速RAM ,通常可通过独立的数据总线在两块中同时访问;(4)具有低开销或无开销循环及跳转的硬件支持;(5)快速的中断处理和硬件I/O支持;(6)具有在单周期内操作的多个硬件地址产生器;(7)可以并行执行多个操作;(8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。

数字信号处理学习心得体会三篇

数字信号处理学习心得体会三篇

数字信号处理学习心得体会三篇数字信号处理是利用数字处理,例如通过计算机或更专业的数字信号处理器,来执行各种各样的信号处理操作,以这种方式处理的信号是表示时域、空域或频域中连续变量样本的一系列数字。

数字信号处理学习心得体会1随机数字信号处理是由多种学科知识交叉渗透形成的,在通信、雷达、语音处理、图象处理、声学、地震学、地质勘探、气象学、遥感、生物医学工程、核工程、航天工程等领域中都离不开随机数字信号处理。

随着计算机技术的进步,随机数字信号处理技术得到飞速发展。

本门课主要研究了随机数字信号处理的两个主要问题:滤波器设计和频谱分析。

在数字信号处理中,滤波技术占有极其重要的地位。

数字滤波是语音和图像处理、模式识别、频谱分析等应用中的一个基本处理算法。

但在许多应用场合,常常要处理一些无法预知的信号、噪声或时变信号,如果采用具有固定滤波系数的数字滤波器则无法实现最优滤波。

在这种情况下,必须设计自适应滤波器,以使得滤波器的动态特性随着信号和噪声的变化而变化,以达到最优的滤波效果。

自适应滤波器(AdaptiveFilter)是近几十年来发展起来的关于信号处理方法和技术的滤波器,其设计方法对滤波器的性能影响很大。

自适应滤波器是相对固定滤波器而言的,它是一种能够自动调整本身参数的特殊维纳滤波器。

自适应滤波算法的研究是自适应信号处理中最为活跃的研究课题之一,其中,两种最基本的线性滤波算法为:最小均方误差(LMS)算法和最小二乘(RLS)算法,由于 LMS算法具有初始收敛速度较慢、执行稳定性差等缺点,本门课着重介绍了RLS 算法。

RLS算法的初始收敛速度比LMS算法快一个数量级,执行稳定性好。

谱分析是随机数字信号处理另一重要内容,它在频域中研究信号的某些特性如幅值、能量或功率等随频率的分布。

对通常的非时限信号做频谱分析,只能通过对其截取所获得的有限长度的样本来做计算,其结果是对其真实谱的近似即谱估计。

现代谱估计算法除模型参量法之外,人们还提出了其它一些方法,如Capon最大似然谱估计算法、Pisarenk谐波分解法、MUSIC算法、ESPRIT算法等利用矩阵的特征分解来实现的谱估计方法。

数字信号处理心得体会(精选3篇)

数字信号处理心得体会(精选3篇)

数字信号处理心得体会(精选3篇)数字信号处理篇1本次培训创造了很好的数字信号处理交流的平台。

我非常珍惜这次与彭教授和同行老师们交流的机会。

因此,在培训期间我认真听讲,积极参与讨论。

在与各位老师交流的过程中,我增长了见识、扩大了视野。

这次培训很有启发性,加深了我对“数字信号处理”课程的理解和把握。

对这门课程的学科定位、培养目标、精品课程建设、课堂教学设计、实践教学设计、课程教学改革与教学梯队建设等方面都有了新的更全面的认识。

无疑这些经验对我以后更好地进行数字信号处理的教学是非常有助益的。

一、“数字信号处理”课程新的学科定位传统的数字信号处理重视概念和原理的讲解。

而现在的教学除了基本概念和基本理论的讲授之外还注重工程应用方面。

因此,增加了Matlab编程实验遗迹DSP实验等内容。

学生通过做实验可以直观地验证一些算法的有效性,并能方便地用一些算法来解决实际问题,例如,fft,小波变换等。

基本实验要具有创新性,可以开拓思维,强化理解,灵活应用。

这培养了学生运用信号处理的方法解决工程实际问题的能力,对提高学生的动手能力和独立思考能力是有好处的。

因此,数字信号处理是一门理论课程也是一门应用课程。

这是比较全面的认识,在授课的过程中华考|zk168要达到这个总体目标。

二、教学团队的重要性从彭教授的报告中我们可以看到一个优秀的教学团队对精品课程建设是多么的重要。

彭教授在每场报告中几乎都要强调成绩的取得是他们教学组全体老师共同努力的结果。

对此,我深有感触同感。

把一门课程建设好不是一个人能够完成的,这需要很多人经过多年的不懈努力,团结协作共同努力才能实现。

因此,我们需要寻找有共同兴趣和志向的人组成一个教学小组。

针对学科建设、教学方法等各方面的问题共同交流。

好的教学梯队是精品课程建设成功的前提。

同时好的教学团队也应该是教学科研并重的。

三、教师需要有更宽的视野讲好“数字信号处理”课对老师们的要求是非常高的。

这要求我们任课老师在讲授基本理论的同时,还要紧跟时代发展,了解前沿技术和动向。

数字信号处理实训课程学习总结音频降噪算法的实验验证与分析

数字信号处理实训课程学习总结音频降噪算法的实验验证与分析

数字信号处理实训课程学习总结音频降噪算法的实验验证与分析在数字信号处理实训课程中,我学习了音频降噪算法的实验验证与分析。

本文将对我所学内容进行总结,并分享我在实验过程中的观察和分析结果。

一、引言随着数字音频的广泛应用,人们对音频质量的要求也越来越高。

然而,由于环境噪声等原因,音频中常常会存在各种干扰音,降低了音频的质量和清晰度。

因此,音频降噪算法的研究和应用变得非常重要。

二、理论基础音频降噪算法是通过对音频信号进行处理,减少或消除噪声干扰,提高音频质量。

其中,数字滤波技术是一种常用的降噪方法。

常见的数字滤波器有FIR滤波器和IIR滤波器。

三、实验步骤1. 音频信号采集:使用麦克风或其他音频设备录制包含噪声的音频片段。

2. 噪声样本采集:在相同环境下,关闭音频输入设备,记录环境噪声。

3. 实验设备与软件搭建:使用MATLAB等工具,搭建数字信号处理实验环境。

4. 预处理:对采集到的音频信号进行预处理,如采样率转换、噪声抑制。

5. 实验验证与分析:分别采用FIR滤波器和IIR滤波器进行音频降噪处理,观察并分析降噪效果。

6. 结果评估:通过主观评价和客观指标对降噪效果进行评估。

四、实验结果与分析通过实验验证与分析,我观察到以下现象和结果:1. FIR滤波器在音频降噪中具有较好的效果,能够有效滤除某些频率段的噪声。

2. IIR滤波器也能够实现音频降噪的效果,但相较于FIR滤波器,其对频率响应的影响更为复杂。

3. 不同降噪算法在处理不同种类音频时效果有所差异,需要根据实际应用场景选择合适的算法。

4. 主观评价与客观指标的评估结果存在一定差异,综合考虑可以更准确地评估降噪效果。

五、总结与展望通过本次实验,我对音频降噪算法有了更深入的了解。

同时,我也意识到降噪算法的效果与信号特点、滤波器类型等因素密切相关。

未来,我将进一步深入学习数字信号处理的相关知识,并探索更优化的音频降噪算法。

六、参考文献[1] Smith S. W. Digital Signal Processing[M]. California: California Technical Publishing, 1999.[2] Proakis J. G., Manolakis D. G. Digital Signal Processing: Principles, Algorithms, and Applications[M]. New Jersey: Prentice Hall, 2006.以上是我对数字信号处理实训课程学习总结音频降噪算法的实验验证与分析的内容总结,通过实验验证和分析,我对音频降噪算法有了更深入的了解,同时也加深了对数字信号处理的理论与实践应用的认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数字信号处理》课程心得之DSP技术在计算机领域的应用姓名:XX班级:电气XXXX班短暂的一学期很快就过去了,在这个学期里,通过对《数字信号处理》课程的学习,我了解到了DSP的基本概念和基本内容。

我平时对计算机硬件方面的知识比较感兴趣,通过对本课程的学习,我发现DSP技术在微型计算机硬件,外设,及智能手机上应用很广泛。

下面通过几个实例并结合所学知识谈谈理解和感受。

一:DSP技术简介数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。

数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。

在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。

德州仪器、Freescale等半导体厂商在这一领域拥有很强的实力。

二:DSP数字处理器简介DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。

其工作原理是接收模拟信号,转换为0或1的数字信号。

再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。

它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。

它的强大数据处理能力和高运行速度,是最值得称道的两大特色。

DSP微处理器(芯片)一般具有如下主要特点:(1)在一个指令周期内可完成一次乘法和一次加法;(2)程序和数据空间分开,可以同时访问指令和数据;(3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问;(4)具有低开销或无开销循环及跳转的硬件支持;(5)快速的中断处理和硬件I/O支持;(6)具有在单周期内操作的多个硬件地址产生器;(7)可以并行执行多个操作;(8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。

PS:随着技术的发展,计算机硬件的性能越来越强,而与此同时,人们对硬件的体积和功耗比要求越来越高,所以,这促使DSP数字处理芯片技术的飞速发展。

人们通过利用DSP 芯片替代传统的模拟电路,使得设备使用寿命大大延长,质量大大大提高。

例如:人们通过在主板和显卡供电电路中加入DSP为控制芯片,可以使CPU和GPU获得更加纯净的电流,从而使主板本身和其承载的CPU/GPU的稳定性和寿命大大的延长。

在电脑外设中,比如音响。

人们通过模拟电路结合DSP芯片构成数模混合电路,使得音响的底噪更小,音质更加甜美纯正。

DSP工作模式三:DSP处理芯片的优缺点DSP优点对元件值的容限不敏感,受温度、环境等外部因素影响小;容易实现集成;VLSI 可以分时复用,共享处理器;方便调整处理器的系数实现自适应滤波;可实现模拟处理不能实现的功能:线性相位、多抽样率处理、级联、易于存储等;可用于频率非常低的信号。

DSP缺点需要模数转换;受采样频率的限制,处理频率范围有限;数字系统由耗电的有源器件构成,没有无源设备可靠。

但是其优点远远超过缺点。

四:DSP在计算机硬件领域的应用案例(1)在显卡供电上的应用产品:华硕高端系列显卡显卡供的电设计和用料好坏直接影响显卡运行的稳定性,以及显卡的超频能力,所以一直是用户十分关注的部分,各显卡厂商在供电的设计和用料上也不遗余力,以此提供给用户更稳定、超频更好的显卡。

华硕显卡一直采用独家的“超合金供电”技术,通过超合金电容、超合金电感、超合金场效应管、超合金混合动力引擎等可为显卡带来15%的性能提升、延长2.5倍的使用寿命,降低供电部分的温度!如今,华硕显卡再度提升用料品质和创新设计,将DIGI+VRM数字供电和超合金供电相结合,推出“超合金数字供电”技术。

那究竟什么是超合金数字供电技术呢?我们就来为大家进行解析。

华硕供电DSP微处理器数字供电的优势在于:更精准的参数调节、更强的供电能效转换、更高的系统稳定性、提高超频成功率,当然数字供电也在输出纹波、转换效率、瞬态响应等方面有着先天的优势,作为全球板卡厂商领军者,华硕在主板供电设计上率先引入了数字供电,这次华硕再一次把这项技术应用于显卡上,不失为显卡爱好者的一大福音。

数字供电技术利用一种可编程微处理器对供电电路进行控制,而它所发出就是一种数字信号,在多路供电时,数字信号控制电路会更加精准,而不引起额外的功率损耗,因此可以达到整体功耗降低的目的。

再加以配合华硕的“超合金供电”,可以更好地提升显卡性能,同时辅助显卡超频。

提升15%供电效率华硕显卡的DIGI+VRM数字供电与以往模拟供电设计大不相同,数字供电可以智能调节供电相数,同时也起到节能降噪的作用,智能化的功率控制可以有效将耗功从原来的34.4w降低到28.7w,更智能更环保。

华硕超合金数字供电技术将明显提升显卡运行的稳定性,让EMI适应性进一步提升的同时也将充分挖掘显卡的超频性能,与模拟供电设计相比较,华硕显卡DIGI+VRM数字供电将电源从239mV降低到159mV。

每款采用华硕DIGI+VRM数字供电技术的显卡,都会实时根据GPU负载的高低随时调整供电相位,将最佳的供电效率保持在一个合理的范围内,帮助GPU发挥更好的性能,实际就是对显卡的游戏和超频性能进行优化,取得一个很好的平衡。

降低50%EMI电磁干扰华硕超合金供电显卡设计不仅仅可以提升显卡的供电效能还可以有效的降低EMI指数,华硕DIGI+VRM数字供电技术可以根据显卡的运行频率来智能调整输出,让EMI从模拟供电的40dB降至20dB。

带给用户更加静谧的游戏环境,让你完全沉浸在游戏中。

采用超合金数字供电的华硕GTX680 DirectCU II TOP 显卡目前华硕全新超合金供电系列显卡已经全面领先业界,在高端领域HD7970系列和GTX680\GTX670系列显卡,在中高端还有HD7870以及HD7700等系列显卡都将全面使用超合金数字供电技术,相信会给用户带来更多的更好的桌面级游戏显卡。

如今随着GPU制程工艺的提升,GPU的架构越来越复杂,对供电精度的要求自然也越来越高,数字供电在输出纹波、转换效率、瞬态响应等性能方面的优势就越来越明显,虽然数字供电在短期内会增加一部分生产成本,不过凭借着占用空间小,效率高和更加精确的控制电路等的优点,作为全球板卡行业的领军者华硕显卡将在新一代产品中大量使用数字供电设计,在开创全民数字供电的新时代的道路上,华硕再一次走上了领跑者的位置。

(2)在主板供电的应用产品:华硕DSP供电p67华硕全新数字供电技术解析DIGI+VRM数字供电技术华硕在六系列主板上采用了全新的DIGI+VRM数字供电技术,DIGI+VRM是华硕独创的供电技术,它基于可编程微型处理器,能够准确匹配多个PWM,没有任何传输损耗。

数字供电技术最大的好处就在于:提供更精准供电及系统稳定性,为用户提供更安全可靠的保证。

摘下P8P67 Deluxe供电部分的散热片,我们看到了由18颗电感以及超低阻MosFET所组成的DIGI+VRM数字供电体系。

相比模拟供电,数字供电体系的电流要更加的稳定。

华硕独家研发的DIGI+VRM芯片华硕独家设计的DIGI+VRM芯片,我们甚至可以精准的控制单个电感的电流以及工作负载状态,因此可见数字供电更为强大。

华硕P8P67 Deluxe板子特色技术一览硬件级TPU智能加速处理器开关通过在主板上设计的硬件层面的开关,打开开关系统可以迅速实现自动加速模式。

除了在效能方面华硕六系列主板依然配置了EPU节能处理器以及开关机。

冷气微动开关华硕独家的TPU智能加速处理器(3)在音响电路中的应用产品:各中小功率桌面音响从08年开始,国内的音频业界就开始刮起了小音箱的旋风,这些小音箱都围绕着iphone、ipad配件的配件在做文章,新的利益增长点总是会令厂商疯狂,更何况是在国内IT业界一片低迷的情况下。

受限于体积和供电的原因,很多小音箱如果采用传统的模拟放大电路,因为电路的功耗大效率较低特性,则容易出现声音偏小、动态表现差等功率不足的现象。

而相较传统的模拟放大电路,现在在高端小音箱、手机上采用的DSP数字放大电路是小音箱电路设计上不错的解决方案如上文所说,传统的模拟音频功率放大器虽然具有很高的保真度,但是却存在功耗高、效率低等致命缺点。

随着集成电路技术的发展,移动电话、数字媒体技术、平面电视、便携式数字产品等对音频功放提出了体积小,效率高的要求。

基于DSP的数字D类音频功放凭借其高效率、低功耗的特点正逐渐取代传统的模拟音频功率放大器。

DSP芯片,也称数字信号处理器,是一种具有特殊结构的微处理器。

DSP芯片的内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,广泛采用流水线操作,提供特殊的DSP指令,可以用来快速的实现各种数字信号处理算法,现在音箱上多通过预设好的程序,通过DSP技术来获得更好的解析力和声场,程序预测的声场模拟,是传统放电路难以比肩的地方,这也让很多采用DSP的小音箱能够获得如同大音箱的声场效果。

国内的小音箱,多采用模拟放大电路,部分大厂的则会采用DSP放大芯片,芯片类型无外乎德州仪器(TI)、意法半导体(TDA)、摩托罗拉(motolola)等,当然,相对传统的功放,DSP以及周边电路的成本还是要明显高于模拟放大电路,这也是D类功放在中低端产品里面没有大面积采用的主要原因,例如这台麦博雅皮士音箱,拆开内部之后,其内部就是采用了DSP放大电路,并采用蓝牙和线路两组DSP放大电路,DSP让这对雅皮士箱子凭借3.5的低音单元拥有了4寸单元以上音箱才能拥有的音箱,并且只用一个外置的电源就能完成供电。

当然,DSP受到影响更大的是外围电路的设计,包括时钟信号、采样。

以麦博这块DSP 放大电路为例,为其采用的德州仪器的TI5713虚拟盘搭配了一个韩国ABOV品牌的4218D 微控制单元和一块24C02存储芯片,来完成音效处理预设的程序、以及信号采样、不同音量下的高低频控制等,而这方面的编程与线路的整体设计能力,则是只有完整研发部门才能实现的。

当然DSP电路也有自己固有的缺点,程序直接影响了DSP输出的效果,这就取决了程序员对芯片的熟悉性和对音频压缩的理解,另外DSP放大有着声音薄、低音下潜不够的特点,这个也是为什么大型多媒体音箱上依旧比较少采用DSP放大的主要原因,在小音箱上很适合,但是放大之后,到大音箱上就显得不够了。

四:写在最后。

随着科学技术的发展,越来越多的新技术被人们所认同并且采用,新的产品和新的特色技术的不断涌现,让我感到无比的兴奋;人类的大脑简直是太伟大了。

相关文档
最新文档