【免费下载】材料化学第二版 李奇 李光巨主编课后习题答案精选
材料化学第二章习题参考答案1

第二章参考答案1.原子间的结合键共有几种?各自特点如何?2.为什么可将金属单质的结构问题归结为等径圆球的密堆积问题?答:金属晶体中金属原子之间形成的金属键即无饱和性又无方向性, 其离域电子为所有原子共有,自由流动,因此整个金属单质可看成是同种元素金属正离子周期性排列而成,这些正离子的最外层电子结构都是全充满或半充满状态,电子分布基本上是球形对称,由于同种元素的原子半径都相等,因此可看成是等径圆球。
又因金属键无饱和性和方向性, 为使体系能量最低,金属原子在组成晶体时总是趋向形成密堆积结构,其特点是堆积密度大,配位数高,因此金属单质的结构问题归结为等径圆球的密堆积问题.3.计算体心立方结构和六方密堆结构的堆积系数。
(1) 体心立方 a :晶格单位长度 R :原子半径a 34R =34R a =,n=2, ∴68.0)3/4()3/4(2)3/4(23333===R R a R bccππζ (2)六方密堆 n=64. 试确定简单立方、体心立方和面心立方结构中原子半径和点阵参数之间的关系。
解:简单立方、体心立方和面心立方结构均属立方晶系,点阵参数或晶格参数关系为90,=====γβαc b a ,因此只求出a 值即可。
对于(1)fcc(面心立方)有a R 24=, 24R a =, 90,=====γβαc b a(2) bcc 体心立方有:a 34R = 34R a =; 90,=====γβαc b a(3) 简单立方有:R a 2=, 90,=====γβαc b a74.0)3(3812)3/4(6)2321(6)3/4(633hcp =⋅=⋅R R R R a a c R ππξ=R a a c 238==5. 金属铷为A2型结构,Rb 的原子半径为0.2468 nm ,密度为1.53g·cm-3,试求:晶格参数a 和Rb 的相对原子质量。
解:AabcN nM=ρ 其中, ρ为密度, c b a 、、为晶格常数, 晶胞体积abc V =,N A 为阿伏加德罗常数6.022×1023 mol -1,M 为原子量或分子量,n 为晶胞中分子个数,对于金属则上述公式中的M 为金属原子的原子量,n 为晶胞中原子的个数。
材料化学习题第二章参考答案

2章材料化学的理论基础1.用固体能带理论区别导体、半导体、绝缘体。
根据晶体的能带理论,金属晶体中布里渊区一般有重叠,且部分充填。
同一区相邻状能级非常接近,只要很下的电场就能把电子提升到相邻的较高能级,导电性好;半导体物质,第一布里渊区是填满的,和空的第二布里渊区之间只有较小的能量间隙温度升高时,第一布里渊区顶部的电子受到激发,进入到第二布里渊区底部,向自由电子一样,在外加电场的作用下,表现出导电性;温度越高,激发到第二布里渊区的电子越多,其导电性也越强;(绝缘体物质,电子填满最低的一系列能带,满带与空带之间的能量间隙很大,电子不能被激发到空带中,因此不能导电。
2.晶体的宏观特性有那些。
自限性、晶面角守恒、解理性、晶体的各向异性、晶体的均匀性、晶体的对称性、固定的熔点这是由构成晶体的原子和晶体内部结构的周期性决定的。
说明晶体宏观特性是微观特性的反映3.说明晶体点阵缺陷的分类情况。
按形成晶体缺陷的原子种类,可将晶体缺陷分成化学缺陷和点阵(几何)缺陷两类。
按点阵缺陷在三维空间的尺度,又可将点阵缺陷分为点缺陷、线缺陷、面缺陷三类。
4.用实验事实简述非晶体材料的几何特征。
在还原气氛中失去部分氧,生成的缺陷反应,说明代表的意义。
5.写出TiO26.晶体一般的特点有哪些;点阵和晶体的结构有何关系。
(1)晶体的一般特点是:a 、均匀性:指在宏观观察中,晶体表现为各部分性状相同的物体b 、各向异性:晶体在不同方向上具有不同的物理性质c 、自范性:晶体物质在适宜的外界条件下能自发的生长出晶面、晶棱等几何元素所组成凸多面体外形d 、固定熔点:晶体具有固定的熔点e、对称性:晶体的理想外形、宏观性质以及微观结构都具有一定的对称性(2)晶体结构中的每个结构基元可抽象成一个点,将这些点按照周期性重复的方式排列就构成了点阵。
点阵是反映点阵结构周期性的科学抽象,点阵结构是点阵理论的实践依据和具体研究对象,它们之间存在这样一个关系:点阵结构=点阵+结构基元点阵=点阵结构-结构基元7.晶体衍射的两个要素是什么它们与晶体结构有何对应关系在衍射图上有何反映。
材料化学 李奇 陈光巨 编写 第六章 课后答案

第6章习题答案1.纳米的基本涵义是什么?简述为什么纳米材料会表现出许多前所未有的新特性?答:纳米材料是指晶粒尺寸为纳米级(10-9米)的超细材料。
它的微粒尺寸大于原子簇,小于通常的微粒,一般为100~102nm。
它包括体积分数近似相等的两个部分:一是直径为几个或几十个纳米的粒子二是粒子间的界面。
前者具有长程序的晶状结构,后者是既没有长程序也没有短程序的无序结构。
由于纳米材料具有颗粒尺寸小、比表面积大、表面能高、表面原子所占比例大等特点,纳米材料具有传统材料所不具备的奇异或反常的物理、化学特性,如原本导电的铜到某一纳米级界限就不导电,原来绝缘的二氧化硅、晶体等,在某一纳米级界限时开始导电。
即纳米材料显现出纳米效应,具体表现为三大效应:表面效应、小尺寸效应和宏观量子隧道效应。
由于纳米效应,纳米材料光学、热学、电学、磁学、力学乃至化学性质也就相应地发生十分显著的变化。
因此纳米材料具备其它一般材料所没有的优越性能,可广泛应用于电子、医药、化工、军事、航空航天等众多领域,在整个新材料的研究应用方面占据着核心的位置。
2.纳米材料可分为哪几类?答:纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。
其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。
纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。
纳米纤维指直径为纳米尺度而长度较大的线状材料。
纳米膜分为颗粒膜与致密膜。
颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。
致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。
纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。
3.比较小尺寸效应和量子尺寸效应。
答:纳米颗粒的小尺寸所引起的宏观物理性质的变化称为小尺寸效应。
当纳米材料中的微粒尺寸小到与光波波长或德布罗意波波长、超导态的相干长度等物理特征相当或更小时,晶体周期性的边界条件被破坏,非晶态纳米微粒的颗粒表面层附近原子密度减小,使得材料的声、光、电、磁、热、力学等特性表现出改变而导致出现新的特性。
材料化学第五章课后答案李奇陈光巨编写

第5章习题答案1.高分子结构通常分为链结构和聚集态结构两个部分,请解释链结构和聚集态结构。
答:链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。
近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。
远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。
聚集态结构是指高聚物材料整体的内部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。
2.简述近程相互作用和远程相互作用的含义及它们对高分子链的构象有何影响。
答:所谓“近程”和“远程”是根据沿大分子链的走向来区分的,并非为三维空间上的远和近。
事实上,即使是沿高分子长链相距很远的链节,也会由于主链单键的内旋转而会在三维空间上相互靠得很近。
高分子链节中非键合原子间的相互作用——近程相互作用,主要表现为斥力,如—CH2—CH2—中两个C上的两个H的范德华半径之和为0.240nm,当两个H为反式构象时,其间的距离为0.247nm,处于顺式构象时为0.226nm。
因此,氢原子间的相互作用主要表现为斥力,至于其他非键合原子更是如此。
近程相互排斥作用的存在,使得实际高分子的内旋转受阻,使之在空间可能有的构象数远远小于自由内旋转的情况。
受阻程度越大,构象数越少,高分子链的柔性就越小。
远程相互作用可为斥力,也可为引力。
当大分子链中相距较远的原子或原子团由于单键的内旋转,可使其间的相互作用在距离小于范德华半径时表现为斥力,大于范德华半径时为引力。
无论哪种力都使内旋转受阻,构象数减少,柔性下降,末端距变大。
3.何为晶态高聚物?高聚物可形成哪些形态的晶体?答:晶态高聚物是由晶粒组成,晶粒内部具有三维远程有序结构,但呈周期性排列的质点不是原子整个分子或离子,而是结构单元。
由于结晶条件不同,结晶性高聚物可以形成形态不同的宏观或亚微观晶体,单晶,树枝晶,伸直链晶体,纤维状晶体,串晶等。
无机材料物理化学课后习题及答案

第一章几何结晶学基础1-1.晶体、晶胞的定义;空间格子构造的特点;晶体的基本性质。
1-2.参网页上的模型,运用对称要素组合定律,写出四方柱、六方柱、四方四面体、斜方双锥、六八面体、三方柱、复三方三角面体、四六面体的点群符号,并写出其所属的晶系和晶族。
1-3.参阅网页上的模型,请确定单型中的六八面体、复三方偏三角面体、复六方双锥、和聚型中2、3、4号模型在晶体定向中,各晶体的晶轴分别与哪些对称轴重或晶棱方向平行?1-4.请写出单型三方柱、四方柱、四方双锥、六方柱、菱面体、斜方双锥各晶面的主要晶面符号。
1-5.请写出下列聚型模型各晶面的晶面符号:1、2、3、4。
两个对称面相互成1)60°、2)90°、3)45°、4)30°,可组合成什么点群?1-6.由两根相交的二次轴互成1)90°、2)60°、3)45°、4)30°,可以组合成什么点群?试在面心立方格子中画出菱面体格子1-7.一晶面在X、Y、Z轴分别截得2、4、6个轴单位,请写出此晶面符号。
1-8.作图表示立方晶体的(123)、(012)、(421)晶面。
1-9.在六方晶体中标出晶面(0001)、(2110)、(1010)、(1120)、(1210)的位臵。
1. 答:晶体最本质的特点是其内部的原子、离子、或原子集团在三维空间以一定周期性重复排列而成 , 晶体的空间格子构造有如下特点:结点空间格子中的点,在实际晶体中它们可以代表同种质点占有的位臵,因此也称为晶体结构中的等同点位臵。
行列结点在一维方向上的排列 . 空间格子中任意两个结点连接的方向就是一个行列方向。
面网结点在平面上的分布构成面网。
空间格子中,不在同一行列上的任意三个结点就可联成一个面网。
平行六面体空间格子中的最小单位。
它由六个两两平行且大小相等的面组成。
晶体的基本性质是指一切晶体所共有的性质,这些性质完全来源于晶体的空间格子构造。
材料化学_李奇_陈光巨_编写_第二章_课后答案

第二章1、天然或绝大部分人工制备的晶体都存在各种缺陷,例如,在某种氧化镍晶体中就存在这样的缺陷:一个Ni 2+空缺,另有两个Ni 2+被两个Ni 3+所取代。
其结果晶体仍然呈电中性,但化合物中Ni 和O 的原子个数比发生了变化。
试计算样品组成为Ni 0.97O时该晶体中Ni 3+与Ni 2+的离子数之比。
解:设晶体中Ni 3+的离子数为a ,Ni 2+的离子数为b 。
根据题意:答:该晶体中Ni 3+与Ni 2+的离子数之比为6:91。
2、已知氧化铁Fe x 0(富士体)为氯化钠型结构,在实际晶体中,由于存在缺陷,x <1。
今有一批氧化铁,测得其密度为5.7g/cm 3,用MoK α射线(λ=71.07pm )测得其面心立方晶胞衍射指标为200的衍射角θ=9.56°(sin θ=0.1661,Fe 的相对原子质量为55.85)。
(a )计算Fe x 0的面心立方晶胞参数。
(b )求x 值。
(c )计算Fe 2 +和Fe 3+各占总铁质量的质量分数。
(d )写出表明铁的价态的化学式。
解:(a )(c )设0.92mol 铁中Fe 2 +的摩尔数为y ,则Fe 3+的摩尔数为(0.92-y ),根据正负离子电荷平衡原则可得:即Fe2+和Fe3+的摩尔数分别为0.76和0.16,他们在总铁中的摩尔百分数分别为:(d)富士体氧化铁的化学式为。
3、NiO晶体为NaCl型结构,将它在氧气中加热,部分Ni2+将氧化为Ni3+,成为NiO(xxO,测得其密度为6.47,用波长λ=154pm的X射线通过粉末法测<1)。
今有一批Nix得立方晶胞111衍射指标的θ=18.71°(sinθ=0.3208)。
(Ni的相对原子质量为58.70)1molg−⋅O的立方晶胞参数;(a)计算Nix(b)算出x值,写出标明Ni的价态的化学式。
O晶体中,O2-堆积方式怎样?Ni在此堆积中占据哪种空隙?占有率(即占(c)在Nix有分数)是多少?O晶体中,Ni-Ni间最短距离是多少?(d)在Nix解:(a)NiO的立方晶胞参数为:x(b)因为NiO晶体为NaCl型结构,可得摩尔质量M:xO的摩尔质量又可以表示为:而Nix由此解得:x=0.92。
【免费下载】材料化学习题答案完整版

第二章2.1 扩散常常是固相反应的决速步骤,请说明:1)在用MgO 和为反应物制备尖晶石时,应该采用哪些方法加快32O Al 42O MgAl 固相反应进行?2)在利用固相反应制备氧化物陶瓷材料时,人们常常先利用溶胶-凝胶或共沉淀法得到前体物,再于高温下反应制备所需产物,请说明原因。
3)“软化学合成”是近些年在固体化学和材料化学制备中广泛使用的方法,请说明“软化学”合成的主要含义,及其在固体化学和材料化学中所起的作用和意义。
答:1.详见P6 A.加大反应固体原料的表面积及各种原料颗粒之间的接触面积;B.扩大产物相的成核速率C.扩大离子通过各种物相特别是产物物相的扩散速率。
2.详见P7最后一段P8 2.2节一二段 固相反应中反应物颗粒较大,为了使扩散反应能够进行,就得使得反应温度很高,并且机械的方法混合原料很难混合均匀。
共沉淀法便是使得反应原料在高温反映前就已经达到原子水平的混合,可大大的加快反应速度; 由于制备很多材料时,它们的组分之间不能形成固溶的共沉淀体系,为了克服这个限制,发展了溶胶-凝胶法,这个方法可以使反应物在原子水平上达到均匀的混合,并且使用范围广。
3.P22 “软化学”即就是研究在温和的反应条件下,缓慢的反应进程中,采取迂回步骤以制备有关材料的化学领域。
2.2 请解释为什么在大多数情况下固体间的反应很慢,怎样才能加快反应速率?答:P6以MgO 和反应生成为例,反应的第一步是生成晶核,32O Al 42O MgAl 42O MgAl 其晶核的生长是比较困难的,和的扩散速率是反应速率的决速步,因+2Mg +3Al 为扩散速率很慢,所以反应速率很慢,加快反应速率的方法见2.1(1)。
第三章(张芬华整理)3.1 说明在简单立方堆积、立方密堆积、六方密堆积、体心立方堆积和hc 型堆积中原子的配位情况。
答:简单立方堆积、 6立方密堆积、 12(6)阳离子充填1/2四面体格位六方硫化锌结构(共顶点)(7)阳离子填满所有八面体格位 NiAs结构和WC结构(共边)BaFeO(8)阳离子充填1/2八面体格位结构(六方钙钛矿)3第七章7.1 一种晶体具有中心对称,它是否具有以下性质:介电、铁电、热释电、压电?答:一个晶体具有中心对称,它具有介电性质,不具有铁电,热释电,压电性质。
材料化学第二章习题参考答案1

材料化学第二章习题参考答案1第二章参考答案1.原子间的结合键共有几种?各自特点如何?2.为什么可将金属单质的结构问题归结为等径圆球的密堆积问题?答:金属晶体中金属原子之间形成的金属键即无饱和性又无方向性, 其离域电子为所有原子共有,自由流动,因此整个金属单质可看成是同种元素金属正离子周期性排列而成,这些正离子的最外层电子结构都是全充满或半充满状态,电子分布基本上是球形对称,由于同种元素的原子半径都相等,因此可看成是等径圆球。
又因金属键无饱和性和方向性, 为使体系能量最低,金属原子在组成晶体时总是趋向形成密堆积结构,其特点是堆积密度大,配位数高,因此金属单质的结构问题归结为等径圆球的密堆积问题.3.计算体心立方结构和六方密堆结构的堆积系数。
(1) 体心立方a :晶格单位长度R :原子半径a34R=34Ra=,n=2, ∴68.0)3/4()3/4(2)3/4(23333===RRaRbccππζ(2)六方密堆n=64.试确定简单立方、体心立方和面心立方结构中原子半径和点阵参数之间的关系。
解:简单立方、体心立方和面心立方结构均属立方晶系,点阵参数或晶格参数关系为90,=====γβαcba,因此只求出a值即可。
对于(1)fcc(面心立方)有aR24=,24Ra=,90,=====γβαcba(2) bcc体心立方有:a34R=34Ra=;90,=====γβαcba(3) 简单立方有:Ra2=,90,=====γβαcba74.0)3(3812)3/4(6)2321(6)3/4(633hcp=⋅=⋅RRRRaacRππξ=Raac238==5. 金属铷为A2型结构,Rb 的原子半径为0.2468 nm ,密度为1.53g·cm-3,试求:晶格参数a 和Rb 的相对原子质量。
解:AabcN nM=ρ 其中, ρ为密度, c b a 、、为晶格常数, 晶胞体积abc V =,N A 为阿伏加德罗常数6.022×1023 mol -1,M 为原子量或分子量,n 为晶胞中分子个数,对于金属则上述公式中的M 为金属原子的原子量,n 为晶胞中原子的个数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料化学
第一章
5.试叙述划分正当点阵单位所依据的原则。
平面点阵有哪几种类型与型式? 请
论证其中只有矩形单位有带心不带心的两种型式,而其它三种类型只有不带心的
型式?
答:划分正当点阵单位所依据的原则是:在照顾对称性的条件下,尽量选取含点
阵点少的单位作正当点阵单位。
平面点阵可划分为四种类型,五种形式的正当平
面格子:正方,六方,矩形,带心矩形,平行四边形。
(a)(b)(c)(d)(a)若划分为六方格子中心带点,破坏六重轴的对称性,实际上该点阵的对称
性属于矩形格子。
(b)(c)分别划分为正方带心和平行四边形带心格子时,还可
以划分成更小的格子。
(d)如果将矩形带心格子继续划分,将破坏直角的规则性,故矩形带心格子为正当格子。
6.什么叫晶胞,什么叫正当晶胞,区别是什么?
答:晶胞即为空间格子将晶体结构截成的一个个大小,形状相等,包含等同内容
的基本单位。
在照顾对称性的条件下,尽量选取含点阵点少的单位作正当点阵单位,相应的晶胞叫正当晶胞。
9.什么叫晶面指标,标出下图所示点阵单位中各阴影面的晶面指标。
答:晶面指标(hkl)是平面点阵面在三个晶轴上的倒易截数之比,它是用来标
记一组互相平行且间距相等的平面点阵面与晶轴的取向关系的参数。
(001)(1 10)
(11 1)(0 1 1)
(1 11)(101)
12、什么是晶体衍射的两个要素?它们与晶体结构有何对应关系?晶体衍射两要
素在衍射图上有何反映?
答:晶体衍射的两个要素:衍射方向和衍射强度
关系:晶胞大小、形状衍射方向衍射(点、峰)的位置
晶胞内原子种类和位置衍射强度衍射点(线)的黑度、宽度峰的高度、高度13、阐明劳埃方程各符号的物理意义,并说明为何摄取劳埃图时需用白色射线,
而在用单色特征射线摄取单晶回转图时,需使晶体沿一晶轴旋转?
a,b,c 为空间点阵中三个互不平行的基本向量的大小
αO,βO,γO分别为三个方向上的X射线入射角
α,β,γ分别为三个方向上的衍射角
h,k,l 为一组整数,称为衍射指标,分别表示在三个晶轴方向上波程差所含
的波数
λ为波长
α,β,γ三个角度不是彼此完全独立的,他们之间还存在一定的函数关系。
这个关系连同劳埃方程共有 4 个方程,联系 3 个未知变量,一般得不到确定解。
欲得确定解,即欲得衍射图,必须增加变数。
两中途径可达到此目的:一是晶
体不动,采用多种波长混合的“白色”X射线,即X射线的波长λ在一定范围内
发生变化,摄取劳埃图的劳埃照相法就是采用此法;二是采用单色X射线而使
晶体转动,即改变αO,βO,γO的一个或两个,回转晶体法就是采用这种方法。
ue方程和Bragg方程解决什么问题,它们在实质上是否相同?
答:P44-49,晶体X射线衍射的方向问题,实质同
第二章
2、已知氧化铁Fe x0(富士体)为氯化钠型结构,在实际晶体中,由于存在缺陷,x
<1。
今有一批氧化铁,测得其密度为 5.7g/cm3,用MoKα射线(λ=71.07pm)测得其面心立方晶胞衍射指标为200 的衍射角θ=9.56°(sinθ=0.1661,Fe的相对
原子质量为 55.85)。
(a)计算Fe x0 的面心立方晶胞参数。
(b)求 x 值。
(c)计算Fe2 +和Fe3+各占总铁质量的质量分数。
(d)写出表明铁的价态的化学式。
第三章
5、用固体能带理论说明什么是导体、半导体、绝缘体?
参考:金属离子按点阵结构有规则的排列着,每一离子带有一定的正电荷。
电子在其间运动时与正离子之间有吸引势能,而且电子所处的位置不同,与正离子之间的距离不同,势能的大小就不同。
因此,电子实际是在一维周期性变化的电场中运动。
电子除直线运动外,在正电荷附近还要做轻微的振动。
当电子的 de
Broglie 波在晶格中进行时,如果满足Bragg 条件nλ=2dsinθ时,要受到晶面
的反射,因而不能同过晶体,使原有能级一分为二,这种能级突然上升和下降时能带发生断裂。
已充有电子,能带完全被电子所充满叫满带。
带中无电子,叫空带。
能带中有电子单位充满叫导带。
各能带的间隙是电子不能存在的区域,叫禁带。
在导体中,具有导带。
在外电场作用下,导带中的电子改变了在该能带不同能级间的分布状况,产生了电子流。
绝缘体的特征是只有满带和空带,而且禁带很宽。
满带与空带的能级差大于 5eV,一般的激发条件下,满带中的电子不能跃入空带,即不能形成导带。
这就是绝缘体不能导电的原因。
半导体的特征也是只有满带和空带,但满带与空带间的禁带距离很窄,一般小于3eV。
在一般的激发条件下,满带中的电子较易跃入空带,使空带中有了电子,满带中有了空穴,都能参与导电。
由于需克服禁带的能量间隙,电子跳跃不如导带那样容易,因而电阻率也比导体高得多。
9、单质 Mn 有一种同素异构体为立方结构,其晶胞参数为 632pm,密度
ρ=7.26g / cm3,原子半径r=112pm,计算Mn晶胞中有几个原子,其空间占有率
为多少?
5 章习题答案
2.聚丙烯酸甲酯和聚甲基丙烯酸甲酯哪一个较为柔顺.
高聚物的玻璃化温度大小比较如下
聚甲基丙烯酸甲酯>聚丙烯酸甲酯
8. 比较以下两种聚合物的柔顺性,并说明为什么。
解:聚氯丁二烯的柔顺性好于聚氯乙烯,所以前者用作橡胶而后者用作塑料。
聚氯乙烯有极性的
侧基 Cl,有一定刚性。
聚氯丁二烯虽然也的极性取代基 Cl,但 Cl 的密度较小,极性较弱,另一方面主链上存在孤立双键,孤立双键相邻的单键的内旋转位垒较小,因为:①键角较大
(120°而不是 109.5°);②双键上只有一个 H 或取代基,而不是两个。
11.列举出四种商业上最常见的热塑性塑料,并且说明他们的用途
聚丙烯
PP
最轻的塑料,机械强度比PE高,电器,耐水
常见制品:盆、桶、家具、薄膜、编织袋、瓶盖、汽车保险杠等。
聚苯乙烯
PS
在未着色时透明。
制品落地或敲打,有金属似的清脆声,光泽和透明很好,类似于玻璃,性脆易断裂,
用手指甲可以在制品表面划出痕迹。
改性聚苯乙烯为不透明。
常见制品:文具、杯子、食品容器、家电外壳、电气配件等
聚氯乙烯
PVC
强度好,电器绝缘性,耐热性高
常见制品:板材、管材、鞋底、玩具、门窗、电线外皮、文具等
聚对苯二甲酸乙二醇酯
PET
透明度很好,强度和韧性优于聚苯乙烯和聚氯乙烯,不易破碎。
常见制品:常为瓶类制品如可乐、矿泉水瓶等
6 章习题答案
7. 说明溶胶-凝胶法的原理及基本步骤。
答:溶胶-凝胶法是一种新兴起的制备陶瓷、玻璃等无机材料的湿化学方法。
其基本原理是:
易于水解的金属化合物(无机盐或金属醇盐)在某种溶剂中与水发生反应,经过水解与缩
聚过程逐渐凝胶化,再经干燥烧结等后处理得到所需材料,基本反应有水解反应和聚合
反应。
这种方法可在低温下制备纯度高、粒径分布均匀、化学活性高的单多组分混合物
(分子级混合),并可制备传统方法不能或难以制备的产物,特别适用于制备非晶态材料。
溶胶-凝胶法制备过程中以金属有机化合物(主要是金属醇盐)和部分无机盐为前驱
体,首先将前驱体溶于溶剂(水或有机溶剂)形成均匀的溶液,接着溶质在溶液中发生水解(或醇解),水解产物缩合聚集成粒径为1nm 左右的溶胶粒子(sol),溶胶粒子进一步聚集生长形成凝胶(gel)。
有人也将溶胶-凝胶法称为 SSG 法,即溶液-溶胶-凝胶法。