自动化仪表的发展历程
自动化与仪器仪表

目录
• 自动化概述 • 仪器仪表概述 • 自动化与仪器仪表的关联 • 自动化与仪器仪表的实际应用案例
01
自动化概述
自动化的定义与特点
定义
自动化是指机器或装置在无人干 预的情况下,按照规定的程序或 指令自动进行操作或控制的过程 。
特点
自动化能够提高生产效、降低 成本、减少人工干预、提高产品 质量和生产安全。
携带和集成到其他系统中。
仪器仪表在自动化中的作用
实现生产过程的监测和控制
仪器仪表能够实时监测生产过程,并将数据反馈给控制系统,实 现对生产过程的精确控制。
提高生产效率和产品质量
仪器仪表能够提供精确的测量数据,帮助企业优化生产过程,提高 生产效率和产品质量。
保障生产安全
仪器仪表可以监测生产过程中的异常情况,及时发出警报,保障生 产安全。
04
自动化与仪器仪表的实际 应用案例
工业自动化中的仪器仪表应用
01
02
03
04
自动化生产线监控
仪器仪表用于实时监测生产线 上各种设备的状态和参数,确
保生产流程的稳定运行。
能源管理
通过仪器仪表对工厂能源使用 进行监测和优化,降低能耗,
提高能源利用效率。
质量检测
仪器仪表用于检测产品各项性 能指标,确保产品质量符合标
环境监测中的自动化与仪器仪表应用
大气监测
仪器仪表用于检测空气中的污染物浓 度,评估空气质量。
水质监测
对饮用水、河流、湖泊等水体的水质 进行实时监测。
噪声监测
对城市或特定区域的噪声污染进行监 测和评估。
土壤监测
检测土壤中的重金属、农药残留等污 染物,评估土壤质量。
自动化仪表

• 自动化仪表概述 • 自动化仪表的工作原理与组成 • 自动化仪表的选型与安装 • 自动化仪表在工业生产中的应用 • 自动化仪表的发展趋势与挑战 • 总结与展望
01
自动化仪表概述
定义与发展历程
定义
自动化仪表是一种能够自动测量、记 录、显示、控制和报警的仪器设备, 广泛应用于工业、能源、环保、交通 等领域。
发展历程
自动化仪表经历了从机械化、电气化 、电子化到智能化的发展历程,随着 计算机技术和网络技术的不断发展, 自动化仪表的智能化程度不断提高。
自动化仪表的分类及应用领域
分类
根据测量原理、被测参数和使用 环境等不同标准,自动化仪表可 分为温度仪表、压力仪表、流量 仪表、物位仪表、分析仪表等。
应用领域
远程监控
借助网络技术,将自动化仪表与远程 监控中心相连,实现对生产现场的远 程实时监测和控制,降低人力成本。
机械设备状态监测与故障诊断
状态监测
通过自动化仪表对机械设备的振 动、温度、电流等参数进行实时
监测,及时发现潜在故障。
故障诊断
利用自动化仪表的数据分析功能 ,对监测到的异常数据进行处理 和分析,准确定位故障原因,为
电动执行机构技术
将控制信号转换为电机的 旋转运动,驱动阀门、风 门等执行机构动作。
气动执行机构技术
将控制信号转换为气源的 压力变化,驱动气动执行 机构动作。
03
自动化仪表的选型与安装
选型原则及注意事项
选型原则 根据测量对象及环境确定仪表类型。
根据测量精度要求选择合适的仪表等级。
选型原则及注意事项
03
常见故障排查及维修策略
检查仪表的输入/输出信号线是否接 好,有无松动或接触不良现象。
自动化仪表基础知识

孔板流量计
质量流量计
流体在旋转的管内流动时会对管壁产生一个力,它是科里 奥利在1832年研究水轮机时发现的,简称科氏力。质量流 量计以科氏力为基础,在传感器内部有两根平行的T型振 管,中部装有驱动线圈,两端装有拾振线圈,变送器提供 的激励电压加到驱动线圈上时,振动管作往复周在振管周 期振动,工业过程的流体介质流经传感器的振动管,就会 上产生科氏力效应,使两根振管扭转振动,安装在振管两 端的拾振线圈将产生相位不同的两组信号,这两个信号差 与流经传感器的流体质量流量成比例关系。计算机解算出 流经振管的质量流量。不同的介质流经传感器时,振管的 主振频率不同,据此解算出介质密度。安装在传感器器振 管上的铂电阻可间接测量介质的温度。
控制系统。
常见的仪表字母含义
F—代表流量 P—代表压力 T—代表温度 L—代表液位
压力仪表
现场压力表 电接点压力表 压力变送器/差压变送器 压力开关
现场压力表
现场压力表,从表盘直径看最常见的有60mm,100mm,150mm 三种规格。 从接口看最常见的有M20X1.5, 1/2NPT, 法兰连接(有法兰尺寸和耐压 等级要求)
过程控制系统的组成
(以控制锅炉水位为例)
眼 检测元件(变送器) 要想实现对汽包水位的控制,首先应随时掌握水位的
变化情况
脑 控制器
控制器将接收到的测量信号与预先规定的水位高度进 行比较。如果两个信号不相等,表明实际水位与规定水位 有偏差,此时控制器将根据偏差的大小向执行器输出一个 控制信号
手 执行器
按系统功能---温度控制系统、压力控制系统、位置控制
系统、流量控制系统等;
按系统性能--线性系统和非线性系统、连续系统和离散
系统、定常系统和时变系统;
自动化仪表及其发展概况

机械工业出版社 ,1999 ❖ 侯志林, 《过程控制与自动化仪表》
机械工业出版社 ,2002 ❖ 阳宪惠 《现场总线技术及其应用》
清华大学出版社 ,1999
自动化仪表与过程控制
Y SH X
0.1 自动化仪表及其发展概况
自动化仪表概述
0.1 自动化仪表及其发展概况
自动化仪表与过程控制
Y SH X
0.1 自动化仪表及其发展概况
0.1.3 自动化仪表的发展概况
(1) 基地式仪表(第一代)
安装生产设备现场、只具备简单测控功能
其信号仅在本仪表内起作用,
一般不能传送给别的仪表或系统, 无法与外界沟通信息
操作人员在现场的巡视,了 解生产过程的状况,进行控制
适用于生产规模较小的系统
0.1.1 仪表及计、器、仪、装置
我国是具有悠久历史和文化的国家,古代 劳动人民和学者曾创造过多种计量方法和器具。早 在战国时代,就有了度容积的计量;
衡:为质量的计量。
自动化仪表与过程控制
Y SH X
0.1 自动化仪表及其发展概况
在工程实用方面,对物理量进行“测量”或对某
自动化仪表与过程控制
Y SH X
0.1 自动化仪表及其发展概况
(2)单元组合式仪表(第二代)
DDZ-Ⅱ电动仪表
DDZ-Ⅱ气动仪表
DDZ-Ⅲ电动仪表
按功能划分单元,按 需要组合成复杂控制系统
操作人员可以坐在控
制室纵观生产流程各处的
状况
自动化仪表与过程控制
Y SH X
0.1 自动化仪表及其发展概况
于封闭、专用的解决方案变成了基于公开化、标准化
自动化仪表及其发展概况

自动化仪表作为一类专门的仪表,最早出现于本世纪40年代初,当时由于石油、化工、电力等工业对自动化的需要,出现了将测量、记录、调节仪表组装在一个表壳里的所谓“基地式”自动化仪表。基地式的名称是指它和后来出现的“单元组合式”仪表相比,比较适于在现场作就地检测和调节之用而得来的。仪表的这种结构形式是和当时自动化程度不高、控制分散的状况基本适应的,因而在一段时期内曾获得了普遍的应用。随着大型工业企业的出现,生产向综合自动化和集中控制的方向发展,人们发现基地式仪表的结构不够灵活,不如将仪表按功能划分,制成若干种能独立完成一定职能的标准单元,各单元之间以规定的标准信号相互联系,这样,仪表的精度容易提高。在使用中可以根据需要,选择一定的单元,积木式地把仪表组合起来,构成各种复杂程度不同的自动控制系统。这种积木式的仪表就称为“单元组合式”仪表。显然,将全功能的复杂仪表分解为若干基本单元的做法,无论对仪表制造厂的大量生产,还是对用户的维修选用都是有利的。此外,目前自动化程度较高的大、中型企业,大多使用单元组合式仪表,只在小型企业或分散设备单机控制中,由于基地式仪表结构紧凑,价格便宜,仍有一定的应用。
ห้องสมุดไป่ตู้
自动化仪表除了有上述两种不同的结构形式外,根据能源的种类,还可以分为电动、气动等仪表。其中气动仪表的出现比电动仪表早,而且价格便宜,结构简单,特别对石油化工等易燃易爆的生产现场,具有本质性的安全防爆性能,因而在相当长的一段时间里,一直处于优势地位。但从60年代起,由于电动仪表的晶体管化和集成电路化,控制功能日益完备,在使用低电压、小电流时,可在电路上及结构上采取严密措施,限制进入易燃易爆场所的能量,从而保证在生产现场不会发生足以引起燃烧或爆炸的“危险火花”。这样,限制电动仪表使用的一个主要障碍被扫除,电信号比气压信号在传送和处理上的优越性就能得到充分的发挥。大家知道,气压信号传递速度慢,传输距离短,管线安装不便。相比之下,电信号传输、放大、变换、测量都比气压信号方便得多,特别是电动仪表容易和电子巡回检测装置和工业控制计算机配合使用,实现生产过程的全盘自动化。因此,近年来电动仪表取得了显著的优势。
自动化仪表PPT课件

炼效率和产品质量。
自动化仪表在金属加工中的应用
03
通过自动化仪表对金属加工设备的运行参数进行监控
和调节,确保金属加工精度和质量。
其他行业应用案例
1 2 3
自动化仪表在食品加工中的应用
实现食品加工过程的自动化控制和优化,提高食 品加工效率和质量安全。
选型依据及注意事项
• 经济性:在满足工艺要求的前提下,选择 性价比高的产品。
选型依据及注意事项
01
注意事项
02
了解仪表的性能指标,如测量精度、稳定 性、可靠性等。
03
确认仪表的接口标准、通信协议等是否满 足系统要求。
04
考虑仪表的维护、校准及售后服务等因素 。
安装要求与步骤
01
安装要求
02
安装位置应便于观察、操作和维护。
03
自动化仪表在新能源发电中的应用
通过自动化仪表对风能、太阳能等新能源发电设备的运行参数进行监控
和调节,提高新能源发电的利用率和经济效益。
冶金行业应用案例
自动化仪表在钢铁冶炼中的应用
01
通过自动化仪表对高炉、转炉等设备的运行参数进行
实时监控和调节,提高钢铁冶炼的产量和质量。
自动化仪表在有色金属冶炼中的应用
检查连接线路
检查仪表与控制系统之间的连接线路是否松 动、老化或破损,确保信号传输稳定。
更换易损件
根据使用情况,及时更换仪表中的易损件, 如传感器、电极等。
定期保养计划制定与实施
制定保养计划
根据仪表的使用频率、重要性等因素,制定合理 的定期保养计划。
实施保养措施
按照保养计划,对仪表进行定期的检查、清洁、 校准等保养措施。
工业自动化中的自动化仪表与计量技术

是指对各种物理量进行测量、记录、分析和管理的技术,在工业自动化中,计 量技术是实现精确控制和高效生产的重要手段。
工业自动化的发展历程
01
萌芽阶段
工业自动化最早可以追溯到蒸汽机的发明和应用,但真正的工业自动化
萌芽是在20世纪初,随着电气技术和控制理论的发展,人们开始尝试将
各种自动化元件应用到工业生产中。
集成化和微型化
为了满足现代工业生产 的需求,计量技术将趋 向于集成化和微型化, 实现多参数、多功能的 综合测量,同时减小设 备体积和重量,降低成
本和能耗。
无线化和远程化
无线通信技术和物联网 技术的不断发展,使得 计量技术趋向于无线化 和远程化,实现远程数 据采集、传输和处理, 提高了测量的灵活性和
可靠性。
工业自动化中的自动 化仪表与计量技术
目 录
• 工业自动化概述 • 自动化仪表的种类与功能 • 计量技术在工业自动化中的应用 • 自动化仪表与计量技术的发展趋势与展望
01
工业自动化概述
工业自动化的定义与特点
自动化仪表
是指在工业自动化中使用的各种仪表,如压力仪表、温度仪表、流量仪表、物 位仪表等,用于检测和控制系统中的各种参数,保证生产过程的稳定和安全。
04
自动化仪表与计量技术 的发展趋势与展望
自动化仪表的发展趋势
智能化
集成化
随着人工智能和物联网技术的不断发展, 自动化仪表将更加智能化,能够自主完成 更复杂的操作和控制任务。
为了提高生产效率和降低成本,自动化仪 表将趋向于集成化,实现多功能的综合控 制。
无线化
高精度和高可靠性
无线通信技术的广泛应用使得自动化仪表 趋向于无线化,降低了布线成本和难度, 提高了系统的灵活性和可靠性。
过程控制与自动化仪表

过程控制与自动化仪表1. 引言过程控制与自动化仪表是现代工业生产中不可缺少的一部分,它们在监测、控制和优化工业过程中起着重要的作用。
过程控制与自动化仪表技术的应用可以提高工业生产的效率、质量和安全性,减少人力资源的消耗,实现工业自动化。
本文将介绍过程控制与自动化仪表的基本概念、发展历程以及在工业生产中的应用。
同时还会讨论一些常见的过程控制与自动化仪表的类型和工作原理,以及它们在不同行业中的具体应用案例。
2. 过程控制与自动化仪表基本概念过程控制与自动化仪表是指一系列用于监测、控制和调节工业过程的设备和系统。
它们可以通过测量和分析过程变量,控制工艺参数并实现自动化控制。
通过使用合适的传感器、执行器和控制算法,可以实现对工业过程的精密控制和优化。
过程控制与自动化仪表主要由以下几个组成部分构成:•传感器:用于测量各种物理量,如温度、压力、流量等;•控制器:根据传感器测量值和设定值进行逻辑运算,生成控制信号;•执行器:接收控制信号,并执行相应的动作,如开关、阀门等;•监控系统:用于监视和记录工业过程中的各种参数和状态;•人机界面:提供工业过程的可视化显示和人机交互界面。
3. 过程控制与自动化仪表的发展历程过程控制与自动化仪表的发展可以追溯到工业革命时期。
在工业革命之前,工业生产主要依靠人工操作,效率低下且易出错。
随着机械设备和工业化的发展,工业生产越来越复杂,对自动化控制的需求也越来越迫切。
20世纪初,工程师们开始研究和开发过程控制与自动化仪表技术。
最早的控制系统是基于机械和电气设备的。
随着电子技术的发展,电子仪表逐渐取代了机械仪表,实现了对工业过程更加精确的控制。
到了20世纪中叶,随着计算机技术的进一步发展,数字化控制系统开始应用于工业生产。
数字化控制系统通过采集和处理大量数据,实现了对工业过程的智能化控制,并提高了系统的可靠性和稳定性。
近年来,随着互联网和物联网技术的快速发展,过程控制与自动化仪表也越来越趋向于网络化和智能化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动化仪表的发展历程
未来几年间,我国仪器仪表仪器仪表将重点围绕以下方面发展:工业自动化仪表重点发展基于现场总线技术的主控系统装置及智能化仪表、特种和专用自动化仪表;全面扩大服务领域,推进仪器仪表系统的数字化、智能化、网络化,完成自动化仪表从模拟技术向数字技术的转变,5年内数字仪表比例达到60%以上;推进具有自主版权的自动化软件的商品化。
电工仪器仪表重点发展长寿命电能表、电子式电度表、特种专用电测仪表和电网计量自动管理系统。
到2005年,中低档电工仪器仪表国内市场占有率要达到95%;到2010年,高中档电工仪器仪表国内市场占有率达到80%。
科学测试仪器重点发展过程分析仪器、环保监测仪器仪表、工业炉窑节能分析仪器以及围绕基础产业所需的汽车零部件动平衡、动力测试及整车性能检测仪、大地测量仪器、电子速测仪、测量型全球定位系统以及其他试验机、实验室仪器等新产品。
产品以技术含量较高的中档产品为主,到2005年在总产值中占50%~60%。
环保仪器仪表重点发展大气环境、水环境的环保监测仪器仪表、取样系统和环境监测自动化控制系统产品,到2005年技术水平达到20世纪90年代后期国际先进水平,国内市场占有率达到50%~60%,到2010年国内市场占有率达
到70%以上。
仪器仪表仪器仪表元器件“十五”及2010年前,尽快开发出一批适销对路、
市场效果好的产品,品种占有率达到70%~80%,高档产品市场占有率达60%以上;通过科技攻关、新品开发,使产品质量水平达到国际20世纪90年代末
水平,部分产品接近国外同类产品先进水平。
<BR> 信息技术电测仪器主要发展电测仪器软件化、智能化技术,总线式自动测试技术,综合自动化测试系统,新型元器件测量技术及测试仪器,在线测试技术,信息产业产品测试技术,多媒体测量技术以及相应测试仪器,用电监控管理技术等。
另外,还有医疗仪器、尖端测量仪器。
现代仪器仪表的发展趋势
近十多年来,国际仪器仪表发展极为迅速,其主要防腐液位计趋势是:数字技术的出现把模拟仪器的精度、分辨率与测量速度提高了几个数量级,为实现侧试自动化下了良好的基础;计算机的引人.使仪器的功能发生了质的变化,从个别参量的测量转变成测量整个系统的特征参数.从单纯的接收、显示转变为控制、分析、处理、计算与显示输出,从用单个仪器进行测量转变成用测量系统进行测量;计算机技术在仪器仪表中的进一步渗透,使电子仪器在传统的时域与频域之外,又出现了数据域测试;仪器仪表与测量科学技术突破性进展又使仪器仪表智能化程度得到提高;DSP芯片的大量问世,使浮球液位计仪器仪表数字信号处理功能大大加强;微型机的发展,使仪器仪表具有更强的数据处理能力和图像处理功能;现场总线技术的迅速发展,提供了一种用于各种现场自动化设备与其控制系统的网络通信技术,并使Internet和Intranet技术也进人控制领域。
现代仪器仪表产品将向着计算机化、网络化、智能化、多功能化的方l句发展,跨学科的综合设计、高精尖的制造技术使它能更高速、更灵敏、更nI靠、史简捷地获取被分析、检测、控制对象的全方位信息。
而更高程度的智能化应包括理解、推理、判断与分析等一系列功能,是数值、逻辑与知识结合分析的结果,智能化的标志是知识的表达与应用。
嵌入式系统是未来真正实现光、机、电、算(计算机)一体化,自动化的结构,走向更名副其实的智能系统(带有自诊断、自控、自调、自行判断决策等高智能功能)的基本保证。